1
|
Tarantino L, Attanasio M, Di Mascio T, De Gasperis G, Valenti M, Mazza M. On the Evaluation of Engagement in Immersive Applications When Users Are on the Autism Spectrum. SENSORS (BASEL, SWITZERLAND) 2023; 23:2192. [PMID: 36850787 PMCID: PMC9963697 DOI: 10.3390/s23042192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
New generation wearable devices allow for the development of interactive environments tailored for Virtual Reality (VR)- and Augmented Reality (AR)-based treatment of Autism Spectrum Disorders (ASD). Experts agree on their potential; however, there is lack of consensus on how to perform trials and the need arises for evaluation frameworks, methods, and techniques appropriate for the ASD population. In this paper, we report on a study conducted with high-functioning ASD people in the 21-23 age range, with the objectives of (1) evaluating the engagement of two headsets offering distinct immersive experiences, (2) reasoning on the interpretation of engagement factors in the case of ASD people, and (3) translating results into general guidelines for the development of VR/AR-based ASD treatment. To this aim, we (1) designed two engagement evaluation frameworks based on behavioral observation measures, (2) set up two packages of reference immersive scenarios, (3) defined the association between metrics and scenarios, and (4) administered the scenarios in distinct sessions for the investigated headsets. Results show that the immersive experiences are engaging and that the apparent lack of success of some evaluation factors can become potential advantages within the framework of VR/AR-based ASD treatment design.
Collapse
Affiliation(s)
- Laura Tarantino
- Department of Information Engineering, Computer Science, and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Margherita Attanasio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Tania Di Mascio
- Department of Information Engineering, Computer Science, and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Giovanni De Gasperis
- Department of Information Engineering, Computer Science, and Mathematics, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Marco Valenti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
- Regional Reference Center for Autism of the Abruzzo Region, Local Health Unit ASL 1, 67100 L’Aquila, Italy
| | - Monica Mazza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| |
Collapse
|
2
|
Hennessy A, Seguin D, Correa S, Wang J, Martinez-Trujillo JC, Nicolson R, Duerden EG. Anxiety in children and youth with autism spectrum disorder and the association with amygdala subnuclei structure. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 27:1053-1067. [PMID: 36278283 PMCID: PMC10108338 DOI: 10.1177/13623613221127512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorder (ASD) is clinically characterized by social and communication difficulties as well as repetitive behaviors. Many children with ASD also suffer from anxiety, which has been associated with alterations in amygdala structure. In this work, the association between amygdala subnuclei volumes and anxiety was assessed in a cohort of 234 participants (mean age = 11.0 years, SD = 3.9, 95 children with ASD, 139 children were non-autistic). Children underwent magnetic resonance imaging. Amygdala subnuclei volumes were extracted automatically. Anxiety was assessed using the Screen for Child Anxiety Related Disorders, the Child Behavior Checklist, and the Strength and Difficulties Questionnaire. Children with ASD had higher anxiety scores relative to non-autistic children on all anxiety measures (all, p < 0.05). Anxiety levels were significantly predicted in children with ASD by right basal (right: B = 0.235, p = 0.002) and paralaminar (PL) (B = −0.99, p = 0.009) volumes. Basal nuclei receive multisensory information from cortical and subcortical areas and have extensive projections within the limbic system while the PL nuclei are involved in emotional processing. Alterations in basal and PL nuclei in children with ASD and the association with anxiety may reflect morphological changes related to in the neurocircuitry of anxiety in ASD. Lay abstract Autism spectrum disorder (ASD) is clinically characterized by social communication difficulties as well as restricted and repetitive patterns of behavior. In addition, children with ASD are more likely to experience anxiety compared with their peers who do not have ASD. Recent studies suggest that atypical amygdala structure, a brain region involved in emotions, may be related to anxiety in children with ASD. However, the amygdala is a complex structure composed of heterogeneous subnuclei, and few studies to date have focused on how amygdala subnuclei relate to in anxiety in this population. The current sample consisted of 95 children with ASD and 139 non-autistic children, who underwent magnetic resonance imaging (MRI) and assessments for anxiety. The amygdala volumes were automatically segmented. Results indicated that children with ASD had elevated anxiety scores relative to peers without ASD. Larger basal volumes predicted greater anxiety in children with ASD, and this association was not seen in non-autistic children. Findings converge with previous literature suggesting ASD children suffer from higher levels of anxiety than non-autistic children, which may have important implications in treatment and interventions. Our results suggest that volumetric estimation of amygdala’s subregions in MRI may reveal specific anxiety-related associations in children with ASD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emma G Duerden
- Western University, Canada
- The University of Western Ontario, Canada
| |
Collapse
|
3
|
Seguin D, Pac S, Wang J, Nicolson R, Martinez-Trujillo J, Anagnostou E, Lerch JP, Hammill C, Schachar R, Crosbie J, Kelley E, Ayub M, Brian J, Liu X, Arnold PD, Georgiades S, Duerden EG. Amygdala subnuclei volumes and anxiety behaviors in children and adolescents with autism spectrum disorder, attention deficit hyperactivity disorder, and obsessive-compulsive disorder. Hum Brain Mapp 2022; 43:4805-4816. [PMID: 35819018 PMCID: PMC9582362 DOI: 10.1002/hbm.26005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 12/14/2022] Open
Abstract
Alterations in the structural maturation of the amygdala subnuclei volumes are associated with anxiety behaviors in adults and children with neurodevelopmental and associated disorders. This study investigated the relationship between amygdala subnuclei volumes and anxiety in 233 children and adolescents (mean age = 11.02 years; standard deviation = 3.17) with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and children with obsessive compulsive disorder (OCD), as well as typically developing (TD) children. Parents completed the Child Behavior Checklist (CBCL), and the children underwent structural MRI at 3 T. FreeSurfer software was used to automatically segment the amygdala subnuclei. A general linear model revealed that children and adolescents with ASD, ADHD, and OCD had higher anxiety scores compared to TD children (p < .001). A subsequent interaction analysis revealed that children with ASD (B = 0.09, p < .0001) and children with OCD (B = 0.1, p < .0001) who had high anxiety had larger right central nuclei volumes compared with TD children. Similar results were obtained for the right anterior amygdaloid area. Amygdala subnuclei volumes may be key to identifying children with neurodevelopmental disorders or those with OCD who are at high risk for anxiety. Findings may inform the development of targeted behavioral interventions to address anxiety behaviors and to assess the downstream effects of such interventions.
