1
|
Fionda B, Placidi E, de Ridder M, Strigari L, Patarnello S, Tanderup K, Hannoun-Levi JM, Siebert FA, Boldrini L, Antonietta Gambacorta M, De Spirito M, Sala E, Tagliaferri L. Artificial intelligence in interventional radiotherapy (brachytherapy): Enhancing patient-centered care and addressing patients' needs. Clin Transl Radiat Oncol 2024; 49:100865. [PMID: 39381628 PMCID: PMC11459626 DOI: 10.1016/j.ctro.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
This review explores the integration of artificial intelligence (AI) in interventional radiotherapy (IRT), emphasizing its potential to streamline workflows and enhance patient care. Through a systematic analysis of 78 relevant papers spanning from 2002 to 2024, we identified significant advancements in contouring, treatment planning, outcome prediction, and quality assurance. AI-driven approaches offer promise in reducing procedural times, personalizing treatments, and improving treatment outcomes for oncological patients. However, challenges such as clinical validation and quality assurance protocols persist. Nonetheless, AI presents a transformative opportunity to optimize IRT and meet evolving patient needs.
Collapse
Affiliation(s)
- Bruno Fionda
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Elisa Placidi
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Mischa de Ridder
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Patarnello
- Real World Data Facility, Gemelli Generator, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jean-Michel Hannoun-Levi
- Department of Radiation Oncology, Antoine Lacassagne Cancer Centre, University of Côte d’Azur, Nice, France
| | - Frank-André Siebert
- Clinic of Radiotherapy (Radiooncology), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Evis Sala
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tagliaferri
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
2
|
Almeida ND, Shekher R, Pepin A, Schrand TV, Goulenko V, Singh AK, Fung-Kee-Fung S. Artificial Intelligence Potential Impact on Resident Physician Education in Radiation Oncology. Adv Radiat Oncol 2024; 9:101505. [PMID: 38799112 PMCID: PMC11127091 DOI: 10.1016/j.adro.2024.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Neil D. Almeida
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Rohil Shekher
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Abigail Pepin
- Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tyler V. Schrand
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio
| | - Victor Goulenko
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Simon Fung-Kee-Fung
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
3
|
Han R, Acosta JN, Shakeri Z, Ioannidis JPA, Topol EJ, Rajpurkar P. Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review. Lancet Digit Health 2024; 6:e367-e373. [PMID: 38670745 PMCID: PMC11068159 DOI: 10.1016/s2589-7500(24)00047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
This scoping review of randomised controlled trials on artificial intelligence (AI) in clinical practice reveals an expanding interest in AI across clinical specialties and locations. The USA and China are leading in the number of trials, with a focus on deep learning systems for medical imaging, particularly in gastroenterology and radiology. A majority of trials (70 [81%] of 86) report positive primary endpoints, primarily related to diagnostic yield or performance; however, the predominance of single-centre trials, little demographic reporting, and varying reports of operational efficiency raise concerns about the generalisability and practicality of these results. Despite the promising outcomes, considering the likelihood of publication bias and the need for more comprehensive research including multicentre trials, diverse outcome measures, and improved reporting standards is crucial. Future AI trials should prioritise patient-relevant outcomes to fully understand AI's true effects and limitations in health care.
Collapse
Affiliation(s)
- Ryan Han
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA; University of California Los Angeles-Caltech Medical Scientist Training Program, Los Angeles, CA, USA
| | - Julián N Acosta
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Rad AI, San Francisco, CA, USA
| | - Zahra Shakeri
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - John P A Ioannidis
- Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA, USA; Meta-Research Innovation Center at Stanford, Stanford University, Stanford, CA, USA
| | - Eric J Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA.
