1
|
Zhang Q, Yin C, Fang X, Ou Y, Ma D, Tuerxun S. Application of magnetoencephalography in epilepsy. Heliyon 2024; 10:e38841. [PMID: 39430539 PMCID: PMC11490854 DOI: 10.1016/j.heliyon.2024.e38841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that can detect whole-brain neuroelectromagnetic signals in real-time in a single measurement. Due to excellent temporal and spatial resolution and integration of computed tomography or magnetic resonance imaging data, MEG allows signal source analysis. It can pinpoint epileptic foci as well as functional brain regions, reducing the necessity for invasive electrode implantation.
Collapse
Affiliation(s)
- Qingyan Zhang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| | - Chuanming Yin
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| | - Xiujie Fang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| | - Yunwei Ou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Danyue Ma
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| | - Shabier Tuerxun
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| |
Collapse
|
2
|
Tripathi M, Kaur K, Ramanujam B, Viswanathan V, Bharti K, Singh G, Singh V, Garg A, Bal CS, Tripathi M, Sharma MC, Pandey R, Dash D, Mandal P, Chandra PS. Diagnostic added value of interictal magnetic source imaging in presurgical evaluation of persons with epilepsy: A prospective blinded study. Eur J Neurol 2021; 28:2940-2951. [PMID: 34124810 DOI: 10.1111/ene.14935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/27/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE In presurgical evaluation for epilepsy surgery, information is sourced from various imaging modalities to accurately localize the epileptogenic zone. Magnetoencephalography (MEG) is a newer noninvasive technique for localization. However, there is limited literature to evaluate if MEG provides additional advantage over the conventional imaging modalities in clinical decision making. The objective of this study was to assess the diagnostic added value of MEG in decision making before epilepsy surgery. METHOD This was a prospective observational study. Patients underwent 3 h of recording in a MEG scanner, and the resulting localizations were compared with other complimentary investigations. Added value of MEG (considered separately from high-density electroencephalography) was defined as the frequency of cases in which (i) the information provided by magnetic source imaging (MSI) avoided implantation of intracranial electrodes and the patient was directly cleared for surgery, and (ii) MSI indicated additional substrates for implantation of intracranial electrodes. Postoperative seizure freedom was used as the diagnostic reference by which to measure the localizing accuracy of MSI. RESULTS A total of 102 patients underwent epilepsy surgery. MEG provided nonredundant information, which contributed to deciding the course of surgery in 33% of the patients, and prevented intracranial recordings in 19%. A total of 76% of the patients underwent surgical resection in sublobes concordant with MSI localization, and the diagnostic odds ratio for good (Engel I) outcome in these patients was 2.3 (95% confidence interval 0.68, 7.86; p = 0.183) after long-term follow-up of 36 months. CONCLUSION Magnetic source imaging yields additional useful information which can significantly alter as well as improve the surgical strategy for persons with epilepsy.
Collapse
Affiliation(s)
- Manjari Tripathi
- Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Kirandeep Kaur
- Neurology, All India Institute of Medical Sciences, New Delhi, India.,MEG Facility, National Brain Research Institute, Manesar, India
| | | | - Vibhin Viswanathan
- Neurosurgery, All India Institute of Medical Sciences, New Delhi, India.,MEG Resource Facility, Collaborative Project Between AIIMS & NBRC, National Brain Research Center, Manesar, India
| | - Kamal Bharti
- MEG Resource Facility, Collaborative Project Between AIIMS & NBRC, National Brain Research Center, Manesar, India
| | - Gaurav Singh
- MEG Resource Facility, Collaborative Project Between AIIMS & NBRC, National Brain Research Center, Manesar, India
| | - Vivek Singh
- MEG Resource Facility, Collaborative Project Between AIIMS & NBRC, National Brain Research Center, Manesar, India
| | - Ajay Garg
- Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Chandra Sekhar Bal
- Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Madhavi Tripathi
- Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Ravindra Pandey
- Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Deepa Dash
- Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Pravat Mandal
- MEG Resource Facility, Collaborative Project Between AIIMS & NBRC, National Brain Research Center, Manesar, India
| | | |
Collapse
|
3
|
Otsuka K, Egawa K, Fujima N, Kudo K, Terae S, Nakajima M, Ito T, Yagyu K, Shiraishi H. Reinterpretation of magnetic resonance imaging findings with magnetoencephalography can improve the accuracy of detecting epileptogenic cortical lesions. Epilepsy Behav 2021; 114:107516. [PMID: 33323336 DOI: 10.1016/j.yebeh.2020.107516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 09/20/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study examined whether the application of magnetoencephalography (MEG) to interpret magnetic resonance imaging (MRI) findings can aid the diagnosis of intractable epilepsy caused by organic brain lesions. METHODS This study included 51 patients with epilepsy who had MEG clusters but whose initial MRI findings were interpreted as being negative for organic lesions. Three board-certified radiologists reinterpreted the MRI findings, utilizing the MEG findings as a guide. The degree to which the reinterpretation of the imaging results identified an organic lesion was rated on a 5-point scale. RESULTS Reinterpretation of the MRI data with MEG guidance helped detect an abnormality by at least one radiologist in 18 of the 51 patients (35.2%) with symptomatic localization-related epilepsy. A surgery was performed in 7 of the 51 patients, and histopathological analysis results identified focal cortical dysplasia in 5 patients (Ia: 1, IIa: 2, unknown: 2), hippocampal sclerosis in 1 patient, and dysplastic neurons/gliosis in 1 patient. CONCLUSIONS The results of this study highlight the potential diagnostic applications of MEG to detect organic epileptogenic lesions, particularly when radiological visualization is difficult with MRI alone.
