1
|
Timalsina B, Choi HJ, Moon IS. N-Acetylglucosamine Kinase-Small Nuclear Ribonucleoprotein Polypeptide N Interaction Promotes Axodendritic Branching in Neurons via Dynein-Mediated Microtubule Transport. Int J Mol Sci 2023; 24:11672. [PMID: 37511433 PMCID: PMC10380243 DOI: 10.3390/ijms241411672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
N-acetylglucosamine kinase (NAGK) has been identified as an anchor protein that facilitates neurodevelopment with its non-canonical structural role. Similarly, small nuclear ribonucleoprotein polypeptide N (SNRPN) regulates neurodevelopment and cognitive ability. In our previous study, we revealed the interaction between NAGK and SNRPN in the neuron. However, the precise role in neurodevelopment is elusive. In this study, we investigate the role of NAGK and SNRPN in the axodendritic development of neurons. NAGK and SNRPN interaction is significantly increased in neurons at the crucial stages of neurodevelopment. Furthermore, overexpression of the NAGK and SNRPN proteins increases axodendritic branching and neuronal complexity, whereas the knockdown inhibits neurodevelopment. We also observe the interaction of NAGK and SNRPN with the dynein light-chain roadblock type 1 (DYNLRB1) protein variably during neurodevelopment, revealing the microtubule-associated delivery of the complex. Interestingly, NAGK and SNRPN proteins rescued impaired axodendritic development in an SNRPN depletion model of Prader-Willi syndrome (PWS) patient-derived induced pluripotent stem cell neurons. Taken together, these findings are crucial in developing therapeutic approaches for neurodegenerative diseases.
Collapse
Affiliation(s)
- Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
2
|
Devi U, Kumar V, Gupta PS, Dubey S, Singh M, Gautam S, Rawat JK, Roy S, Yadav RK, Ansari MN, Saeedan AS, Kaithwas G. Experimental Models for Autism Spectrum Disorder Follow-Up for the Validity. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2016. [DOI: 10.1007/s40489-016-0088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Li H, Zhao P, Xu Q, Shan S, Hu C, Qiu Z, Xu X. The autism-related gene SNRPN regulates cortical and spine development via controlling nuclear receptor Nr4a1. Sci Rep 2016; 6:29878. [PMID: 27430727 PMCID: PMC4949425 DOI: 10.1038/srep29878] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
The small nuclear ribonucleoprotein polypeptide N (SNRPN) gene, encoding the RNA-associated SmN protein, duplications or deletions of which are strongly associated with neurodevelopmental disabilities. SNRPN-coding protein is highly expressed in the brain. However, the role of SNRPN protein in neural development remains largely unknown. Here we showed that the expression of SNRPN increased markedly during postnatal brain development. Overexpression or knockdown of SNRPN in cortical neurons impaired neurite outgrowth, neuron migration, and the distribution of dendritic spines. We found that SNRPN regulated the expression level of Nr4a1, a critical nuclear receptor during neural development, in cultured primary cortical neurons. The abnormal spine development caused by SNRPN overexpression could be fully rescued by Nr4a1 co-expression. Importantly, we found that either knockdown of Nr4a1 or 3, 3'- Diindolylmethane (DIM), an Nr4a1 antagonist, were able to rescue the effects of SNRPN knockdown on neurite outgrowth of embryonic cortical neurons, providing the potential therapeutic methods for SNRPN deletion disorders. We thus concluded that maintaining the proper level of SNRPN is critical in cortical neurodevelopment. Finally, Nr4a1 may serve as a potential drug target for SNRPN-related neurodevelopmental disabilities, including Prader-Willi syndrome (PWS) and autism spectrum disorders (ASDs).
