1
|
Zhan X, Zhou Z, Liu Y, Cecchi NJ, Hajiahamemar M, Zeineh MM, Grant GA, Camarillo D. Differences between two maximal principal strain rate calculation schemes in traumatic brain analysis with in-vivo and in-silico datasets. J Biomech 2025; 179:112456. [PMID: 39671828 DOI: 10.1016/j.jbiomech.2024.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/05/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Brain deformation caused by a head impact leads to traumatic brain injury (TBI). The maximum principal strain (MPS) was used to measure the extent of brain deformation and predict injury, and the recent evidence has indicated that incorporating the maximum principal strain rate (MPSR) and the product of MPS and MPSR, denoted as MPS × SR, enhances the accuracy of TBI prediction. However, ambiguities have arisen about the calculation of MPSR. Two schemes have been utilized: one is to use the time derivative of MPS (MPSR1), and another is to use the first eigenvalue of the strain rate tensor (MPSR2). Both MPSR1 and MPSR2 have been applied in previous studies to predict TBI. To quantify the discrepancies between these two methodologies, we compared them across eight in-vivo and one in-silico head impact datasets and found that 95MPSR1 was slightly larger than 95MPSR2 and 95MPS × SR1 was 4.85 % larger than 95MPS × SR2 in average. Across every element in all head impacts, the average MPSR1 was 12.73 % smaller than MPSR2, and MPS × SR1 was 11.95 % smaller than MPS × SR2. Furthermore, logistic regression models were trained to predict TBI using MPSR (or MPS × SR), and no significant difference was observed in the predictability. The consequence of misuse of MPSR and MPS × SR thresholds (i.e. compare threshold of 95MPSR1 with value from 95MPSR2 to determine if the impact is injurious) was investigated, and the resulting false rates were found to be around 1 %. The evidence suggested that these two methodologies were not significantly different in detecting TBI.
Collapse
Affiliation(s)
- Xianghao Zhan
- Department of Bioengineering, Stanford University, CA, 94305, USA
| | - Zhou Zhou
- Department of Bioengineering, Stanford University, CA, 94305, USA; Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Yuzhe Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 10019, China; Department of Bioengineering, Stanford University, CA, 94305, USA.
| | | | - Marzieh Hajiahamemar
- Department of Biomedical Engineering & Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | - Gerald A Grant
- Department of Radiology, Stanford University, CA 94305, USA; Department of Neurology, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Duke University, Durham, NC 27710, USA
| | - David Camarillo
- Department of Bioengineering, Stanford University, CA, 94305, USA; Department of Neurology, Stanford University, Stanford, CA 94305, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Zhou Z, Fahlstedt M, Li X, Kleiven S. Peaks and Distributions of White Matter Tract-related Strains in Bicycle Helmeted Impacts: Implication for Helmet Ranking and Optimization. Ann Biomed Eng 2024:10.1007/s10439-024-03653-3. [PMID: 39636379 DOI: 10.1007/s10439-024-03653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Traumatic brain injury (TBI) in cyclists is a growing public health problem, with helmets being the major protection gear. Finite element head models have been increasingly used to engineer safer helmets often by mitigating brain strain peaks. However, how different helmets alter the spatial distribution of brain strain remains largely unknown. Besides, existing research primarily used maximum principal strain (MPS) as the injury parameter, while white matter fiber tract-related strains, increasingly recognized as effective predictors for TBI, have rarely been used for helmet evaluation. To address these research gaps, we used an anatomically detailed head model with embedded fiber tracts to simulate fifty-one helmeted impacts, encompassing seventeen bicycle helmets under three impact locations. We assessed the helmet performance based on four tract-related strains characterizing the normal and shear strain oriented along and perpendicular to the fiber tract, as well as the prevalently used MPS. Our results showed that both the helmet model and impact location affected the strain peaks. Interestingly, we noted that different helmets did not alter strain distribution, except for one helmet under one specific impact location. Moreover, our analyses revealed that helmet ranking outcome based on strain peaks was affected by the choice of injury metrics (Kendall's Tau coefficient: 0.58-0.93). Significant correlations were noted between tract-related strains and angular motion-based injury metrics. This study provided new insights into computational brain biomechanics and highlighted the helmet ranking outcome was dependent on the choice of injury metrics. Our results also hinted that the performance of helmets could be augmented by mitigating the strain peak and optimizing the strain distribution with accounting the selective vulnerability of brain subregions and more research was needed to develop region-specific injury criteria.