| | - Pranav Rajpurkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Stenhouse K, Roumeliotis M, Ciunkiewicz P, Martell K, Quirk S, Banerjee R, Doll C, Phan T, Yanushkevich S, McGeachy P. Prospective validation of a machine learning model for applicator and hybrid interstitial needle selection in high-dose-rate (HDR) cervical brachytherapy. Brachytherapy 2024; 23:368-376. [PMID: 38538415 DOI: 10.1016/j.brachy.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE To Demonstrate the clinical validation of a machine learning (ML) model for applicator and interstitial needle prediction in gynecologic brachytherapy through a prospective clinical study in a single institution. METHODS The study included cervical cancer patients receiving high-dose-rate brachytherapy using intracavitary (IC) or hybrid interstitial (IC/IS) applicators. For each patient, the primary radiation oncologist contoured the high-risk clinical target volume on a pre-brachytherapy MRI, indicated the approximate applicator location, and made a clinical determination of the first fraction applicator. A pre-trained ML model predicted the applicator and IC/IS needle arrangement using tumor geometry. Following the first fraction, ML and radiation oncologist predictions were compared and a replanning study determined the applicator providing optimal organ-at-risk (OAR) dosimetry. The ML-predicted applicator and needle arrangement and the clinical determination were compared to this dosimetric ground truth. RESULTS Ten patients were accrued from December 2020 to October 2022. Compared to the dosimetrically optimal applicator, both the radiation oncologist and ML had an accuracy of 70%. ML demonstrated better identification of patients requiring IC/IS applicators and provided balanced IC and IC/IS predictions. The needle selection model achieved an average accuracy of 82.5%. ML-predicted needle arrangements matched or improved plan quality when compared to clinically selected arrangements. Overall, ML predictions led to an average total improvement of 2.0 Gy to OAR doses over three treatment fractions when compared to clinical predictions. CONCLUSION In the context of a single institution study, the presented ML model demonstrates valuable decision-support for the applicator and needle selection process with the potential to provide improved dosimetry. Future work will include a multi-center study to assess generalizability.
Collapse
Affiliation(s)
- Kailyn Stenhouse
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada; Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada.
| | - Michael Roumeliotis
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD.
| | - Philip Ciunkiewicz
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Martell
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Sarah Quirk
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada; Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA
| | - Robyn Banerjee
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Corinne Doll
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Tien Phan
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Svetlana Yanushkevich
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Philip McGeachy
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada; Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada; Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Fechter T, Sachpazidis I, Baltas D. The use of deep learning in interventional radiotherapy (brachytherapy): A review with a focus on open source and open data. Z Med Phys 2024; 34:180-196. [PMID: 36376203 PMCID: PMC11156786 DOI: 10.1016/j.zemedi.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Deep learning advanced to one of the most important technologies in almost all medical fields. Especially in areas, related to medical imaging it plays a big role. However, in interventional radiotherapy (brachytherapy) deep learning is still in an early phase. In this review, first, we investigated and scrutinised the role of deep learning in all processes of interventional radiotherapy and directly related fields. Additionally, we summarised the most recent developments. For better understanding, we provide explanations of key terms and approaches to solving common deep learning problems. To reproduce results of deep learning algorithms both source code and training data must be available. Therefore, a second focus of this work is on the analysis of the availability of open source, open data and open models. In our analysis, we were able to show that deep learning plays already a major role in some areas of interventional radiotherapy, but is still hardly present in others. Nevertheless, its impact is increasing with the years, partly self-propelled but also influenced by closely related fields. Open source, data and models are growing in number but are still scarce and unevenly distributed among different research groups. The reluctance in publishing code, data and models limits reproducibility and restricts evaluation to mono-institutional datasets. The conclusion of our analysis is that deep learning can positively change the workflow of interventional radiotherapy but there is still room for improvements when it comes to reproducible results and standardised evaluation methods.
Collapse
Affiliation(s)
- Tobias Fechter
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany.
| | - Ilias Sachpazidis
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| | - Dimos Baltas
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany
| |
Collapse
|
6
|
Susanto AP, Lyell D, Widyantoro B, Berkovsky S, Magrabi F. Effects of machine learning-based clinical decision support systems on decision-making, care delivery, and patient outcomes: a scoping review. J Am Med Inform Assoc 2023; 30:2050-2063. [PMID: 37647865 PMCID: PMC10654852 DOI: 10.1093/jamia/ocad180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE This study aims to summarize the research literature evaluating machine learning (ML)-based clinical decision support (CDS) systems in healthcare settings. MATERIALS AND METHODS We conducted a review in accordance with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta Analyses extension for Scoping Review). Four databases, including PubMed, Medline, Embase, and Scopus were searched for studies published from January 2016 to April 2021 evaluating the use of ML-based CDS in clinical settings. We extracted the study design, care setting, clinical task, CDS task, and ML method. The level of CDS autonomy was examined using a previously published 3-level classification based on the division of clinical tasks between the clinician and CDS; effects on decision-making, care delivery, and patient outcomes were summarized. RESULTS Thirty-two studies evaluating the use of ML-based CDS in clinical settings were identified. All were undertaken in developed countries and largely in secondary and tertiary care settings. The most common clinical tasks supported by ML-based CDS were image recognition and interpretation (n = 12) and risk assessment (n = 9). The majority of studies examined assistive CDS (n = 23) which required clinicians to confirm or approve CDS recommendations for risk assessment in sepsis and for interpreting cancerous lesions in colonoscopy. Effects on decision-making, care delivery, and patient outcomes were mixed. CONCLUSION ML-based CDS are being evaluated in many clinical areas. There remain many opportunities to apply and evaluate effects of ML-based CDS on decision-making, care delivery, and patient outcomes, particularly in resource-constrained settings.
