1
|
Abd El Mutaleb ANH, Ibrahim FAR, Megahed FAK, Atta A, Ali BA, Omar TEI, Rashad MM. NAIP Gene Deletion and SMN2 Copy Number as Molecular Tools in Predicting the Severity of Spinal Muscular Atrophy. Biochem Genet 2024; 62:5051-5072. [PMID: 38388850 PMCID: PMC11604826 DOI: 10.1007/s10528-023-10657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/29/2023] [Indexed: 02/24/2024]
Abstract
Spinal muscular atrophy (SMA) is one of the most prevalent autosomal recessive illnesses with type I being the most severe type. Genomic alterations including survival motor neuron (SMN) copy number as well as deletions in SMN and Neuronal Apoptosis Inhibitory Protein (NAIP) are greatly implicated in the emergence of SMA. However, the association of such alterations with the severity of the disease is yet to be investigated. This study was directed to elucidate the molecular assessment of NAIP and SMN genomic alterations as a useful tool in predicting the severity of SMA among patients. This study included 65 SMA pediatric patients (30 type I and 35 type II) and 65 healthy controls. RFLP-PCR was employed to determine the genetic polymorphisms of the SMN1, SMN2, and NAIP genes. In addition, qRT-PCR was used to identify the expression of the SMN1 and SMN2 genes, and serum levels of creatine kinase were measured using a colorimetric method. DNA sequencing was performed on some samples to detect any single nucleotide polymorphisms in SMN1, SMN2, and NAIP genes. All SMA patients had a homozygous deficiency of SMN1 exon 7. The homozygous deficiency of SMN1 exons 7 and 8, with the deletion of NAIP exon 5 was found among the majority of Type I patients. In contrast, patients with the less severe condition (type II) had SMN1 exons 7 and 8 deleted but did not have any deletions in NAIP, additionally; 65.7% of patients had multiple copies of SMN2. Analysis of NAIP deletion alongside assessing SMN2 copy number might enhance the effectiveness of the diagnosis that can predict severity among Spinal Muscular Atrophy patients.
Collapse
Affiliation(s)
| | - Fawziya A R Ibrahim
- Department of Applied Medical Chemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt.
| | - Fayed A K Megahed
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ahmed Atta
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Bahy A Ali
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Tarek E I Omar
- Department of Pediatric Neurology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mona M Rashad
- Department of Applied Medical Chemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
2
|
Ros LA, Sleutjes BT, Stikvoort García DJ, Goedee HS, Asselman FL, van den Berg LH, van der Pol WL, Wadman RI. Feasibility and tolerability of multimodal peripheral electrophysiological techniques in a cohort of patients with spinal muscular atrophy. Clin Neurophysiol Pract 2023; 8:123-131. [PMID: 37554725 PMCID: PMC10404501 DOI: 10.1016/j.cnp.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/27/2023] [Accepted: 06/17/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE Electrophysiological techniques are emerging as an aid in identifying prognostic or therapeutic biomarkers in patients with spinal muscular atrophy (SMA), but electrophysiological assessments may be burdensome for patients. We, therefore, assessed feasibility and tolerability of multimodal peripheral non-invasive electrophysiological techniques in a cohort of patients with SMA. METHODS We conducted a single center, longitudinal cohort study investigating the feasibility and tolerability of applying multimodal electrophysiological techniques to the median nerve unilaterally. Techniques consisted of the compound muscle action potential scan, motor nerve excitability tests, repetitive nerve stimulation and sensory nerve action potential. We assessed tolerability using the numeric rating scale (NRS), ranging from 0 (no pain) to 10 (worst possible pain), and defined the protocol to be tolerable if the NRS score ≤ 3. The protocol was considered feasible if it could be performed according to test and quality standards. RESULTS We included 71 patients with SMA types 1-4 (median 39 years; range 13-67) and 63 patients at follow-up. The protocol was feasible in 98% of patients and was well-tolerated in up to 90% of patients. Median NRS score was 2 (range 0-6 at baseline and range 0-4 at follow-up (p < 0.01)). None of the patients declined follow-up assessment. CONCLUSIONS Multimodal, peripheral, non-invasive, electrophysiological techniques applied to the median nerve are feasible and well-tolerated in adolescents and adults with SMA types 1-4. SIGNIFICANCE Our study supports the use of non-invasive multimodal electrophysiological assessments in adolescents and adults with SMA types 1-4.
Collapse
Affiliation(s)
- Leandra A.A. Ros
- Department of Neurology, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn T.H.M. Sleutjes
- Department of Neurology, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Diederik J.L. Stikvoort García
- Department of Neurology, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - H. Stephan Goedee
- Department of Neurology, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Leonard H. van den Berg
- Department of Neurology, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | | | - Renske I. Wadman
- Corresponding author at: Department of Neurology, University Medical Center Utrecht, UMC Utrecht Brain Center, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Targeted-Deletion of a Tiny Sequence via Prime Editing to Restore SMN Expression. Int J Mol Sci 2022; 23:ijms23147941. [PMID: 35887289 PMCID: PMC9317564 DOI: 10.3390/ijms23147941] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 01/27/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating autosomal recessive motor neuron disease associated with mutations in the survival motor neuron 1 (SMN1) gene, the leading genetic cause of infant mortality. A nearly identical copy gene (SMN2) is retained in almost all patients with SMA. However, SMN2 fails to prevent disease development because of its alternative splicing, leading to a lack of exon 7 in the majority of SMN2 transcripts and yielding an unstable truncated protein. Several splicing regulatory elements, including intronic splicing silencer-N1 (ISS-N1) of SMN2 have been described. In this study, targeted-deletion of ISS-N1 was achieved using prime editing (PE) in SMA patient-specific induced pluripotent stem cells (SMA-iPSCs) with a high efficiency of 7/24. FL-SMN expression was restored in the targeted-deletion iPS clones and their derived motor neurons (iMNs). Notably, the apoptosis of the iMNs, caused by the loss of SMN protein that leads to the hyperactivity of endoplasmic reticulum (ER) stress, was alleviated in targeted-deletion iPSCs derived-iMNs. Thus, this is the first study to demonstrate that the targeted-deletion of ISS-N1 via PE for restoring FL-SMN expression holds therapeutic promise for SMA.
Collapse
|
4
|
Day JW, Mendell JR, Mercuri E, Finkel RS, Strauss KA, Kleyn A, Tauscher-Wisniewski S, Tukov FF, Reyna SP, Chand DH. Clinical Trial and Postmarketing Safety of Onasemnogene Abeparvovec Therapy. Drug Saf 2021; 44:1109-1119. [PMID: 34383289 PMCID: PMC8473343 DOI: 10.1007/s40264-021-01107-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
Introduction This is the first description of safety data for intravenous onasemnogene abeparvovec, the only approved systemically administered gene-replacement therapy for spinal muscular atrophy. Objective We comprehensively assessed the safety of intravenous onasemnogene abeparvovec from preclinical studies, clinical studies, and postmarketing data. Methods Single-dose toxicity studies were performed in neonatal mice and juvenile or neonatal cynomolgus nonhuman primates (NHPs). Data presented are from a composite of preclinical studies, seven clinical trials, and postmarketing sources (clinical trials, n = 102 patients; postmarketing surveillance, n = 665 reported adverse event [AE] cases). In clinical trials, safety was assessed through AE monitoring, vital-sign and cardiac assessments, laboratory evaluations, physical examinations, and concomitant medication use. AE reporting and available objective clinical data from postmarketing programs were evaluated. Results The main target organs of toxicity in mice were the heart and liver. Dorsal root ganglia (DRG) inflammation was observed in NHPs. Patients exhibited no evidence of sensory neuropathy upon clinical examination. In clinical trials, 101/102 patients experienced at least one treatment-emergent AE. In total, 50 patients experienced serious AEs, including 11 considered treatment related. AEs consistent with hepatotoxicity resolved with prednisolone in clinical trials. Transient decreases in mean platelet count were detected but were without bleeding complications. Thrombotic microangiopathy (TMA) was observed in the postmarketing setting. No evidence of intracardiac thrombi was observed for NHPs or patients. Conclusions Risks associated with onasemnogene abeparvovec can be anticipated, monitored, and managed. Hepatotoxicity events resolved with prednisolone. Thrombocytopenia was transient. TMA may require medical intervention. Important potential risks include cardiac AEs and DRG toxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s40264-021-01107-6.
Collapse
Affiliation(s)
- John W Day
- