1
|
Frost D, Cook K, Sanabria H. Time-heterogeneity of the Förster Radius from Dipole Orientational Dynamics Impacts Single-Molecule FRET Experiments. ARXIV 2024:arXiv:2404.09883v2. [PMID: 38699162 PMCID: PMC11065046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Förster resonance energy transfer (FRET) is a quantum mechanical phenomenon involving the non-radiative transfer of energy between coupled electric dipoles. Due to the strong dependence of FRET on the distance between the dipoles, it is frequently used as a "molecular ruler" in biology, chemistry, and physics. This is done by placing dipolar molecules called dyes on molecules of interest. In time-resolved confocal single-molecule FRET (smFRET) experiments, the joint distribution of the FRET efficiency and the donor fluorescence lifetime can reveal underlying molecular conformational dynamics via deviation from their theoretical Förster relationship. This deviation is referred to as a dynamic shift. Quantifying the dynamic shift caused by the motion of the fluorescent dyes is essential to decoupling the dynamics of the studied molecules and the dyes. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based on first principle physics and proper dye linker chemistry to match accessible volumes predicted by molecular dynamics simulations. By simulating the dyes' stochastic translational and rotational dynamics, we show that the observed dynamic shift can largely be attributed to the mutual orientational dynamics of the electric dipole moments associated with the dyes, not their accessible volume. Our models provide the most up-to-date and accurate estimation of FRET.
Collapse
Affiliation(s)
- David Frost
- School of Mathematical and Statistical Sciences, Clemson University
| | - Keisha Cook
- School of Mathematical and Statistical Sciences, Clemson University
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University
| |
Collapse
|
2
|
Song K, Makarov DE, Vouga E. Information-theoretical limit on the estimates of dissipation by molecular machines using single-molecule fluorescence resonance energy transfer experiments. J Chem Phys 2024; 161:044111. [PMID: 39046347 DOI: 10.1063/5.0218040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Single-molecule fluorescence resonance energy transfer (FRET) experiments are commonly used to study the dynamics of molecular machines. While in vivo molecular processes often break time-reversal symmetry, the temporal directionality of cyclically operating molecular machines is often not evident from single-molecule FRET trajectories, especially in the most common two-color FRET studies. Solving a more quantitative problem of estimating the energy dissipation/entropy production by a molecular machine from single-molecule data is even more challenging. Here, we present a critical assessment of several practical methods of doing so, including Markov-model-based methods and a model-free approach based on an information-theoretical measure of entropy production that quantifies how (statistically) dissimilar observed photon sequences are from their time reverses. The Markov model approach is computationally feasible and may outperform model free approaches, but its performance strongly depends on how well the assumed model approximates the true microscopic dynamics. Markov models are also not guaranteed to give a lower bound on dissipation. Meanwhile, model-free, information-theoretical methods systematically underestimate entropy production at low photoemission rates, and long memory effects in the photon sequences make these methods demanding computationally. There is no clear winner among the approaches studied here, and all methods deserve to belong to a comprehensive data analysis toolkit.
Collapse
Affiliation(s)
- Kevin Song
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Etienne Vouga
- Department of Computer Science, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
3
|
Dhar M, Berg MA. Efficient, nonparametric removal of noise and recovery of probability distributions from time series using nonlinear-correlation functions: Photon and photon-counting noise. J Chem Phys 2024; 161:034116. [PMID: 39028845 DOI: 10.1063/5.0212157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024] Open
Abstract
A preceding paper [M. Dhar, J. A. Dickinson, and M. A. Berg, J. Chem. Phys. 159, 054110 (2023)] shows how to remove additive noise from an experimental time series, allowing both the equilibrium distribution of the system and its Green's function to be recovered. The approach is based on nonlinear-correlation functions and is fully nonparametric: no initial model of the system or of the noise is needed. However, single-molecule spectroscopy often produces time series with either photon or photon-counting noise. Unlike additive noise, photon noise is signal-size correlated and quantized. Photon counting adds the potential for bias. This paper extends noise-corrected-correlation methods to these cases and tests them on synthetic datasets. Neither signal-size correlation nor quantization is a significant complication. Analysis of the sampling error yields guidelines for the data quality needed to recover the properties of a system with a given complexity. We show that bias in photon-counting data can be corrected, even at the high count rates needed to optimize the time resolution. Using all these results, we discuss the factors that limit the time resolution of single-molecule spectroscopy and the conditions that would be needed to push measurements into the submicrosecond region.