Collapse
Affiliation(s)
- Anindya Pradipta Susanto
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
- Faculty of Medicine, Universitas Indonesia, Jakarta, DKI Jakarta 10430, Indonesia
| | - David Lyell
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
| | - Bambang Widyantoro
- Faculty of Medicine, Universitas Indonesia, Jakarta, DKI Jakarta 10430, Indonesia
- National Cardiovascular Center Harapan Kita Hospital, Jakarta, DKI Jakarta 11420, Indonesia
| | - Shlomo Berkovsky
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
| | - Farah Magrabi
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
7
|
Maes D, Holmstrom M, Helander R, Saini J, Fang C, Bowen SR. Automated treatment planning for proton pencil beam scanning using deep learning dose prediction and dose-mimicking optimization. J Appl Clin Med Phys 2023; 24:e14065. [PMID: 37334746 PMCID: PMC10562035 DOI: 10.1002/acm2.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/31/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
PURPOSE The purpose of this study is to investigate the use of a deep learning architecture for automated treatment planning for proton pencil beam scanning (PBS). METHODS A 3-dimensional (3D) U-Net model has been implemented in a commercial treatment planning system (TPS) that uses contoured regions of interest (ROI) binary masks as model inputs with a predicted dose distribution as the model output. Predicted dose distributions were converted to deliverable PBS treatment plans using a voxel-wise robust dose mimicking optimization algorithm. This model was leveraged to generate machine learning (ML) optimized plans for patients receiving proton PBS irradiation of the chest wall. Model training was carried out on a retrospective set of 48 previously-treated chest wall patient treatment plans. Model evaluation was carried out by generating ML-optimized plans on a hold-out set of 12 contoured chest wall patient CT datasets from previously treated patients. Clinical goal criteria and gamma analysis were used to compare dose distributions of the ML-optimized plans against the clinically approved plans across the test patients. RESULTS Statistical analysis of mean clinical goal criteria indicates that compared to the clinical plans, the ML optimization workflow generated robust plans with similar dose to the heart, lungs, and esophagus while achieving superior dosimetric coverage to the PTV chest wall (clinical mean V95 = 97.6% vs. ML mean V95 = 99.1%, p < 0.001) across the 12 test patients. CONCLUSIONS ML-based automated treatment plan optimization using the 3D U-Net model can generate treatment plans of similar clinical quality compared to human-driven optimization.
Collapse
Affiliation(s)
- Dominic Maes
- Department of Radiation OncologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | | | | | - Jatinder Saini
- Department of Radiation OncologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Christine Fang
- Department of Radiation OncologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - Stephen R. Bowen
- Department of Radiation OncologyUniversity of Washington School of MedicineSeattleWashingtonUSA
- Department of RadiologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| |
Collapse
|
8
|
Froń A, Semianiuk A, Lazuk U, Ptaszkowski K, Siennicka A, Lemiński A, Krajewski W, Szydełko T, Małkiewicz B. Artificial Intelligence in Urooncology: What We Have and What We Expect. Cancers (Basel) 2023; 15:4282. [PMID: 37686558 PMCID: PMC10486651 DOI: 10.3390/cancers15174282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
INTRODUCTION Artificial intelligence is transforming healthcare by driving innovation, automation, and optimization across various fields of medicine. The aim of this study was to determine whether artificial intelligence (AI) techniques can be used in the diagnosis, treatment planning, and monitoring of urological cancers. METHODOLOGY We conducted a thorough search for original and review articles published until 31 May 2022 in the PUBMED/Scopus database. Our search included several terms related to AI and urooncology. Articles were selected with the consensus of all authors. RESULTS Several types of AI can be used in the medical field. The most common forms of AI are machine learning (ML), deep learning (DL), neural networks (NNs), natural language processing (NLP) systems, and computer vision. AI can improve various domains related to the management of urologic cancers, such as imaging, grading, and nodal staging. AI can also help identify appropriate diagnoses, treatment options, and even biomarkers. In the majority of these instances, AI is as accurate as or sometimes even superior to medical doctors. CONCLUSIONS AI techniques have the potential to revolutionize the diagnosis, treatment, and monitoring of urologic cancers. The use of AI in urooncology care is expected to increase in the future, leading to improved patient outcomes and better overall management of these tumors.