Collapse
Affiliation(s)
- Zhou Zhou
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden.
| | | | - Xiaogai Li
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden
| |
Collapse
|
3
|
Zhou Z, Olsson C, Gasser TC, Li X, Kleiven S. The White Matter Fiber Tract Deforms Most in the Perpendicular Direction During In Vivo Volunteer Impacts. J Neurotrauma 2024; 41:2554-2570. [PMID: 39212616 DOI: 10.1089/neu.2024.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
White matter (WM) tract-related strains are increasingly used to quantify brain mechanical responses, but their dynamics in live human brains during in vivo impact conditions remain largely unknown. Existing research primarily looked into the normal strain along the WM fiber tracts (i.e., tract-oriented normal strain), but it is rarely the case that the fiber tract only endures tract-oriented normal strain during impacts. In this study, we aim to extend the in vivo measurement of WM fiber deformation by quantifying the normal strain perpendicular to the fiber tract (i.e., tract-perpendicular normal strain) and the shear strain along and perpendicular to the fiber tract (i.e., tract-oriented shear strain and tract-perpendicular shear strain, respectively). To achieve this, we combine the three-dimensional strain tensor from the tagged magnetic resonance imaging with the diffusion tensor imaging (DTI) from an open-access dataset, including 44 volunteer impacts under two head loading modes, i.e., neck rotations (N = 30) and neck extensions (N = 14). The strain tensor is rotated to the coordinate system with one axis aligned with DTI-revealed fiber orientation, and then four tract-related strain measures are calculated. The results show that tract-perpendicular normal strain peaks are the largest among the four strain types (p < 0.05, Friedman's test). The distribution of tract-related strains is affected by the head loading mode, of which laterally symmetric patterns with respect to the midsagittal plane are noted under neck extensions, but not under neck rotations. Our study presents a comprehensive in vivo strain quantification toward a multifaceted understanding of WM dynamics. We find that the WM fiber tract deforms most in the perpendicular direction, illuminating new fundamentals of brain mechanics. The reported strain images can be used to evaluate the fidelity of computational head models, especially those intended to predict fiber deformation under noninjurious conditions.
Collapse
Affiliation(s)
- Zhou Zhou
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christoffer Olsson
- Division of Biomedical Imaging, KTH Royal Institute of Technology, Stockholm, Sweden
| | - T Christian Gasser
- Material and Structural Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaogai Li
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
4
|
Lin N, Wu S, Wu Z, Ji S. Efficient Generation of Pretraining Samples for Developing a Deep Learning Brain Injury Model via Transfer Learning. Ann Biomed Eng 2024; 52:2726-2740. [PMID: 37642795 DOI: 10.1007/s10439-023-03354-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The large amount of training samples required to develop a deep learning brain injury model demands enormous computational resources. Here, we study how a transformer neural network (TNN) of high accuracy can be used to efficiently generate pretraining samples for a convolutional neural network (CNN) brain injury model to reduce computational cost. The samples use synthetic impacts emulating real-world events or augmented impacts generated from limited measured impacts. First, we verify that the TNN remains highly accurate for the two impact types (N = 100 each;R 2 of 0.948-0.967 with root mean squared error, RMSE, ~ 0.01, for voxelized peak strains). The TNN-estimated samples (1000-5000 for each data type) are then used to pretrain a CNN, which is further finetuned using directly simulated training samples (250-5000). An independent measured impact dataset considered of complete capture of impact event is used to assess estimation accuracy (N = 191). We find that pretraining can significantly improve CNN accuracy via transfer learning compared to a baseline CNN without pretraining. It is most effective when the finetuning dataset is relatively small (e.g., 2000-4000 pretraining synthetic or augmented samples improves success rate from 0.72 to 0.81 with 500 finetuning samples). When finetuning samples reach 3000 or more, no obvious improvement occurs from pretraining. These results support using the TNN to rapidly generate pretraining samples to facilitate a more efficient training strategy for future deep learning brain models, by limiting the number of costly direct simulations from an alternative baseline model. This study could contribute to a wider adoption of deep learning brain injury models for large-scale predictive modeling and ultimately, enhancing safety protocols and protective equipment.
