1
|
Wu CH, Hsu TW, Lai KL, Wang YF, Fuh JL, Wu HM, Lirng JF, Wang SJ, Chen SP. Disrupted Brain Functional Status in Patients with Reversible Cerebral Vasoconstriction Syndrome. Ann Neurol 2023; 94:772-784. [PMID: 37345341 DOI: 10.1002/ana.26724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the functional networks in subjects with reversible cerebral vasoconstriction syndrome (RCVS) using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS We prospectively recruited patients with RCVS and healthy controls (HCs) between February 2017 and April 2021. The rs-fMRI data were analyzed using graph theory methods. We compared node-based global and regional topological metrics (Bundle 1) and network-based intranetwork and internetwork connectivity (Bundle 2) between RCVS patients and HCs. We also explored the associations of clinical and vascular (ie, the Lindegaard index, LI) parameters with significant rs-fMRI metrics. RESULTS A total of 104 RCVS patients and 93 HCs were included in the final analysis. We identified significantly decreased local efficiency of the left dorsal anterior insula (dAI; p = 0.0005) in RCVS patients within 30 days after disease onset as compared to HCs, which improved 1 month later. RCVS patients also had increased global efficiency (p = 0.009) and decreased average degree centrality (p = 0.045), clustering coefficient (p = 0.033), and assortativity values (p = 0.003) in node-based analysis. In addition, patients with RCVS had increased internetwork connectivity of the default mode network (DMN) with the salience (p = 0.027) and dorsal attention (p = 0.016) networks. Significant correlations between LI and regional local efficiency in left dAI (rs = -0.418, p = 0.042) was demonstrated. INTERPRETATION The significantly lower local efficiency of the left dAI, suggestive of impaired central autonomic modulation, was negatively correlated with vasoconstriction severity, which is highly plausible for the pathogenesis of RCVS. ANN NEUROL 2023;94:772-784.
Collapse
Affiliation(s)
- Chia-Hung Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tun-Wei Hsu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuan-Lin Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ling Fuh
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Pin Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Aloi J, McCusker MC, Lew BJ, Schantell M, Eastman JA, Frenzel MR, Wilson TW. Altered amygdala-cortical connectivity in individuals with Cannabis use disorder. J Psychopharmacol 2021; 35:1365-1374. [PMID: 34730052 PMCID: PMC9659472 DOI: 10.1177/02698811211054163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cannabis is one of the most commonly used substances in the United States. Prior literature using task-based functional magnetic resonance imaging (fMRI) has identified that individuals with Cannabis use disorder (CUD) show impairments in emotion processing circuitry. However, whether the functional networks involving these regions are also altered in CUD remains poorly understood. AIMS Investigate changes in resting-state functional connectivity (rsFC) in regions related to emotional processing in CUD. METHODS Sixty-two participants completed resting-state fMRI, including 21 with CUD, 20 with histories of illicit substance use but no current CUD diagnosis, and 21 with no history of illicit substance use. Whole-brain seed-based connectivity analyses were performed and one-way analyses of covariance (ANCOVAs) were conducted to detect group differences in the bilateral amygdalae, hippocampi, and the anterior and posterior cingulate cortices. RESULTS The CUD group exhibited significant reductions in rsFC between the amygdala and the cuneus, paracentral lobule, and supplementary motor area, and between the cingulate cortices and the occipital and temporal lobes. There were no significant group differences in hippocampal functional connectivity. In addition, CUD symptom counts based on the Structured Clinical Interview for DSM-5 (SCID) and the Cannabis Use Disorders Identification Test (CUDIT) significantly correlated with multiple connectivity metrics. CONCLUSION These data expand on emerging literature indicating that CUD is associated with dysfunction in the neural circuits underlying emotion processing. Dysfunction in emotion processing circuits may play a role in the behavioral impairments seen in emotion processing tasks in individuals with CUD, and the severity of CUD symptoms appears to be directly related to the degree of dysfunction in these circuits.
Collapse
Affiliation(s)
- Joseph Aloi
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN
| | - Marie C. McCusker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Brandon J. Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Jacob A. Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Michaela R. Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE,College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
3
|
Wang D, Liang S. Dynamic Causal Modeling on the Identification of Interacting Networks in the Brain: A Systematic Review. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2299-2311. [PMID: 34714747 DOI: 10.1109/tnsre.2021.3123964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dynamic causal modeling (DCM) has long been used to characterize effective connectivity within networks of distributed neuronal responses. Previous reviews have highlighted the understanding of the conceptual basis behind DCM and its variants from different aspects. However, no detailed summary or classification research on the task-related effective connectivity of various brain regions has been made formally available so far, and there is also a lack of application analysis of DCM for hemodynamic and electrophysiological measurements. This review aims to analyze the effective connectivity of different brain regions using DCM for different measurement data. We found that, in general, most studies focused on the networks between different cortical regions, and the research on the networks between other deep subcortical nuclei or between them and the cerebral cortex are receiving increasing attention, but far from the same scale. Our analysis also reveals a clear bias towards some task types. Based on these results, we identify and discuss several promising research directions that may help the community to attain a clear understanding of the brain network interactions under different tasks.
