1
|
van Wagenberg T, Voncken R, van Beveren C, Berbee M, van Limbergen E, Verhaegen F, Paiva Fonseca G. Time-resolved clinical dose volume metrics, calculations and predictions based on source tracking measurements and uncertainties to aid treatment verification and error detection for HDR brachytherapy-a proof-of-principle study. Phys Med Biol 2024; 69:135006. [PMID: 38870948 DOI: 10.1088/1361-6560/ad580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Objective.High-dose-rate (HDR) brachytherapy lacks routinely available treatment verification methods. Real-time tracking of the radiation source during HDR brachytherapy can enhance treatment verification capabilities. Recent developments in source tracking allow for measurement of dwell times and source positions with high accuracy. However, more clinically relevant information, such as dose discrepancies, is still needed. To address this, a real-time dose calculation implementation was developed to provide more relevant information from source tracking data. A proof-of-principle of the developed tool was shown using source tracking data obtained from a 3D-printed anthropomorphic phantom.Approach.Software was developed to calculate dose-volume-histograms (DVH) and clinical dose metrics from experimental HDR prostate treatment source tracking data, measured in a realistic pelvic phantom. Uncertainty estimation was performed using repeat measurements to assess the inherent dose measuring uncertainty of thein vivodosimetry (IVD) system. Using a novel approach, the measurement uncertainty can be incorporated in the dose calculation, and used for evaluation of cumulative dose and clinical dose-volume metrics after every dwell position, enabling real-time treatment verification.Main results.The dose calculated from source tracking measurements aligned with the generated uncertainty bands, validating the approach. Simulated shifts of 3 mm in 5/17 needles in a single plan caused DVH deviations beyond the uncertainty bands, indicating errors occurred during treatment. Clinical dose-volume metrics could be monitored in a time-resolved approach, enabling early detection of treatment plan deviations and prediction of their impact on the final dose that will be delivered in real-time.Significance.Integrating dose calculation with source tracking enhances the clinical relevance of IVD methods. Phantom measurements show that the developed tool aids in tracking treatment progress, detecting errors in real-time and post-treatment evaluation. In addition, it could be used to define patient-specific action limits and error thresholds, while taking the uncertainty of the measurement system into consideration.
Collapse
Affiliation(s)
- Teun van Wagenberg
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Robert Voncken
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Celine van Beveren
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Maaike Berbee
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Evert van Limbergen
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
2
|
In Vivo Verification of Treatment Source Dwell Times in Brachytherapy of Postoperative Endometrial Carcinoma: A Feasibility Study. J Pers Med 2022; 12:jpm12060911. [PMID: 35743696 PMCID: PMC9224704 DOI: 10.3390/jpm12060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: In brachytherapy, there are still many manual procedures that can cause adverse events which can be detected with in vivo dosimetry systems. Plastic scintillator dosimeters (PSD) have interesting properties to achieve this objective such as real-time reading, linearity, repeatability, and small size to fit inside brachytherapy catheters. The purpose of this study was to evaluate the performance of a PSD in postoperative endometrial brachytherapy in terms of source dwell time accuracy. (2) Methods: Measurements were carried out in a PMMA phantom to characterise the PSD. Patient measurements in 121 dwell positions were analysed to obtain the differences between planned and measured dwell times. (3) Results: The repeatability test showed a relative standard deviation below 1% for the measured dwell times. The relative standard deviation of the PSD sensitivity with accumulated absorbed dose was lower than 1.2%. The equipment operated linearly in total counts with respect to absorbed dose and also in count rate versus absorbed dose rate. The mean (standard deviation) of the absolute differences between planned and measured dwell times in patient treatments was 0.0 (0.2) seconds. (4) Conclusions: The PSD system is useful as a quality assurance tool for brachytherapy treatments.
Collapse
|
3
|
Wilby S, Palmer A, Polak W, Bucchi A. A review of brachytherapy physical phantoms developed over the last 20 years: clinical purpose and future requirements. J Contemp Brachytherapy 2021; 13:101-115. [PMID: 34025743 PMCID: PMC8117707 DOI: 10.5114/jcb.2021.103593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/13/2020] [Indexed: 12/04/2022] Open
Abstract
Within the brachytherapy community, many phantoms are constructed in-house, and less commercial development is observed as compared to the field of external beam. Computational or virtual phantom design has seen considerable growth; however, physical phantoms are beneficial for brachytherapy, in which quality is dependent on physical processes, such as accuracy of source placement. Focusing on the design of physical phantoms, this review paper presents a summary of brachytherapy specific phantoms in published journal articles over the last twenty years (January 1, 2000 - December 31, 2019). The papers were analyzed and tabulated by their primary clinical purpose, which was deduced from their associated publications. A substantial body of work has been published on phantom designs from the brachytherapy community, but a standardized method of reporting technical aspects of the phantoms is lacking. In-house phantom development demonstrates an increasing interest in magnetic resonance (MR) tissue mimicking materials, which is not yet reflected in commercial phantoms available for brachytherapy. The evaluation of phantom design provides insight into the way, in which brachytherapy practice has changed over time, and demonstrates the customised and broad nature of treatments offered.