Collapse
Affiliation(s)
- Huiping Li
- Department of Child Health Care, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Pingping Zhao
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiong Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Shifang Shan
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunchun Hu
- Department of Child Health Care, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Zilong Qiu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiu Xu
- Department of Child Health Care, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| |
Collapse
|
4
|
Pasciuto E, Borrie SC, Kanellopoulos AK, Santos AR, Cappuyns E, D'Andrea L, Pacini L, Bagni C. Autism Spectrum Disorders: Translating human deficits into mouse behavior. Neurobiol Learn Mem 2015. [PMID: 26220900 DOI: 10.1016/j.nlm.2015.07.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autism Spectrum Disorders are a heterogeneous group of neurodevelopmental disorders, with rising incidence but little effective therapeutic intervention available. Currently two main clinical features are described to diagnose ASDs: impaired social interaction and communication, and repetitive behaviors. Much work has focused on understanding underlying causes of ASD by generating animal models of the disease, in the hope of discovering signaling pathways and cellular targets for drug intervention. Here we review how ASD behavioral phenotypes can be modeled in the mouse, the most common animal model currently in use in this field, and discuss examples of genetic mouse models of ASD with behavioral features that recapitulate various symptoms of ASD.
Collapse
Affiliation(s)
- E Pasciuto
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - S C Borrie
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - A K Kanellopoulos
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - A R Santos
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - E Cappuyns
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium
| | - L D'Andrea
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy
| | - L Pacini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy
| | - C Bagni
- KU Leuven, Center for Human Genetics, Leuven Research Institute for Neuroscience and Disease (LIND), Leuven, Belgium; VIB Center for the Biology of Disease, Leuven, Belgium; University of Rome Tor Vergata, Department of Biomedicine and Prevention, Rome, Italy.
| |
Collapse
|
5
|
Liu X, Tamada K, Kishimoto R, Okubo H, Ise S, Ohta H, Ruf S, Nakatani J, Kohno N, Spitz F, Takumi T. Transcriptome profiling of white adipose tissue in a mouse model for 15q duplication syndrome. GENOMICS DATA 2015; 5:394-6. [PMID: 26484295 PMCID: PMC4583688 DOI: 10.1016/j.gdata.2015.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022]
Abstract
Obesity is not only associated with unhealthy lifestyles, but also linked to genetic predisposition. Previously, we generated an autism mouse model (patDp/+) that carries a 6.3 Mb paternal duplication homologous to the human 15q11–q13 locus. Chromosomal abnormalities in this region are known to cause autism spectrum disorder, Prader–Willi syndrome, and Angelman syndrome in humans. We found that, in addition to autistic-like behaviors, patDp/+ mice display late-onset obesity and hypersensitivity to a high-fat diet. These phenotypes are likely to be the results of genetic perturbations since the energy expenditures and food intakes of patDp/+ mice do not significantly differ from those of wild-type mice. Intriguingly, we found that an enlargement of adipose cells precedes the onset of obesity in patDp/+ mice. To understand the underlying molecular networks responsible for this pre-obese phenotype, we performed transcriptome profiling of white adipose tissue from patDp/+ and wild-type mice using microarray. We identified 230 genes as differentially expressed genes. Sfrp5 — a gene whose expression is positively correlated with adipocyte size, was found to be up-regulated, and Fndc5, a potent inducer of brown adipogenesis was identified to be the top down-regulated gene. Subsequent pathway analysis highlighted a set of 35 molecules involved in energy production, lipid metabolism, and small molecule biochemistry as the top candidate biological network responsible for the pre-obese phenotype of patDp/+. The microarray data were deposited in NCBI Gene Expression Omnibus database with accession number GSE58191. Ultimately, our dataset provides novel insights into the molecular mechanism of obesity and demonstrated that patDp/+ is a valuable mouse model for obesity research.
Collapse
Affiliation(s)
- Xiaoxi Liu
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan ; Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan
| | - Rui Kishimoto
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan ; Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan
| | - Hiroko Okubo
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Satoko Ise
- Banyu Tsukuba Research Institute, Tsukuba, Ibaraki 300-2611, Japan
| | - Hisashi Ohta
- Banyu Tsukuba Research Institute, Tsukuba, Ibaraki 300-2611, Japan
| | - Sandra Ruf
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jin Nakatani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Ohtsu, Shiga 520-2192, Japan
| | - Nobuoki Kohno
- Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan ; Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima 734-8553, Japan ; JST, CREST, Japan
| |
Collapse
|
6
|
Vorstman JAS, Spooren W, Persico AM, Collier DA, Aigner S, Jagasia R, Glennon JC, Buitelaar JK. Using genetic findings in autism for the development of new pharmaceutical compounds. Psychopharmacology (Berl) 2014; 231:1063-78. [PMID: 24292384 DOI: 10.1007/s00213-013-3334-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE The main reason for the current lack of effective treatments for the core symptoms of autism is our limited understanding of the biological mechanisms underlying this heterogeneous group of disorders. A primary value of genetic research is enhancing our insight into the biology of autism through the study of identified autism risk genes. OBJECTIVES In the current review we discuss (1) the genes and loci that are associated with autism, (2) how these provide us with essential cues as to what neurobiological mechanisms may be involved, and (3) how these mechanisms may be used as targets for novel treatments. Next, we provide an overview of currently ongoing clinical trials registered at clinicaltrials.gov with a variety of compounds. Finally, we review current approaches used to translate knowledge derived from gene discovery into novel pharmaceutical compounds and discuss their pitfalls and problems. CONCLUSIONS An increasing number of genetic variants associated with autism have been identified. This will generate new ideas about the biological mechanisms involved in autism, which in turn may provide new leads for the development of novel pharmaceutical compounds. To optimize this pipeline of drug discovery, large-scale international collaborations are needed for gene discovery, functional validation of risk genes, and improvement of clinical outcome measures and clinical trial methodology in autism.
Collapse
Affiliation(s)
- Jacob A S Vorstman
- Department of Psychiatry, Brain Center Rudolf Magnus, A001.468, University Medical Center Utrecht, Heidelberglaan 100, 3485 CX, Utrecht, The Netherlands,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Li X, Zou H, Brown WT. Genes associated with autism spectrum disorder. Brain Res Bull 2012; 88:543-52. [PMID: 22688012 DOI: 10.1016/j.brainresbull.2012.05.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/31/2012] [Indexed: 01/06/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous grouping of neurodevelopmental disorders characterized by impairment in social interaction, verbal communication and repetitive/stereotypic behaviors. Much evidence suggests that ASD is multifactorial with a strong genetic basis, but the underlying mechanisms are far from clear. Recent advances in genetic technologies are beginning to shed light on possible etiologies of ASD. This review discusses current evidence for several widely studied candidate ASD genes, as well as various rare genes that supports their relationship to the etiology of ASD. The majority of the data are based on molecular, cytogenetic, linkage and association studies of autistic subjects, but newer methods, including whole-exome sequencing, are also beginning to make significant contributions to our understanding of autism.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, United States.
| | | | | |
Collapse
|
8
|
Takumi T. The neurobiology of mouse models syntenic to human chromosome 15q. J Neurodev Disord 2011; 3:270-81. [PMID: 21789598 PMCID: PMC3261275 DOI: 10.1007/s11689-011-9088-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 07/12/2011] [Indexed: 11/26/2022] Open
Abstract
Autism is a neurodevelopmental disorder that manifests in childhood as social behavioral abnormalities, such as abnormal social interaction, impaired communication, and restricted interest or behavior. Of the known causes of autism, duplication of human chromosome 15q11–q13 is the most frequently associated cytogenetic abnormality. Chromosome 15q11–q13 is also known to include imprinting genes. In terms of neuroscience, it contains interesting genes such as Necdin, Ube3a, and a cluster of GABAA subunits as well as huge clusters of non-coding RNAs (small nucleolar RNAs, snoRNAs). Phenotypic analyses of mice genetically or chromosomally engineered for each gene or their clusters on a region of mouse chromosome seven syntenic to human 15q11–q13 indicate that this region may be involved in social behavior, serotonin metabolism, and weight control. Further studies using these models will provide important clues to the pathophysiology of autism. This review overviews phenotypes of mouse models of genes in 15q11–q13 and their relationships to autism.