Collapse
|
4
|
Snyder AD, Ma L, Steinberg JL, Woisard K, Moeller FG. Dynamic Causal Modeling Self-Connectivity Findings in the Functional Magnetic Resonance Imaging Neuropsychiatric Literature. Front Neurosci 2021; 15:636273. [PMID: 34456665 PMCID: PMC8385130 DOI: 10.3389/fnins.2021.636273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Dynamic causal modeling (DCM) is a method for analyzing functional magnetic resonance imaging (fMRI) and other functional neuroimaging data that provides information about directionality of connectivity between brain regions. A review of the neuropsychiatric fMRI DCM literature suggests that there may be a historical trend to under-report self-connectivity (within brain regions) compared to between brain region connectivity findings. These findings are an integral part of the neurologic model represented by DCM and serve an important neurobiological function in regulating excitatory and inhibitory activity between regions. We reviewed the literature on the topic as well as the past 13 years of available neuropsychiatric DCM literature to find an increasing (but still, perhaps, and inadequate) trend in reporting these results. The focus of this review is fMRI as the majority of published DCM studies utilized fMRI and the interpretation of the self-connectivity findings may vary across imaging methodologies. About 25% of articles published between 2007 and 2019 made any mention of self-connectivity findings. We recommend increased attention toward the inclusion and interpretation of self-connectivity findings in DCM analyses in the neuropsychiatric literature, particularly in forthcoming effective connectivity studies of substance use disorders.
Collapse
Affiliation(s)
- Andrew D Snyder
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Radiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Joel L Steinberg
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Kyle Woisard
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Frederick G Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Psychiatry, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| |
Collapse
|
5
|
Arias AJ, Ma L, Bjork JM, Hammond CJ, Zhou Y, Snyder A, Moeller FG. Altered effective connectivity of the reward network during an incentive-processing task in adults with alcohol use disorder. Alcohol Clin Exp Res 2021; 45:1563-1577. [PMID: 34120362 DOI: 10.1111/acer.14650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Abnormalities of reward sensitivity and impulsivity are known to be correlated with each other and alcohol use disorder (AUD) risk, but the underlying aberrant neural circuitry involved is not clearly defined. We sought to extend the current knowledge of AUD pathophysiology by studying incentive processing in persons with AUD using functional neuroimaging data. METHODS We utilized functional MRI data from the Human Connectome Project Database obtained during performance of a number-guessing incentive-processing task with win, loss, and neutral feedback conditions in 78 participants with either DSM-IV alcohol abuse or dependence (combined as the AUD group) and 78 age- and sex-matched control (CON) participants. Within a network consisting of anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), insula, ventral striatum, and dorsal striatum (DS) in the right hemisphere, we performed dynamic causal modeling analysis to test group-level differences (AUD vs. CON) in effective directional connectivity (EC) as modulated by "win" and "loss" conditions. We used linear regression analyses to characterize the relations between each EC outcome and measures of cumulative alcohol exposure and impulsivity. RESULTS During wins, AUD participants had lower ECs from ACC to the other four nodes, greater ECs from insula to the other four nodes, greater ECs from DLPFC to the other four nodes, and greater DS to DS self-connection EC than CON participants. In the total sample, EC from the insula to the DLPFC (insula → DLPFC) during wins was positively correlated with both impulsivity (as measured by the delay-discounting task) and cumulative alcohol exposure. The DS to DS self-connection EC during wins was positively correlated with impulsivity. Many of the altered ECs from the ACC and insula to other nodes were correlated with cumulative alcohol exposure. CONCLUSIONS Individuals with AUD have disrupted EC in both instrumentally driven and automatized corticostriatal reward circuits during non-alcohol reward feedback. These results point to disrupted corticostriatal EC in both "top-down" and "bottom-up" pathways among individuals with AUD.
Collapse
Affiliation(s)
- Albert J Arias
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Liangsuo Ma
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - James M Bjork
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | | | - Yi Zhou
- Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Andrew Snyder
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Frederick Gerard Moeller
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Psychiatry, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Pharmacology and Toxicology, Virginia Commonwealth University (VCU), Richmond, VA, USA.,Department of Neurology, Virginia Commonwealth University (VCU), Richmond, VA, USA
| |
Collapse
|
6
|
Ma L, Del Buono MG, Moeller FG. Cannabis Use as a Risk Factor for Takotsubo (Stress) Cardiomyopathy: Exploring the Evidence from Brain-Heart Link. Curr Cardiol Rep 2019; 21:121. [DOI: 10.1007/s11886-019-1210-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|