Collapse
Affiliation(s)
- Sarah Wilby
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Antony Palmer
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Wojciech Polak
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Andrea Bucchi
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
4
|
Accuracy of dwell position detection with a combined electromagnetic tracking brachytherapy system for treatment verification in pelvic brachytherapy. Radiother Oncol 2020; 154:249-254. [PMID: 33038356 DOI: 10.1016/j.radonc.2020.09.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the accuracy of dwell position detection with a combined electromagnetic tracking (EMT) brachytherapy (BT) system for treatment verification, by quantifying positional errors due to EM field interference in typical pelvic BT clinical settings. MATERIALS AND METHODS Dedicated prostate and cervix BT phantoms were imaged with CT. For the cervix phantom, the Utrecht applicator + interstitial catheters were used. The implants were reconstructed and treatment plans were created with 270/65 dwell positions for the prostate/cervix phantom. Next, EMT experiments were performed in clinical BT settings using a prototype of a combined EMT/BT system. We quantified positional errors due to EM field interference from surrounding equipment by comparing planned and EMT-measured dwell positions. The mean residual error between planned and EMT-measured dwell positions was calculated in the prostate interstitial catheters and in the whole cervix implant including the applicator. For the cervix phantom, the analysis was repeated for only the interstitial catheters. RESULTS Mean residual errors of less than 0.5/0.4 mm in the prostate/cervix catheters were found. For the whole cervix implant including the applicator, large deviations up to 2.4 mm were found. Compared to the interference free set-up, the CT and patient bed environments showed larger residual errors in the interstitial catheters, but residual errors remained <1 mm in all cases. CONCLUSION Dwell position detection with the combined system in interstitial catheters is sufficiently accurate to perform EMT-based treatment verification. The effect of EM interference from the surrounding equipment was limited.
Collapse
|
5
|
Breedveld S, Bennan ABA, Aluwini S, Schaart DR, Kolkman-Deurloo IKK, Heijmen BJM. Fast automated multi-criteria planning for HDR brachytherapy explored for prostate cancer. ACTA ACUST UNITED AC 2019; 64:205002. [DOI: 10.1088/1361-6560/ab44ff] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Cañas R, Linares I, Guedea F, Berenguer Francés MÁ. Why should radiation oncology do translational research? [corrected]. Rep Pract Oncol Radiother 2019; 24:60-64. [PMID: 30455615 PMCID: PMC6234255 DOI: 10.1016/j.rpor.2018.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 11/29/2022] Open
Abstract
Radiological Oncology, like the rest of medical specialties, is beginning to provide can personalized therapies. The ongoing scientific advances enable a great degree of precision in diagnoses and therapies. To fight cancer, from a radiotherapy unit, requires up-to-date equipment, professionals with different specialties working in synchrony (doctors, physicists, biologists, etc.) and a lot of research. Some of the new therapeutic tendencies are immunotherapy, nanoparticles, gene therapy, biomarkers, artificial intelligence, etc. A new clinical paradigm in which new professional networks are inevitable is arising. The mission of translational research is to become a scientific engine in the clinical space.
Collapse
Affiliation(s)
- Rut Cañas
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
| | - Isabel Linares
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
- Radiation Oncology Department. Institut Català d’Oncologia, L’Hospitalet de Llobregat, Avinguda Granvia, 199-203, 08908, Barcelona, Spain
| | - Ferran Guedea
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
- Radiation Oncology Department. Institut Català d’Oncologia, L’Hospitalet de Llobregat, Avinguda Granvia, 199-203, 08908, Barcelona, Spain
| | - Miguel Ángel Berenguer Francés
- Department of Radiobiology and Cancer, ONCOBELL – IDIBELL, Barcelona, Spain
- Radiation Oncology Department. Institut Català d’Oncologia, L’Hospitalet de Llobregat, Avinguda Granvia, 199-203, 08908, Barcelona, Spain
| |
Collapse
|