Collapse
Affiliation(s)
- Nan Lin
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01605, USA
| | - Shaoju Wu
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01605, USA
| | - Zheyang Wu
- Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01605, USA.
- Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
5
|
Patton DA, Huber CM, Jain D, Kleiven S, Zhou Z, Master CL, Arbogast KB. Head Impact Kinematics and Brain Tissue Strains in High School Lacrosse. Ann Biomed Eng 2024; 52:2844-2853. [PMID: 38649514 DOI: 10.1007/s10439-024-03513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Male lacrosse and female lacrosse have differences in history, rules, and equipment. There is current debate regarding the need for enhanced protective headwear in female lacrosse like that worn by male lacrosse players. To inform this discussion, 17 high school lacrosse players (6 female and 11 male) wore the Stanford Instrumented Mouthguard during 26 competitive games over the 2021 season. Time-windowing and video review were used to remove false-positive recordings and verify head acceleration events (HAEs). The HAE rate in high school female lacrosse (0.21 per athlete exposure and 0.24 per player hour) was approximately 35% lower than the HAE rate in high school male lacrosse (0.33 per athlete exposure and 0.36 per player hour). Previously collected kinematics data from the 2019 high school male and female lacrosse season were combined with the newly collected 2021 kinematics data, which were used to drive a finite element head model and simulate 42 HAEs. Peak linear acceleration (PLA), peak angular velocity (PAV), and 95th percentile maximum principal strain (MPS95) of brain tissue were compared between HAEs in high school female and male lacrosse. Median values for peak kinematics and MPS95 of HAEs in high school female lacrosse (PLA, 22.3 g; PAV, 10.4 rad/s; MPS95, 0.05) were lower than for high school male lacrosse (PLA, 24.2 g; PAV, 15.4 rad/s; MPS95, 0.07), but the differences were not statistically significant. Quantifying a lower HAE rate in high school female lacrosse compared to high school male lacrosse, but similar HAE magnitudes, provides insight into the debate regarding helmets in female lacrosse. However, due to the small sample size, additional video-verified data from instrumented mouthguards are required.
Collapse
Affiliation(s)
- Declan A Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA.
| | - Colin M Huber
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Divya Jain
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Zhou Zhou
- Division of Neuronic Engineering, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Christina L Master
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Sports Medicine and Performance Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristy B Arbogast
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Stitt D, Kabaliuk N, Alexander K, Draper N. Potential of Soft-Shelled Rugby Headgear to Lower Regional Brain Strain Metrics During Standard Drop Tests. SPORTS MEDICINE - OPEN 2024; 10:102. [PMID: 39333426 PMCID: PMC11436562 DOI: 10.1186/s40798-024-00744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/24/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The growing concern for player safety in rugby has led to an increased focus on head impacts. Previous laboratory studies have shown that rugby headgear significantly reduces peak linear and rotational accelerations compared to no headgear. However, these metrics may have limited relevance in assessing the effectiveness of headgear in preventing strain-based brain injuries like concussions. This study used an instantaneous deep-learning brain injury model to quantify regional brain strain mitigation of rugby headgear during drop tests. Tests were conducted on flat and angled impact surfaces across different heights, using a Hybrid III headform and neck. RESULTS Headgear presence generally reduced the peak rotational velocities, with some headgear outperforming others. However, the effect on peak regional brain strains was less consistent. Of the 5 headgear tested, only the newer models that use open cell foams at densities above 45 kg/m3 consistently reduced the peak strain in the cerebrum, corpus callosum, and brainstem. The 3 conventional headgear that use closed cell foams at or below 45 kg/m3 showed no consistent reduction in the peak strain in the cerebrum, corpus callosum, and brainstem. CONCLUSIONS The presence of rugby headgear may be able to reduce the severity of head impact exposure during rugby. However, to understand how these findings relate to brain strain mitigation in the field, further investigation into the relationship between the impact conditions in this study and those encountered during actual gameplay is necessary.
Collapse
Affiliation(s)
- Danyon Stitt
- Department of Mechanical Engineering, University of Canterbury, Christchurch, 8041, New Zealand
- University of Canterbury, Sports Health and Rehabilitation Research Center (SHARRC), Christchurch, 8041, New Zealand
| | - Natalia Kabaliuk
- Department of Mechanical Engineering, University of Canterbury, Christchurch, 8041, New Zealand.
- University of Canterbury, Sports Health and Rehabilitation Research Center (SHARRC), Christchurch, 8041, New Zealand.
| | - Keith Alexander
- Department of Mechanical Engineering, University of Canterbury, Christchurch, 8041, New Zealand
| | - Nick Draper
- University of Canterbury, Sports Health and Rehabilitation Research Center (SHARRC), Christchurch, 8041, New Zealand
- Faculty of Health, University of Canterbury, Christchurch, 8041, New Zealand
| |
Collapse
|
7
|
Lin N, Tierney G, Ji S. Effect of Impact Kinematic Filters on Brain Strain Responses in Contact Sports. IEEE Trans Biomed Eng 2024; 71:2781-2788. [PMID: 38652634 DOI: 10.1109/tbme.2024.3392859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Impact kinematics are widely employed to investigate mechanisms of traumatic brain injury (TBI). However, they are susceptible to noise and artefacts; thus, require data filtering. Few studies have focused on how data filtering affects brain strain most relevant to TBI. Here, we report that impact-induced brain strains are much less sensitive to data filtering than kinematics based on three filtering methods: CFC180, lowpass 200 Hz, and a new method called Head Exposure to Acceleration Database in Sport (HEADSport). METHODS Using mouthguard-measured head impacts in elite rugby (N = 5694), average Euclidean distances between the three filtered angular velocity profiles and their unfiltered counterparts are used to identify three groups of impacts with large variations: 90-95th, 95-99th, and >99th percentile. From each group, 20 impacts are randomly selected for simulation using the anisotropic Worcester Head Injury Model (WHIM) V1.0. RESULTS AND CONCLUSION HEADSport and CFC180 are the most and least effective, respectively, in suppressing "unphysical artefacts" shown as sharp spikes with a rather short impulse duration (e.g., <3 ms) in angular velocity. However, maximum principal strain (MPS), especially that in the corpus callosum, is much less sensitive to data filtering compared to kinematic peaks (e.g., reduction of 3% vs. 47% and 90% for peak angular velocity and acceleration with HEADSport for impacts of >99th percentile). SIGNIFICANCE These findings confirm that the brain acts as a low-pass filter, itself, to suppress high frequency noise in impact kinematics. Therefore, brain strain can serve as a common metric for TBI biomechanical studies to maximize relevance to the injury, as it is not sensitive to kinematic filters.
Collapse
|
8
|
Zhang C, Bartels L, Clansey A, Kloiber J, Bondi D, van Donkelaar P, Wu L, Rauscher A, Ji S. A computational pipeline towards large-scale and multiscale modeling of traumatic axonal injury. Comput Biol Med 2024; 171:108109. [PMID: 38364663 DOI: 10.1016/j.compbiomed.2024.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Contemporary biomechanical modeling of traumatic brain injury (TBI) focuses on either the global brain as an organ or a representative tiny section of a single axon. In addition, while it is common for a global brain model to employ real-world impacts as input, axonal injury models have largely been limited to inputs of either tension or compression with assumed peak strain and strain rate. These major gaps between global and microscale modeling preclude a systematic and mechanistic investigation of how tissue strain from impact leads to downstream axonal damage throughout the white matter. In this study, a unique subject-specific multimodality dataset from a male ice-hockey player sustaining a diagnosed concussion is used to establish an efficient and scalable computational pipeline. It is then employed to derive voxelized brain deformation, maximum principal strains and white matter fiber strains, and finally, to produce diverse fiber strain profiles of various shapes in temporal history necessary for the development and application of a deep learning axonal injury model in the future. The pipeline employs a structured, voxelized representation of brain deformation with adjustable spatial resolution independent of model mesh resolution. The method can be easily extended to other head impacts or individuals. The framework established in this work is critical for enabling large-scale (i.e., across the entire white matter region, head impacts, and individuals) and multiscale (i.e., from organ to cell length scales) modeling for the investigation of traumatic axonal injury (TAI) triggering mechanisms. Ultimately, these efforts could enhance the assessment of concussion risks and design of protective headgear. Therefore, this work contributes to improved strategies for concussion detection, mitigation, and prevention.