Collapse
Affiliation(s)
- Mainak Dhar
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Mark A Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
4
|
Gopich IV, Chung HS. Unraveling Burst Selection Bias in Single-Molecule FRET of Species with Unequal Brightness and Diffusivity. J Phys Chem B 2024; 128:5576-5589. [PMID: 38833567 DOI: 10.1021/acs.jpcb.4c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Single-molecule free diffusion experiments enable accurate quantification of coexisting species or states. However, unequal brightness and diffusivity introduce a burst selection bias and affect the interpretation of experimental results. We address this issue with a photon-by-photon maximum likelihood method, burstML, which explicitly considers burst selection criteria. BurstML accurately estimates parameters, including photon count rates, diffusion times, Förster resonance energy transfer (FRET) efficiencies, and population, even in cases where species are poorly distinguished in FRET efficiency histograms. We develop a quantitative theory that determines the fraction of photon bursts corresponding to each species and thus obtain accurate species populations from the measured burst fractions. In addition, we provide a simple approximate formula for burst fractions and establish the range of parameters where unequal brightness and diffusivity can significantly affect the results obtained by conventional methods. The performance of the burstML method is compared with that of a maximum likelihood method that assumes equal species brightness and diffusivity, as well as standard Gaussian fitting of FRET efficiency histograms, using both simulated and real single-molecule data for cold-shock protein, protein L, and protein G. The burstML method enhances the accuracy of parameter estimation in single-molecule fluorescence studies.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Pessoa P, Schweiger M, Pressé S. Avoiding matrix exponentials for large transition rate matrices. J Chem Phys 2024; 160:094109. [PMID: 38436441 PMCID: PMC10919955 DOI: 10.1063/5.0190527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Exact methods for the exponentiation of matrices of dimension N can be computationally expensive in terms of execution time (N3) and memory requirements (N2), not to mention numerical precision issues. A matrix often exponentiated in the natural sciences is the rate matrix. Here, we explore five methods to exponentiate rate matrices, some of which apply more broadly to other matrix types. Three of the methods leverage a mathematical analogy between computing matrix elements of a matrix exponential process and computing transition probabilities of a dynamical process (technically a Markov jump process, MJP, typically simulated using Gillespie). In doing so, we identify a novel MJP-based method relying on restricting the number of "trajectory" jumps that incurs improved computational scaling. We then discuss this method's downstream implications on mixing properties of Monte Carlo posterior samplers. We also benchmark two other methods of matrix exponentiation valid for any matrix (beyond rate matrices and, more generally, positive definite matrices) related to solving differential equations: Runge-Kutta integrators and Krylov subspace methods. Under conditions where both the largest matrix element and the number of non-vanishing elements scale linearly with N-reasonable conditions for rate matrices often exponentiated-computational time scaling with the most competitive methods (Krylov and one of the MJP-based methods) reduces to N2 with total memory requirements of N.
Collapse
Affiliation(s)
| | | | - Steve Pressé
- Author to whom correspondence should be addressed:
| |
Collapse
|
6
|
Fazel M, Jazani S, Scipioni L, Vallmitjana A, Zhu S, Gratton E, Digman MA, Pressé S. Building Fluorescence Lifetime Maps Photon-by-Photon by Leveraging Spatial Correlations. ACS PHOTONICS 2023; 10:3558-3569. [PMID: 38406580 PMCID: PMC10890823 DOI: 10.1021/acsphotonics.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has become a standard tool in the quantitative characterization of subcellular environments. However, quantitative FLIM analyses face several challenges. First, spatial correlations between pixels are often ignored as signal from individual pixels is analyzed independently thereby limiting spatial resolution. Second, existing methods deduce photon ratios instead of absolute lifetime maps. Next, the number of fluorophore species contributing to the signal is unknown, while excited state lifetimes with <1 ns difference are difficult to discriminate. Finally, existing analyses require high photon budgets and often cannot rigorously propagate experimental uncertainty into values over lifetime maps and number of species involved. To overcome all of these challenges simultaneously and self-consistently at once, we propose the first doubly nonparametric framework. That is, we learn the number of species (using Beta-Bernoulli process priors) and absolute maps of these fluorophore species (using Gaussian process priors) by leveraging information from pulses not leading to observed photon. We benchmark our framework using a broad range of synthetic and experimental data and demonstrate its robustness across a number of scenarios including cases where we recover lifetime differences between species as small as 0.3 ns with merely 1000 photons.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sina Jazani
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Lorenzo Scipioni
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Alexander Vallmitjana
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Songning Zhu
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Steve Pressé
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States; School of Molecular Science, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Fazel M, Grussmayer KS, Ferdman B, Radenovic A, Shechtman Y, Enderlein J, Pressé S. Fluorescence Microscopy: a statistics-optics perspective. ARXIV 2023:arXiv:2304.01456v3. [PMID: 37064525 PMCID: PMC10104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fundamental properties of light unavoidably impose features on images collected using fluorescence microscopes. Modeling these features is ever more important in quantitatively interpreting microscopy images collected at scales on par or smaller than light's wavelength. Here we review the optics responsible for generating fluorescent images, fluorophore properties, microscopy modalities leveraging properties of both light and fluorophores, in addition to the necessarily probabilistic modeling tools imposed by the stochastic nature of light and measurement.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| | - Kristin S Grussmayer
- Department of Bionanoscience, Faculty of Applied Science and Kavli Institute for Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Boris Ferdman
- Russel Berrie Nanotechnology Institute and Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yoav Shechtman
- Russel Berrie Nanotechnology Institute and Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona, USA
- Center for Biological Physics, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|