1
|
Fionda B, Placidi E, de Ridder M, Strigari L, Patarnello S, Tanderup K, Hannoun-Levi JM, Siebert FA, Boldrini L, Antonietta Gambacorta M, De Spirito M, Sala E, Tagliaferri L. Artificial intelligence in interventional radiotherapy (brachytherapy): Enhancing patient-centered care and addressing patients' needs. Clin Transl Radiat Oncol 2024; 49:100865. [PMID: 39381628 PMCID: PMC11459626 DOI: 10.1016/j.ctro.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
This review explores the integration of artificial intelligence (AI) in interventional radiotherapy (IRT), emphasizing its potential to streamline workflows and enhance patient care. Through a systematic analysis of 78 relevant papers spanning from 2002 to 2024, we identified significant advancements in contouring, treatment planning, outcome prediction, and quality assurance. AI-driven approaches offer promise in reducing procedural times, personalizing treatments, and improving treatment outcomes for oncological patients. However, challenges such as clinical validation and quality assurance protocols persist. Nonetheless, AI presents a transformative opportunity to optimize IRT and meet evolving patient needs.
Collapse
Affiliation(s)
- Bruno Fionda
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Elisa Placidi
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Mischa de Ridder
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Patarnello
- Real World Data Facility, Gemelli Generator, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jean-Michel Hannoun-Levi
- Department of Radiation Oncology, Antoine Lacassagne Cancer Centre, University of Côte d’Azur, Nice, France
| | - Frank-André Siebert
- Clinic of Radiotherapy (Radiooncology), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Evis Sala
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tagliaferri
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
2
|
Bélanger C, Aubin S, Lavallée MC, Beaulieu L. Simultaneous catheter and multicriteria optimization for HDR cervical cancer brachytherapy with a complex intracavity/interstitial applicator. Med Phys 2024; 51:2128-2143. [PMID: 38043067 DOI: 10.1002/mp.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Complex intracavity and interstitial (IC/IS) applicators, such as the Venezia applicator, can improve the HR-CTV coverage while adequately protecting organs at risk in the treatment of cervical cancer with high-dose-rate (HDR) brachytherapy. Although the Venezia applicator offers more choice for catheter selection, commercially available catheter and dose optimization algorithms are still missing for complex applicators. Moreover, studies on catheter and dose optimization for IC/IS implants in the treatment of cervical cancer are still limited. PURPOSE This work aims to combine a GPU-based multi-criteria optimization (gMCO) algorithm with a sparse catheter (SC) optimization algorithm for the Venezia applicator. METHODS Fifty-eight cervical cancer patients who received 28 Gy in 4 fx of HDR brachytherapy with the Venezia applicator (combination to external beam radiation therapy) are retrospectively revisited. The modelization of the applicator is done by virtually reconstructing all the IS catheters passing through the ring. Template catheters are reconstructed using an in-house python script. To perform simultaneous MCO and SC optimization (SC+MCO), the objective function includes aggregated dose objectives in a weighted sum and a group sparsity term that individually penalizes the contribution of IS catheters. Plans generated with the SC+MCO algorithm are compared with plans generated with MCO using clinical catheters (CC+MCO) and the clinical plans (CP). The EMBRACE II soft constraints (planning aims) and hard constraints (limits for prescribed dose) are used as plan evaluation criteria. RESULTS CC+MCO gives the most important gain with an increase up to 20.7% in meeting all EMBRACE II soft constraints compared with CP. The SC+MCO algorithm (adding catheter optimization to MCO) provides a second order increase (up to 12.1% with total acceptance rate of 60.3% or 35/58) in the acceptance rate versus CC+MCO (total increase of 32.8% vs. CP). Acceptance rate in EMBRACE II hard constraints is 98.3% (57/58) for both CC+MCO and SC+MCO versus 91.4% (53/58) for CP. The median SC+MCO optimization time is 11 s to generate a total of 5000 Pareto-optimal plans with different catheter configurations (position and number) for each fraction. CONCLUSIONS Simultaneous catheter and MCO optimization is clinically feasible for HDR cervical cancer brachytherapy using the Venezia applicator. Clinical catheter configurations could be improved and/or the catheter number could be reduced without decreasing plan quality using SC+MCO compared with the CP.
Collapse
Affiliation(s)
- Cédric Bélanger
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Service de physique médicale et de radioprotection, Centre intégré de cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Québec, Canada
| | - Sylviane Aubin
- Service de physique médicale et de radioprotection, Centre intégré de cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Québec, Canada
| | - Marie-Claude Lavallée
- Service de physique médicale et de radioprotection, Centre intégré de cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Québec, Canada
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Service de physique médicale et de radioprotection, Centre intégré de cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Québec, Canada
| |
Collapse
|