Collapse
Affiliation(s)
- Chaokai Zhang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Lara Bartels
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Adam Clansey
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Julian Kloiber
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Bondi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Lyndia Wu
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Rauscher
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA; Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
9
|
Rooks TF, Baisden JL, Yoganandan N. Regional brain strain dependance on direction of head rotation. ACCIDENT; ANALYSIS AND PREVENTION 2023; 193:107301. [PMID: 37729748 DOI: 10.1016/j.aap.2023.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Brain injuries in automated vehicles during crash events are likely to include mechanisms of head impact in non-standard positions and postures (i.e., occupants not facing forward in an upright position). Federal regulations currently focus on impact conditions in primary planes of motion, such as frontal or rear impacts (sagittal plane of motion) or side impact (coronal plane of motion) and do not account for out of position occupants or non-standard postures. The objective of the present study was to develop and use the anatomically accurate brain finite element model to parametrically determine the injury metrics under different vectors with head rotation. A custom developed brain finite element model with anatomical accuracy and several anatomical regions defined was used to evaluate whole-brain strain as well as regional brain strain. Cumulative Strain Damage Measure (CSDM) at a threshold of 20% strain and the 95th percentile of the maximum principal strain (MPS95) were calculated for the whole brain and each brain region under multiple rotational directions. The model was exposed to a sinusoidal angular acceleration pulse of 5000 rad per second squared (rad/s2-) over 12.5 ms. The same pulse was used in the primary axes of motion and (lateral bending, flexion, extension, axial rotation) and combined axes representing oblique flexion and oblique extension. Whole brain CSDM20 was highest for lateral bending. Whole brain MPS95 was highest for axial rotation. The rCSDM20 was more susceptible to impact direction, with several brain regions having substantial accumulation of strain for oblique flexion and lateral bending. Comparatively, rMPS95 was more consistent across all rotation directions. The present study quantified the regional brain strain response under multiple rotational vectors identifying a high amount of variability in the accumulation of strain (i.e., CSDM20) in the hypothalamus, hippocampus, and midbrain specifically. While there was a high amount of variability in the accumulation of strain for multiple regions, the maximum strain measured (i.e., MPS95) in the regions was more consistent.
Collapse
Affiliation(s)
- Tyler F Rooks
- Medical College of Wisconsin, Milwaukee, WI, United States.
| | | | | |
Collapse
|
10
|
Okamoto RJ, Escarcega JD, Alshareef A, Carass A, Prince JL, Johnson CL, Bayly PV. Effect of Direction and Frequency of Skull Motion on Mechanical Vulnerability of the Human Brain. J Biomech Eng 2023; 145:111005. [PMID: 37432674 PMCID: PMC10578077 DOI: 10.1115/1.4062937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Strain energy and kinetic energy in the human brain were estimated by magnetic resonance elastography (MRE) during harmonic excitation of the head, and compared to characterize the effect of loading direction and frequency on brain deformation. In brain MRE, shear waves are induced by external vibration of the skull and imaged by a modified MR imaging sequence; the resulting harmonic displacement fields are typically "inverted" to estimate mechanical properties, like stiffness or damping. However, measurements of tissue motion from MRE also illuminate key features of the response of the brain to skull loading. In this study, harmonic excitation was applied in two different directions and at five different frequencies from 20 to 90 Hz. Lateral loading induced primarily left-right head motion and rotation in the axial plane; occipital loading induced anterior-posterior head motion and rotation in the sagittal plane. The ratio of strain energy to kinetic energy (SE/KE) depended strongly on both direction and frequency. The ratio of SE/KE was approximately four times larger for lateral excitation than for occipital excitation and was largest at the lowest excitation frequencies studied. These results are consistent with clinical observations that suggest lateral impacts are more likely to cause injury than occipital or frontal impacts, and also with observations that the brain has low-frequency (∼10 Hz) natural modes of oscillation. The SE/KE ratio from brain MRE is potentially a simple and powerful dimensionless metric of brain vulnerability to deformation and injury.