Collapse
Affiliation(s)
- Anita Froń
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| | - Alina Semianiuk
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| | - Uladzimir Lazuk
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| | - Kuba Ptaszkowski
- Department of Physiotherapy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Agnieszka Siennicka
- Department of Physiology and Pathophysiology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Artur Lemiński
- Department of Urology and Urological Oncology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Wojciech Krajewski
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| | - Tomasz Szydełko
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| | - Bartosz Małkiewicz
- Department of Minimally Invasive and Robotic Urology, University Center of Excellence in Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (U.L.); (W.K.); (T.S.)
| |
Collapse
|
9
|
Zhao JZ, Ni R, Chow R, Rink A, Weersink R, Croke J, Raman S. Artificial intelligence applications in brachytherapy: A literature review. Brachytherapy 2023; 22:429-445. [PMID: 37248158 DOI: 10.1016/j.brachy.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Artificial intelligence (AI) has the potential to simplify and optimize various steps of the brachytherapy workflow, and this literature review aims to provide an overview of the work done in this field. METHODS AND MATERIALS We conducted a literature search in June 2022 on PubMed, Embase, and Cochrane for papers that proposed AI applications in brachytherapy. RESULTS A total of 80 papers satisfied inclusion/exclusion criteria. These papers were categorized as follows: segmentation (24), registration and image processing (6), preplanning (13), dose prediction and treatment planning (11), applicator/catheter/needle reconstruction (16), and quality assurance (10). AI techniques ranged from classical models such as support vector machines and decision tree-based learning to newer techniques such as U-Net and deep reinforcement learning, and were applied to facilitate small steps of a process (e.g., optimizing applicator selection) or even automate the entire step of the workflow (e.g., end-to-end preplanning). Many of these algorithms demonstrated human-level performance and offer significant improvements in speed. CONCLUSIONS AI has potential to augment, automate, and/or accelerate many steps of the brachytherapy workflow. We recommend that future studies adhere to standard reporting guidelines. We also stress the importance of using larger sample sizes and reporting results using clinically interpretable measures.
Collapse
Affiliation(s)
- Jonathan Zl Zhao
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ruiyan Ni
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ronald Chow
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Alexandra Rink
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert Weersink
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Jennifer Croke
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Srinivas Raman
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Kallis K, Moore LC, Cortes KG, Brown D, Mayadev J, Moore KL, Meyers SM. Automated treatment planning framework for brachytherapy of cervical cancer using 3D dose predictions. Phys Med Biol 2023; 68:10.1088/1361-6560/acc37c. [PMID: 36898161 PMCID: PMC10101723 DOI: 10.1088/1361-6560/acc37c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Objective. To lay the foundation for automated knowledge-based brachytherapy treatment planning using 3D dose estimations, we describe an optimization framework to convert brachytherapy dose distributions directly into dwell times (DTs).Approach. A dose rate kernelḋ(r,θ,φ)was produced by exporting 3D dose for one dwell position from the treatment planning system and normalizing by DT. By translating and rotating this kernel to each dwell position, scaling by DT and summing over all dwell positions, dose was computed (Dcalc). We used a Python-coded COBYLA optimizer to iteratively determine the DTs that minimize the mean squared error betweenDcalcand reference doseDref, computed using voxels withDref80%-120% of prescription. As validation of the optimization, we showed that the optimizer replicates clinical plans whenDref= clinical dose in 40 patients treated with tandem-and-ovoid (T&O) or tandem-and-ring (T&R) and 0-3 needles. Then we demonstrated automated planning in 10 T&O usingDref= dose predicted from a convolutional neural network developed in past work. Validation and automated plans were compared to clinical plans using mean absolute differences (MAD=1N∑n=1Nabsxn-xn') over all voxels (xn= Dose,N= #voxels) and DTs (xn= DT,N= #dwell positions), mean differences (MD) in organD2ccand high-risk CTV D90 over all patients (where positive indicates higher clinical dose), and mean Dice similarity coefficients (DSC) for 100% isodose contours.Main results. Validation plans agreed well with clinical plans (MADdose= 1.1%, MADDT= 4 s or 0.8% of total plan time,D2ccMD = -0.2% to 0.2% and D90 MD = -0.6%, DSC = 0.99). For automated plans, MADdose= 6.5% and MADDT= 10.3 s (2.1%). The slightly higher clinical metrics in automated plans (D2ccMD = -3.8% to 1.3% and D90 MD = -5.1%) were due to higher neural network dose predictions. The overall shape of the automated dose distributions were similar to clinical doses (DSC = 0.91).Significance. Automated planning with 3D dose predictions could provide significant time savings and standardize treatment planning across practitioners, regardless of experience.