Collapse
Affiliation(s)
- Kosuke Otsuka
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Satoshi Terae
- Department of Diagnostic Radiology, Sapporo City General Hospital, North 11, West 13, Chuou-ku, Sapporo, Hokkaido 060-8604, Japan
| | - Midori Nakajima
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tomoshiro Ito
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Kazuyori Yagyu
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan; Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan.
| |
Collapse
|
4
|
Diagnostic added value of electrical source imaging in presurgical evaluation of patients with epilepsy: A prospective study. Clin Neurophysiol 2020; 131:324-329. [DOI: 10.1016/j.clinph.2019.07.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/02/2019] [Accepted: 07/28/2019] [Indexed: 11/21/2022]
|
5
|
Carrette E, Stefan H. Evidence for the Role of Magnetic Source Imaging in the Presurgical Evaluation of Refractory Epilepsy Patients. Front Neurol 2019; 10:933. [PMID: 31551904 PMCID: PMC6746885 DOI: 10.3389/fneur.2019.00933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/12/2019] [Indexed: 12/03/2022] Open
Abstract
Magnetoencephalography (MEG) in the field of epilepsy has multiple advantages; just like electroencephalography (EEG), MEG is able to measure the epilepsy specific information (i.e., the brain activity reflecting seizures and/or interictal epileptiform discharges) directly, non-invasively and with a very high temporal resolution (millisecond-range). In addition MEG has a unique sensitivity for tangential sources, resulting in a full picture of the brain activity when combined with EEG. It accurately allows to perform source imaging of focal epileptic activity and functional cortex and shows a specific high sensitivity for a source in the neocortex. In this paper the current evidence and practice for using magnetic source imaging of focal interictal and ictal epileptic activity during the presurgical evaluation of drug resistant patients is being reviewed.
Collapse
Affiliation(s)
- Evelien Carrette
- Reference Centre for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Hermann Stefan
- Department of Neurology-Biomagnetism, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Murakami H, Wang ZI, Marashly A, Krishnan B, Prayson RA, Kakisaka Y, Mosher JC, Bulacio J, Gonzalez-Martinez JA, Bingaman WE, Najm IM, Burgess RC, Alexopoulos AV. Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain 2018; 139:2935-2947. [PMID: 27567464 DOI: 10.1093/brain/aww215] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/06/2016] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hiroatsu Murakami
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan.,Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Zhong I Wang
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmad Marashly
- Department of Child Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Balu Krishnan
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Richard A Prayson
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Yosuke Kakisaka
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan
| | - John C Mosher
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Juan Bulacio
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Imad M Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
7
|
Magnetoencephalographic Recordings in Infants Using a Standard-Sized Array. J Clin Neurophysiol 2017; 34:461-468. [DOI: 10.1097/wnp.0000000000000400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
8
|
Rossi Sebastiano D, Visani E, Duran D, Freri E, Panzica F, Chiapparini L, Ragona F, Granata T, Franceschetti S. Epileptic spikes in Rasmussen's encephalitis: Migratory pattern and short-term evolution. A MEG study. Clin Neurophysiol 2017; 128:1898-1905. [PMID: 28826020 DOI: 10.1016/j.clinph.2017.07.401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We aimed this study at identifying cortical areas involved in the generation of interictal spikes in Rasmussen's Encephalitis (RE) patients using magnetoencephalography (MEG), at comparing spike localization with the degree of cortical atrophy detected by MRI, and at identifying short-term changes during the follow-up. METHODS Five patients with RE underwent two MEG and magnetic resonance imaging (MRI) (six months interval). The sources of visually detected spikes were estimated using equivalent current dipoles technique; these were then superimposed on individual MRI and clustered; the locations of the clusters were related to the MRI stage of cortical atrophy. RESULTS All patients showed spikes and clusters located in different cortical areas in both recordings; the locations had a limited correspondence with cortical atrophy. The second recordings showed changes in the localisation of spikes and clusters, and confirmed the dissimilarities with neuroradiological abnormalities. CONCLUSIONS The presence of clusters of spikes of variable localisation suggests that RE progresses in a multifocal and fluctuating manner. The cortical areas most involved in epileptogenesis did not completely coincide with the most atrophic areas. SIGNIFICANCE MEG can contribute to evaluating multifocal hemispheric spikes in RE and to better understand the time course of epileptogenic process.
Collapse
Affiliation(s)
| | - Elisa Visani
- Neurophysiopathology Department and Epilepsy Centre, IRCCS Foundation, Milan, Italy
| | - Dunja Duran
- Neurophysiopathology Department and Epilepsy Centre, IRCCS Foundation, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Carlo Besta Neurological Institute, IRCCS Foundation, Milan, Italy
| | - Ferruccio Panzica
- Neurophysiopathology Department and Epilepsy Centre, IRCCS Foundation, Milan, Italy
| | - Luisa Chiapparini
- Neuroradiology Department, Carlo Besta Neurological Institute, IRCCS Foundation, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Carlo Besta Neurological Institute, IRCCS Foundation, Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Carlo Besta Neurological Institute, IRCCS Foundation, Milan, Italy
| | | |
Collapse
|
9
|
Stefan H, Trinka E. Magnetoencephalography (MEG): Past, current and future perspectives for improved differentiation and treatment of epilepsies. Seizure 2017; 44:121-124. [DOI: 10.1016/j.seizure.2016.10.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/25/2016] [Indexed: 01/23/2023] Open
|