Collapse
Affiliation(s)
- Ruth J. Okamoto
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, MSC 1185-208-125, St. Louis, MO 63130
| | - Jordan D. Escarcega
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Ahmed Alshareef
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Aaron Carass
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713
| | - Philip V. Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
11
|
Abstract
The brain injury modeling community has recommended improving model subject specificity and simulation efficiency. Here, we extend an instantaneous (< 1 sec) convolutional neural network (CNN) brain model based on the anisotropic Worcester Head Injury Model (WHIM) V1.0 to account for strain differences due to individual morphological variations. Linear scaling factors relative to the generic WHIM along the three anatomical axes are used as additional CNN inputs. To generate training samples, the WHIM is randomly scaled to pair with augmented head impacts randomly generated from real-world data for simulation. An estimation of voxelized peak maximum principal strain of the whole-brain is said to be successful when the linear regression slope and Pearson's correlation coefficient relative to directly simulated do not deviate from 1.0 (when identical) by more than 0.1. Despite a modest training dataset (N = 1363 vs. ∼5.7 k previously), the individualized CNN achieves a success rate of 86.2% in cross-validation for scaled model responses, and 92.1% for independent generic model testing for impacts considered as complete capture of kinematic events. Using 11 scaled subject-specific models (with scaling factors determined from pre-established regression models based on head dimensions and sex and age information, and notably, without neuroimages), the morphologically individualized CNN remains accurate for impacts that also yield successful estimations for the generic WHIM. The individualized CNN instantly estimates subject-specific and spatially detailed peak strains of the entire brain and thus, supersedes others that report a scalar peak strain value incapable of informing the location of occurrence. This tool could be especially useful for youths and females due to their anticipated greater morphological differences relative to the generic model, even without the need for individual neuroimages. It has potential for a wide range of applications for injury mitigation purposes and the design of head protective gears. The voxelized strains also allow for convenient data sharing and promote collaboration among research groups.
Collapse
Affiliation(s)
- Nan Lin
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Shaoju Wu
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
12
|
Zhang C, Ji S. Sex Differences in Axonal Dynamic Responses Under Realistic Tension Using Finite Element Models. J Neurotrauma 2023; 40:2217-2232. [PMID: 37335051 DOI: 10.1089/neu.2022.0512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Existing axonal finite element models do not consider sex morphological differences or the fidelity in dynamic input. To facilitate a systematic investigation into the micromechanics of diffuse axonal injury, we develop a parameterized modeling approach for automatic and efficient generation of sex-specific axonal models according to specified geometrical parameters. Baseline female and male axonal models in the corpus callosum with random microtubule (MT) gap configurations are generated for model calibration and evaluation. They are then used to simulate a realistic tensile loading consisting of both a loading and a recovery phase (to return to an initial undeformed state) generated from dynamic corpus callosum fiber strain in a real-world head impact simulation. We find that MT gaps and the dynamic recovery phase are both critical to successfully reproduce MT undulation as observed experimentally, which has not been reported before. This strengthens confidence in model dynamic responses. A statistical approach is further employed to aggregate axonal responses from a large sample of random MT gap configurations for both female and male axonal models (n = 10,000 each). We find that peak strains in MTs and the Ranvier node and associated neurofilament failures in female axons are substantially higher than those in male axons because there are fewer MTs in the former and also because of the random nature of MT gap locations. Despite limitations in various model assumptions as a result of limited experimental data currently available, these findings highlight the need to systematically characterize MT gap configurations and to ensure a realistic model input for axonal dynamic simulations. Finally, this study may offer fresh and improved insight into the biomechanical basis of sex differences in brain injury, and sets the stage for more systematic investigations at the microscale in the future, both numerically and experimentally.