Collapse
Affiliation(s)
- Karoline Kallis
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Lance C Moore
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Katherina G Cortes
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Derek Brown
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Jyoti Mayadev
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Kevin L Moore
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Sandra M Meyers
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| |
Collapse
|
11
|
Optical spectroscopy and chemometrics in intraoperative tumor margin assessment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
|
13
|
Lam TYT, Cheung MFK, Munro YL, Lim KM, Shung D, Sung JJY. Randomized Controlled Trials of Artificial Intelligence in Clinical Practice: Systematic Review. J Med Internet Res 2022; 24:e37188. [PMID: 35904087 PMCID: PMC9459941 DOI: 10.2196/37188] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The number of artificial intelligence (AI) studies in medicine has exponentially increased recently. However, there is no clear quantification of the clinical benefits of implementing AI-assisted tools in patient care. OBJECTIVE This study aims to systematically review all published randomized controlled trials (RCTs) of AI-assisted tools to characterize their performance in clinical practice. METHODS CINAHL, Cochrane Central, Embase, MEDLINE, and PubMed were searched to identify relevant RCTs published up to July 2021 and comparing the performance of AI-assisted tools with conventional clinical management without AI assistance. We evaluated the primary end points of each study to determine their clinical relevance. This systematic review was conducted following the updated PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines. RESULTS Among the 11,839 articles retrieved, only 39 (0.33%) RCTs were included. These RCTs were conducted in an approximately equal distribution from North America, Europe, and Asia. AI-assisted tools were implemented in 13 different clinical specialties. Most RCTs were published in the field of gastroenterology, with 15 studies on AI-assisted endoscopy. Most RCTs studied biosignal-based AI-assisted tools, and a minority of RCTs studied AI-assisted tools drawn from clinical data. In 77% (30/39) of the RCTs, AI-assisted interventions outperformed usual clinical care, and clinically relevant outcomes improved with AI-assisted intervention in 70% (21/30) of the studies. Small sample size and single-center design limited the generalizability of these studies. CONCLUSIONS There is growing evidence supporting the implementation of AI-assisted tools in daily clinical practice; however, the number of available RCTs is limited and heterogeneous. More RCTs of AI-assisted tools integrated into clinical practice are needed to advance the role of AI in medicine. TRIAL REGISTRATION PROSPERO CRD42021286539; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=286539.
Collapse
Affiliation(s)
- Thomas Y T Lam
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong., Hong Kong, Hong Kong
| | - Max F K Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yasmin L Munro
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Kong Meng Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dennis Shung
- Department of Medicine (Digestive Diseases), Yale School of Medicine, New Haven, CT, United States
| | - Joseph J Y Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Jia X, Cunha JAM, Rong Y. Artificial intelligence can overcome challenges in brachytherapy treatment planning. J Appl Clin Med Phys 2022; 23:e13504. [PMID: 35041263 PMCID: PMC8803284 DOI: 10.1002/acm2.13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/12/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xun Jia
- Department of Radiation OncologyUniversity of Texas‐SouthwesternDallasTexasUSA
| | - J. Adam M. Cunha
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yi Rong
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| |
Collapse
|
15
|
Song WY, Robar JL, Morén B, Larsson T, Carlsson Tedgren Å, Jia X. Emerging technologies in brachytherapy. Phys Med Biol 2021; 66. [PMID: 34710856 DOI: 10.1088/1361-6560/ac344d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023]
Abstract
Brachytherapy is a mature treatment modality. The literature is abundant in terms of review articles and comprehensive books on the latest established as well as evolving clinical practices. The intent of this article is to part ways and look beyond the current state-of-the-art and review emerging technologies that are noteworthy and perhaps may drive the future innovations in the field. There are plenty of candidate topics that deserve a deeper look, of course, but with practical limits in this communicative platform, we explore four topics that perhaps is worthwhile to review in detail at this time. First, intensity modulated brachytherapy (IMBT) is reviewed. The IMBT takes advantage ofanisotropicradiation profile generated through intelligent high-density shielding designs incorporated onto sources and applicators such to achieve high quality plans. Second, emerging applications of 3D printing (i.e. additive manufacturing) in brachytherapy are reviewed. With the advent of 3D printing, interest in this technology in brachytherapy has been immense and translation swift due to their potential to tailor applicators and treatments customizable to each individual patient. This is followed by, in third, innovations in treatment planning concerning catheter placement and dwell times where new modelling approaches, solution algorithms, and technological advances are reviewed. And, fourth and lastly, applications of a new machine learning technique, called deep learning, which has the potential to improve and automate all aspects of brachytherapy workflow, are reviewed. We do not expect that all ideas and innovations reviewed in this article will ultimately reach clinic but, nonetheless, this review provides a decent glimpse of what is to come. It would be exciting to monitor as IMBT, 3D printing, novel optimization algorithms, and deep learning technologies evolve over time and translate into pilot testing and sensibly phased clinical trials, and ultimately make a difference for cancer patients. Today's fancy is tomorrow's reality. The future is bright for brachytherapy.
