1
|
Dhar D, Chaturvedi M, Sehwag S, Malhotra C, Udit, Saraf C, Chakrabarty M. Gray Matter Volume Correlates of Co-Occurring Depression in Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06602-0. [PMID: 39441477 DOI: 10.1007/s10803-024-06602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Autism Spectrum Disorder (ASD) involves neurodevelopmental syndromes with significant deficits in communication, motor behaviors, emotional and social comprehension. Often, individuals with ASD exhibit co-occurring depression characterized by a change in mood and diminished interest in previously enjoyable activities. Due to communicative challenges and a lack of appropriate assessments in this cohort, co-occurring depression can often go undiagnosed during routine clinical examinations and, thus, its management neglected. The literature on co-occurring depression in adults with ASD is limited. Therefore, understanding the neural basis of the co-occurring psychopathology of depression in ASD is crucial for identifying brain-based markers for its timely and effective management. Using structural MRI and phenotypic data from the Autism Brain Imaging Data Exchange (ABIDE II) repository, we examined the pattern of relationship regional grey matter volume (rGMV) has with co-occurring depression and autism severity within regions of a priori interest in adults with ASD (n = 44; age = 17-28 years). Further, we performed an exploratory analysis of the rGMV differences between ASD and matched typically developed (TD, n = 39; age = 18-31 years) samples. The severity of co-occurring depression correlated negatively with the rGMV of the right thalamus. Additionally, a significant interaction was evident between the severity of co-occurring depression and core ASD symptoms towards explaining the rGMV in the left cerebellum crus II. The results further the understanding of the neurobiological underpinnings of co-occurring depression in adults with ASD towards exploring neuroimaging-based biomarkers in the same cohort.
Collapse
Affiliation(s)
- Dolcy Dhar
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Manasi Chaturvedi
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
- Centre for Design and New Media, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
- School of Information, University of Texas at Austin, Texas 78712, USA
| | - Saanvi Sehwag
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Chehak Malhotra
- Department of Mathematics, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Udit
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Chetan Saraf
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India
| | - Mrinmoy Chakrabarty
- Department of Social Sciences and Humanities, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India.
- Centre for Design and New Media, Indraprastha Institute of Information Technology Delhi, New Delhi, 110020, India.
| |
Collapse
|
2
|
Liloia D, Zamfira DA, Tanaka M, Manuello J, Crocetta A, Keller R, Cozzolino M, Duca S, Cauda F, Costa T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neurosci Biobehav Rev 2024; 164:105791. [PMID: 38960075 DOI: 10.1016/j.neubiorev.2024.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Denisa Adina Zamfira
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Mauro Cozzolino
- Department of Humanities, Philosophical and Educational Sciences, University of Salerno, Fisciano, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
3
|
Manuello J, Liloia D, Crocetta A, Cauda F, Costa T. CBMAT: a MATLAB toolbox for data preparation and post hoc analyses in neuroimaging meta-analyses. Behav Res Methods 2024; 56:4325-4335. [PMID: 37528293 PMCID: PMC11519206 DOI: 10.3758/s13428-023-02185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Coordinate-based meta-analysis (CBMA) is a powerful technique in the field of human brain imaging research. Due to its intense usage, several procedures for data preparation and post hoc analyses have been proposed so far. However, these steps are often performed manually by the researcher, and are therefore potentially prone to error and time-consuming. We hence developed the Coordinate-Based Meta-Analyses Toolbox (CBMAT) to provide a suite of user-friendly and automated MATLAB® functions allowing one to perform all these procedures in a fast, reproducible and reliable way. Besides the description of the code, in the present paper we also provide an annotated example of using CBMAT on a dataset including 34 experiments. CBMAT can therefore substantially improve the way data are handled when performing CBMAs. The code can be downloaded from https://github.com/Jordi-Manuello/CBMAT.git .
Collapse
Affiliation(s)
- Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
- Move'N'Brains Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - Annachiara Crocetta
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
4
|
Carrión-Castillo A, Boeckx C. Insights into the genetic architecture of cerebellar lobules derived from the UK Biobank. Sci Rep 2024; 14:9488. [PMID: 38664414 DOI: 10.1038/s41598-024-59699-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
In this work we endeavor to further understand the genetic architecture of the cerebellum by examining the genetic underpinnings of the different cerebellar lob(ul)es, identifying their genetic relation to cortical and subcortical regions, as well as to psychiatric disorders, as well as traces of their evolutionary trajectories. We confirm the moderate heritability of cerebellar volumes, and reveal genetic clustering and variability across their different substructures, which warranted a detailed analysis using this higher structural resolution. We replicated known genetic correlations with several subcortical volumes, and report new cortico-cerebellar genetic correlations, including negative genetic correlations between anterior cerebellar lobules and cingulate, and positive ones between lateral Crus I and lobule VI with cortical measures in the fusiform region. Heritability partitioning for evolutionary annotations highlighted that the vermis of Crus II has depleted heritability in genomic regions of "archaic introgression deserts", but no enrichment/depletion of heritability in any other cerebellar regions. Taken together, these findings reveal novel insights into the genetic underpinnings of the different cerebellar lobules.
Collapse
Affiliation(s)
- Amaia Carrión-Castillo
- Basque Center on Cognition, Brain and Language (BCBL), Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Cedric Boeckx
- Universitat de Barcelona, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain.
- Universitat de Barcelona Institute of Neurosciences, Barcelona, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
5
|
Liloia D, Manuello J, Costa T, Keller R, Nani A, Cauda F. Atypical local brain connectivity in pediatric autism spectrum disorder? A coordinate-based meta-analysis of regional homogeneity studies. Eur Arch Psychiatry Clin Neurosci 2024; 274:3-18. [PMID: 36599959 PMCID: PMC10787009 DOI: 10.1007/s00406-022-01541-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Despite decades of massive neuroimaging research, the comprehensive characterization of short-range functional connectivity in autism spectrum disorder (ASD) remains a major challenge for scientific advances and clinical translation. From the theoretical point of view, it has been suggested a generalized local over-connectivity that would characterize ASD. This stance is known as the general local over-connectivity theory. However, there is little empirical evidence supporting such hypothesis, especially with regard to pediatric individuals with ASD (age [Formula: see text] 18 years old). To explore this issue, we performed a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity. Our analyses revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network) and in the bilateral paracentral lobule (a part of the sensorimotor network). We also performed a functional association analysis of the identified areas, whose dysfunction is clinically consistent with the well-known deficits affecting individuals with ASD. Importantly, we did not find relevant clusters of local hyper-connectivity, which is contrary to the hypothesis that ASD may be characterized by generalized local over-connectivity. If confirmed, our result will provide a valuable insight into the understanding of the complex ASD pathophysiology.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy.
- Neuroscience Institute of Turin (NIT), Turin, Italy.
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Andrea Nani
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI Research Group, Koelliker Hospital and Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Functional Neuroimaging and Complex Neural Systems (FOCUS) Laboratory, Department of Psychology, University of Turin, Turin, Italy
- Neuroscience Institute of Turin (NIT), Turin, Italy
| |
Collapse
|
6
|
Tanaka M, Szabó Á, Vécsei L, Giménez-Llort L. Emerging Translational Research in Neurological and Psychiatric Diseases: From In Vitro to In Vivo Models. Int J Mol Sci 2023; 24:15739. [PMID: 37958722 PMCID: PMC10649796 DOI: 10.3390/ijms242115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Revealing the underlying pathomechanisms of neurological and psychiatric disorders, searching for new biomarkers, and developing novel therapeutics all require translational research [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary;
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Department of Psychiatry & Forensic Medicine, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|