Collapse
Affiliation(s)
- Diane Seguin
- Physiology & Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Sara Pac
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Jianan Wang
- Biomedical Engineering, Faculty of Engineering, Western University, London, Canada
| | - Rob Nicolson
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Julio Martinez-Trujillo
- Physiology & Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- The Hospital for Sick Children, Toronto, Canada.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, UK.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | | | | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, University of Toronto, Toronto, Canada
| | - Xudong Liu
- Department of Psychiatry, Queen's University, Kingston, Canada.,Queen's Genomics Lab at Ongwanada (QGLO), Ongwanada Resource Center, Kingston, Canada
| | - Paul D Arnold
- Department of Psychiatry Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | - Emma G Duerden
- Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada.,Applied Psychology, Faculty of Education, Western University, London, Canada
| |
Collapse
|
4
|
Andrews DS, Aksman L, Kerns CM, Lee JK, Winder-Patel BM, Harvey DJ, Waizbard-Bartov E, Heath B, Solomon M, Rogers SJ, Altmann A, Nordahl CW, Amaral DG. Association of Amygdala Development With Different Forms of Anxiety in Autism Spectrum Disorder. Biol Psychiatry 2022; 91:977-987. [PMID: 35341582 PMCID: PMC9116934 DOI: 10.1016/j.biopsych.2022.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The amygdala is widely implicated in both anxiety and autism spectrum disorder. However, no studies have investigated the relationship between co-occurring anxiety and longitudinal amygdala development in autism. Here, the authors characterize amygdala development across childhood in autistic children with and without traditional DSM forms of anxiety and anxieties distinctly related to autism. METHODS Longitudinal magnetic resonance imaging scans were acquired at up to four time points for 71 autistic and 55 typically developing (TD) children (∼2.5-12 years, 411 time points). Traditional DSM anxiety and anxieties distinctly related to autism were assessed at study time 4 (∼8-12 years) using a diagnostic interview tailored to autism: the Anxiety Disorders Interview Schedule-IV with the Autism Spectrum Addendum. Mixed-effects models were used to test group differences at study time 1 (3.18 years) and time 4 (11.36 years) and developmental differences (age-by-group interactions) in right and left amygdala volume between autistic children with and without DSM or autism-distinct anxieties and TD children. RESULTS Autistic children with DSM anxiety had significantly larger right amygdala volumes than TD children at both study time 1 (5.10% increase) and time 4 (6.11% increase). Autistic children with autism-distinct anxieties had significantly slower right amygdala growth than TD, autism-no anxiety, and autism-DSM anxiety groups and smaller right amygdala volumes at time 4 than the autism-no anxiety (-8.13% decrease) and autism-DSM anxiety (-12.05% decrease) groups. CONCLUSIONS Disparate amygdala volumes and developmental trajectories between DSM and autism-distinct forms of anxiety suggest different biological underpinnings for these common, co-occurring conditions in autism.
Collapse
Affiliation(s)
- Derek Sayre Andrews
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California.
| | - Leon Aksman
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California,Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Connor M. Kerns
- Department of Psychology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua K. Lee
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Breanna M. Winder-Patel
- MIND Institute and Department of Pediatrics, University of California Davis, Davis, California
| | - Danielle Jenine Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, California
| | - Einat Waizbard-Bartov
- MIND Institute and Department of Psychology, University of California Davis, Davis, California
| | - Brianna Heath
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Marjorie Solomon
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Sally J. Rogers
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - Andre Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Christine Wu Nordahl
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| | - David G. Amaral
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis, Davis, California
| |
Collapse
|