Collapse
Affiliation(s)
- William Y Song
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - James L Robar
- Department of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Björn Morén
- Department of Mathematics, Linköping University, Linköping, Sweden
| | - Torbjörn Larsson
- Department of Mathematics, Linköping University, Linköping, Sweden
| | - Åsa Carlsson Tedgren
- Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology Pathology, Karolinska Institute, Stockholm, Sweden
| | - Xun Jia
- Innovative Technology Of Radiotherapy Computations and Hardware (iTORCH) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
16
|
Wei S, Li C, Li M, Xiong Y, Jiang Y, Sun H, Qiu B, Lin CJ, Wang J. Radioactive Iodine-125 in Tumor Therapy: Advances and Future Directions. Front Oncol 2021; 11:717180. [PMID: 34660280 PMCID: PMC8514864 DOI: 10.3389/fonc.2021.717180] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Radioactive iodine-125 (I-125) is the most widely used radioactive sealed source for interstitial permanent brachytherapy (BT). BT has the exceptional ability to deliver extremely high doses that external beam radiotherapy (EBRT) could never achieve within treated lesions, with the added benefit that doses drop off rapidly outside the target lesion by minimizing the exposure of uninvolved surrounding normal tissue. Spurred by multiple biological and technological advances, BT application has experienced substantial alteration over the past few decades. The procedure of I-125 radioactive seed implantation evolved from ultrasound guidance to computed tomography guidance. Compellingly, the creative introduction of 3D-printed individual templates, BT treatment planning systems, and artificial intelligence navigator systems remarkably increased the accuracy of I-125 BT and individualized I-125 ablative radiotherapy. Of note, utilizing I-125 to treat carcinoma in hollow cavity organs was enabled by the utility of self-expandable metal stents (SEMSs). Initially, I-125 BT was only used in the treatment of rare tumors. However, an increasing number of clinical trials upheld the efficacy and safety of I-125 BT in almost all tumors. Therefore, this study aims to summarize the recent advances of I-125 BT in cancer therapy, which cover experimental research to clinical investigations, including the development of novel techniques. This review also raises unanswered questions that may prompt future clinical trials and experimental work.
Collapse
Affiliation(s)
- Shuhua Wei
- Department of Radiation Oncology, Peking University 3rd Hospital, Beijing, China
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University 3rd Hospital, Beijing, China
| | - Mengyuan Li
- Department of Radiation Oncology, Peking University 3rd Hospital, Beijing, China
| | - Yan Xiong
- Department of Radiation Oncology, Peking University 3rd Hospital, Beijing, China
| | - Yuliang Jiang
- Department of Radiation Oncology, Peking University 3rd Hospital, Beijing, China
| | - Haitao Sun
- Department of Radiation Oncology, Peking University 3rd Hospital, Beijing, China
| | - Bin Qiu
- Department of Radiation Oncology, Peking University 3rd Hospital, Beijing, China
| | | | - Junjie Wang
- Department of Radiation Oncology, Peking University 3rd Hospital, Beijing, China
| |
Collapse
|
17
|
King MT, Keyes M, Frank SJ, Crook JM, Butler WM, Rossi PJ, Cox BW, Showalter TN, Mourtada F, Potters L, Stock RG, Kollmeier MA, Zelefsky MJ, Davis BJ, Merrick GS, Orio PF. Low dose rate brachytherapy for primary treatment of localized prostate cancer: A systemic review and executive summary of an evidence-based consensus statement. Brachytherapy 2021; 20:1114-1129. [PMID: 34509378 DOI: 10.1016/j.brachy.2021.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE The purpose of this guideline is to present evidence-based consensus recommendations for low dose rate (LDR) permanent seed brachytherapy for the primary treatment of prostate cancer. METHODS AND MATERIALS The American Brachytherapy Society convened a task force for addressing key questions concerning ultrasound-based LDR prostate brachytherapy for the primary treatment of prostate cancer. A comprehensive literature search was conducted to identify prospective and multi-institutional retrospective studies involving LDR brachytherapy as monotherapy or boost in combination with external beam radiation therapy with or without adjuvant androgen deprivation therapy. Outcomes included disease control, toxicity, and quality of life. RESULTS LDR prostate brachytherapy monotherapy is an appropriate treatment option for low risk and favorable intermediate risk disease. LDR brachytherapy boost in combination with external beam radiation therapy is appropriate for unfavorable intermediate risk and high-risk disease. Androgen deprivation therapy is recommended in unfavorable intermediate risk and high-risk disease. Acceptable radionuclides for LDR brachytherapy include iodine-125, palladium-103, and cesium-131. Although brachytherapy monotherapy is associated with increased urinary obstructive and irritative symptoms that peak within the first 3 months after treatment, the median time toward symptom resolution is approximately 1 year for iodine-125 and 6 months for palladium-103. Such symptoms can be mitigated with short-term use of alpha blockers. Combination therapy is associated with worse urinary, bowel, and sexual symptoms than monotherapy. A prostate specific antigen <= 0.2 ng/mL at 4 years after LDR brachytherapy may be considered a biochemical definition of cure. CONCLUSIONS LDR brachytherapy is a convenient, effective, and well-tolerated treatment for prostate cancer.