Collapse
Affiliation(s)
- Chaokai Zhang
- Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Songbai Ji
- Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
13
|
Ji S, Ghajari M, Mao H, Kraft RH, Hajiaghamemar M, Panzer MB, Willinger R, Gilchrist MD, Kleiven S, Stitzel JD. Use of Brain Biomechanical Models for Monitoring Impact Exposure in Contact Sports. Ann Biomed Eng 2022; 50:1389-1408. [PMID: 35867314 PMCID: PMC9652195 DOI: 10.1007/s10439-022-02999-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 02/03/2023]
Abstract
Head acceleration measurement sensors are now widely deployed in the field to monitor head kinematic exposure in contact sports. The wealth of impact kinematics data provides valuable, yet challenging, opportunities to study the biomechanical basis of mild traumatic brain injury (mTBI) and subconcussive kinematic exposure. Head impact kinematics are translated into brain mechanical responses through physics-based computational simulations using validated brain models to study the mechanisms of injury. First, this article reviews representative legacy and contemporary brain biomechanical models primarily used for blunt impact simulation. Then, it summarizes perspectives regarding the development and validation of these models, and discusses how simulation results can be interpreted to facilitate injury risk assessment and head acceleration exposure monitoring in the context of contact sports. Recommendations and consensus statements are presented on the use of validated brain models in conjunction with kinematic sensor data to understand the biomechanics of mTBI and subconcussion. Mainly, there is general consensus that validated brain models have strong potential to improve injury prediction and interpretation of subconcussive kinematic exposure over global head kinematics alone. Nevertheless, a major roadblock to this capability is the lack of sufficient data encompassing different sports, sex, age and other factors. The authors recommend further integration of sensor data and simulations with modern data science techniques to generate large datasets of exposures and predicted brain responses along with associated clinical findings. These efforts are anticipated to help better understand the biomechanical basis of mTBI and improve the effectiveness in monitoring kinematic exposure in contact sports for risk and injury mitigation purposes.
Collapse
Affiliation(s)
- Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| | - Mazdak Ghajari
- Dyson School of Design Engineering, Imperial College London, London, UK
| | - Haojie Mao
- Department of Mechanical and Materials Engineering, Faculty of Engineering, Western University, London, ON, N6A 5B9, Canada
| | - Reuben H Kraft
- Department of Mechanical and Nuclear Engineering, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Marzieh Hajiaghamemar
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Matthew B Panzer
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Remy Willinger
- University of Strasbourg, IMFS-CNRS, 2 rue Boussingault, 67000, Strasbourg, France
| | - Michael D Gilchrist
- School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Hälsovägen 11C, 141 57, Huddinge, Sweden
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
14
|
Stitt D, Kabaliuk N, Alexander K, Draper N. Drop Test Kinematics Using Varied Impact Surfaces and Head/Neck Configurations for Rugby Headgear Testing. Ann Biomed Eng 2022; 50:1633-1647. [PMID: 36002780 DOI: 10.1007/s10439-022-03045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
World Rugby employs a specific drop test method to evaluate headgear performance, but almost all researchers use a different variation of this method. The aim of this study was, therefore, to quantify the differences between variations of the drop testing method using a Hybrid III headform and neck in the following impact setups: (1) headform only, with a flat steel impact surface, approximating the World Rugby method, (2 and 3) headform with and without a neck, respectively, onto a flat MEP pad impact surface, and (4) headform and neck, dropped onto an angled MEP pad impact surface. Each variation was subject to drop heights of 75-600 mm across three orientations (forehead, side, and rear boss). Comparisons were limited to the linear and rotational acceleration and rotational velocity for simplicity. Substantial differences in kinematic profile shape manifested between all drop test variations. Peak accelerations varied highly between variations, but the peak rotational velocities did not. Drop test variation also significantly changed the ratios of the peak kinematics to each other. This information can be compared to kinematic data from field head impacts and could inform more realistic impact testing methods for assessing headgear.
Collapse
Affiliation(s)
- Danyon Stitt
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.,Sport Health and Rehabilitation Research Centre (SHARRC), University of Canterbury, Christchurch, New Zealand
| | - Natalia Kabaliuk
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand. .,Sport Health and Rehabilitation Research Centre (SHARRC), University of Canterbury, Christchurch, New Zealand.
| | - Keith Alexander
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.,Sport Health and Rehabilitation Research Centre (SHARRC), University of Canterbury, Christchurch, New Zealand
| | - Nick Draper
- Faculty of Health, University of Canterbury, Christchurch, New Zealand.,Sport Health and Rehabilitation Research Centre (SHARRC), University of Canterbury, Christchurch, New Zealand
| |
Collapse
|