Tran TT, Fanucci GE. Natural Polymorphisms D60E and I62V Stabilize a Closed Conformation in HIV-1 Protease in the Absence of an Inhibitor or Substrate.
Viruses 2024;
16:236. [PMID:
38400012 PMCID:
PMC10892587 DOI:
10.3390/v16020236]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
HIV infection remains a global health issue plagued by drug resistance and virological failure. Natural polymorphisms (NPs) contained within several African and Brazilian protease (PR) variants have been shown to induce a conformational landscape of more closed conformations compared to the sequence of subtype B prevalent in North America and Western Europe. Here we demonstrate through experimental pulsed EPR distance measurements and molecular dynamic (MD) simulations that the two common NPs D60E and I62V found within subtypes F and H can induce a closed conformation when introduced into HIV-1PR subtype B. Specifically, D60E alters the conformation in subtype B through the formation of a salt bridge with residue K43 contained within the nexus between the flap and hinge region of the HIV-1 PR fold. On the other hand, I62V modulates the packing of the hydrophobic cluster of the cantilever and fulcrum, also resulting in a more closed conformation.
Collapse