Collapse
Affiliation(s)
- Martin T King
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA.
| | - Mira Keyes
- Department of Radiation Oncology, British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | - Steven J Frank
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Juanita M Crook
- Department of Radiation Oncology, British Columbia Cancer Agency, University of British Columbia, Kelowna, Canada
| | - Wayne M Butler
- Department of Radiation Oncology, Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, WV
| | - Peter J Rossi
- Calaway Young Cancer Center, Valley View Hospital, Glenwood Springs, CO
| | - Brett W Cox
- Department of Radiation Oncology, Rush University Medical Center, Chicago, IL
| | - Timothy N Showalter
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA
| | - Firas Mourtada
- Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE
| | - Louis Potters
- Department of Radiation Oncology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Richard G Stock
- Department of Radiation Oncology, Mt. Sinai Medical Center, New York, NY
| | - Marisa A Kollmeier
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN
| | - Gregory S Merrick
- Department of Radiation Oncology, Schiffler Cancer Center, Wheeling Jesuit University, Wheeling, WV
| | - Peter F Orio
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
18
|
Banerjee S, Goyal S, Mishra S, Gupta D, Bisht SS, K V, Narang K, Kataria T. Artificial intelligence in brachytherapy: a summary of recent developments. Br J Radiol 2021; 94:20200842. [PMID: 33914614 DOI: 10.1259/bjr.20200842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Artificial intelligence (AI) applications, in the form of machine learning and deep learning, are being incorporated into practice in various aspects of medicine, including radiation oncology. Ample evidence from recent publications explores its utility and future use in external beam radiotherapy. However, the discussion on its role in brachytherapy is sparse. This article summarizes available current literature and discusses potential uses of AI in brachytherapy, including future directions. AI has been applied for brachytherapy procedures during almost all steps, starting from decision-making till treatment completion. AI use has led to improvement in efficiency and accuracy by reducing the human errors and saving time in certain aspects. Apart from direct use in brachytherapy, AI also contributes to contemporary advancements in radiology and associated sciences that can affect brachytherapy decisions and treatment. There is a renewal of interest in brachytherapy as a technique in recent years, contributed largely by the understanding that contemporary advances such as intensity modulated radiotherapy and stereotactic external beam radiotherapy cannot match the geometric gains and conformality of brachytherapy, and the integrated efforts of international brachytherapy societies to promote brachytherapy training and awareness. Use of AI technologies may consolidate it further by reducing human effort and time. Prospective validation over larger studies and incorporation of AI technologies for a larger patient population would help improve the efficiency and acceptance of brachytherapy. The enthusiasm favoring AI needs to be balanced against the short duration and quantum of experience with AI in limited patient subsets, need for constant learning and re-learning to train the AI algorithms, and the inevitability of humans having to take responsibility for the correctness and safety of treatments.