Collapse
Affiliation(s)
- Toru Takumi
- Laboratory of Integrative Bioscience, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8553, Japan,
| |
Collapse
|
9
|
Massive-scale RNA-Seq analysis of non ribosomal transcriptome in human trisomy 21. PLoS One 2011; 6:e18493. [PMID: 21533138 PMCID: PMC3080369 DOI: 10.1371/journal.pone.0018493] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 03/08/2011] [Indexed: 11/19/2022] Open
Abstract
Hybridization- and tag-based technologies have been successfully used in Down syndrome to identify genes involved in various aspects of the pathogenesis. However, these technologies suffer from several limits and drawbacks and, to date, information about rare, even though relevant, RNA species such as long and small non-coding RNAs, is completely missing. Indeed, none of published works has still described the whole transcriptional landscape of Down syndrome. Although the recent advances in high-throughput RNA sequencing have revealed the complexity of transcriptomes, most of them rely on polyA enrichment protocols, able to detect only a small fraction of total RNA content. On the opposite end, massive-scale RNA sequencing on rRNA-depleted samples allows the survey of the complete set of coding and non-coding RNA species, now emerging as novel contributors to pathogenic mechanisms. Hence, in this work we analysed for the first time the complete transcriptome of human trisomic endothelial progenitor cells to an unprecedented level of resolution and sensitivity by RNA-sequencing. Our analysis allowed us to detect differential expression of even low expressed genes crucial for the pathogenesis, to disclose novel regions of active transcription outside yet annotated loci, and to investigate a plethora of non-polyadenylated long as well as short non coding RNAs. Novel splice isoforms for a large subset of crucial genes, and novel extended untranslated regions for known genes--possibly novel miRNA targets or regulatory sites for gene transcription--were also identified in this study. Coupling the rRNA depletion of samples, followed by high-throughput RNA-sequencing, to the easy availability of these cells renders this approach very feasible for transcriptome studies, offering the possibility of investigating in-depth blood-related pathological features of Down syndrome, as well as other genetic disorders.
Collapse
|
10
|
Tamada K, Tomonaga S, Hatanaka F, Nakai N, Takao K, Miyakawa T, Nakatani J, Takumi T. Decreased exploratory activity in a mouse model of 15q duplication syndrome; implications for disturbance of serotonin signaling. PLoS One 2010; 5:e15126. [PMID: 21179543 PMCID: PMC3002297 DOI: 10.1371/journal.pone.0015126] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/27/2010] [Indexed: 11/24/2022] Open
Abstract
Autism spectrum disorders (ASDs) have garnered significant attention as an important grouping of developmental brain disorders. Recent genomic studies have revealed that inherited or de novo copy number variations (CNVs) are significantly involved in the pathophysiology of ASDs. In a previous report from our laboratory, we generated mice with CNVs as a model of ASDs, with a duplicated mouse chromosome 7C that is orthologous to human chromosome 15q11-13. Behavioral analyses revealed paternally duplicated (patDp/+) mice displayed abnormal behaviors resembling the symptoms of ASDs. In the present study, we extended these findings by performing various behavioral tests with C57BL/6J patDp/+ mice, and comprehensively measuring brain monoamine levels with ex vivo high performance liquid chromatography. Compared with wild-type controls, patDp/+ mice exhibited decreased locomotor and exploratory activities in the open field test, Y-maze test, and fear-conditioning test. Furthermore, their decreased activity levels overcame increased appetite induced by 24 hours of food deprivation in the novelty suppressed feeding test. Serotonin levels in several brain regions of adult patDp/+ mice were lower than those of wild-type control, with no concurrent changes in brain levels of dopamine or norepinephrine. Moreover, analysis of monoamines in postnatal developmental stages demonstrated reduced brain levels of serotonin in young patDp/+ mice. These findings suggest that a disrupted brain serotonergic system, especially during postnatal development, may generate the phenotypes of patDp/+ mice.
Collapse
Affiliation(s)
- Kota Tamada
- Osaka Bioscience Institute, Suita, Japan
- Kyoto University Graduate School of Biostudies, Kyoto, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Fumiyuki Hatanaka
- Osaka Bioscience Institute, Suita, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuhiro Nakai
- Osaka Bioscience Institute, Suita, Japan
- Kyoto University Graduate School of Biostudies, Kyoto, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Keizo Takao
- Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Systems Medicine, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tsuyoshi Miyakawa
- Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Systems Medicine, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
- Japan Science and Technology Agent (JST), Core Research for Evolutional Science and Technology (CREST), Saitama, Japan
| | | | - Toru Takumi
- Osaka Bioscience Institute, Suita, Japan
- Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
- Kyoto University Graduate School of Medicine, Kyoto, Japan
- Japan Science and Technology Agent (JST), Core Research for Evolutional Science and Technology (CREST), Saitama, Japan
| |
Collapse
|