Collapse
Affiliation(s)
- Susovan Banerjee
- Division of Radiation Oncology, Medanta- The Medicity, Gurgaon, Haryana, India
| | - Shikha Goyal
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Saumyaranjan Mishra
- Division of Radiation Oncology, Medanta- The Medicity, Gurgaon, Haryana, India
| | - Deepak Gupta
- Division of Radiation Oncology, Medanta- The Medicity, Gurgaon, Haryana, India
| | - Shyam Singh Bisht
- Division of Radiation Oncology, Medanta- The Medicity, Gurgaon, Haryana, India
| | - Venketesan K
- Division of Radiation Oncology, Medanta- The Medicity, Gurgaon, Haryana, India
| | - Kushal Narang
- Division of Radiation Oncology, Medanta- The Medicity, Gurgaon, Haryana, India
| | - Tejinder Kataria
- Division of Radiation Oncology, Medanta- The Medicity, Gurgaon, Haryana, India
| |
Collapse
|
19
|
Yin J, Ngiam KY, Teo HH. Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review. J Med Internet Res 2021; 23:e25759. [PMID: 33885365 PMCID: PMC8103304 DOI: 10.2196/25759] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Artificial intelligence (AI) applications are growing at an unprecedented pace in health care, including disease diagnosis, triage or screening, risk analysis, surgical operations, and so forth. Despite a great deal of research in the development and validation of health care AI, only few applications have been actually implemented at the frontlines of clinical practice. OBJECTIVE The objective of this study was to systematically review AI applications that have been implemented in real-life clinical practice. METHODS We conducted a literature search in PubMed, Embase, Cochrane Central, and CINAHL to identify relevant articles published between January 2010 and May 2020. We also hand searched premier computer science journals and conferences as well as registered clinical trials. Studies were included if they reported AI applications that had been implemented in real-world clinical settings. RESULTS We identified 51 relevant studies that reported the implementation and evaluation of AI applications in clinical practice, of which 13 adopted a randomized controlled trial design and eight adopted an experimental design. The AI applications targeted various clinical tasks, such as screening or triage (n=16), disease diagnosis (n=16), risk analysis (n=14), and treatment (n=7). The most commonly addressed diseases and conditions were sepsis (n=6), breast cancer (n=5), diabetic retinopathy (n=4), and polyp and adenoma (n=4). Regarding the evaluation outcomes, we found that 26 studies examined the performance of AI applications in clinical settings, 33 studies examined the effect of AI applications on clinician outcomes, 14 studies examined the effect on patient outcomes, and one study examined the economic impact associated with AI implementation. CONCLUSIONS This review indicates that research on the clinical implementation of AI applications is still at an early stage despite the great potential. More research needs to assess the benefits and challenges associated with clinical AI applications through a more rigorous methodology.
Collapse
Affiliation(s)
- Jiamin Yin
- Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore, Singapore
| | - Kee Yuan Ngiam
- Department of Surgery, National University Hospital, Singapore, Singapore
| | - Hock Hai Teo
- Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Artificial Intelligence and the Medical Physicist: Welcome to the Machine. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041691] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Artificial intelligence (AI) is a branch of computer science dedicated to giving machines or computers the ability to perform human-like cognitive functions, such as learning, problem-solving, and decision making. Since it is showing superior performance than well-trained human beings in many areas, such as image classification, object detection, speech recognition, and decision-making, AI is expected to change profoundly every area of science, including healthcare and the clinical application of physics to healthcare, referred to as medical physics. As a result, the Italian Association of Medical Physics (AIFM) has created the “AI for Medical Physics” (AI4MP) group with the aims of coordinating the efforts, facilitating the communication, and sharing of the knowledge on AI of the medical physicists (MPs) in Italy. The purpose of this review is to summarize the main applications of AI in medical physics, describe the skills of the MPs in research and clinical applications of AI, and define the major challenges of AI in healthcare.
Collapse
|
21
|
Artificial intelligence (AI) and interventional radiotherapy (brachytherapy): state of art and future perspectives. J Contemp Brachytherapy 2020; 12:497-500. [PMID: 33299440 PMCID: PMC7701925 DOI: 10.5114/jcb.2020.100384] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose Artificial intelligence (AI) plays a central role in building decision supporting systems (DSS), and its application in healthcare is rapidly increasing. The aim of this study was to define the role of AI in healthcare, with main focus on radiation oncology (RO) and interventional radiotherapy (IRT, brachytherapy). Artificial intelligence in interventional radiation therapy AI in RO has a large impact in providing clinical decision support, data mining and advanced imaging analysis, automating repetitive tasks, optimizing time, and modelling patients and physicians' behaviors in heterogeneous contexts. Implementing AI and automation in RO and IRT can successfully facilitate all the steps of treatment workflow, such as patient consultation, target volume delineation, treatment planning, and treatment delivery. Conclusions AI may contribute to improve clinical outcomes through the application of predictive models and DSS optimization. This approach could lead to reducing time-consuming repetitive tasks, healthcare costs, and improving treatment quality assurance and patient's assistance in IRT.
Collapse
|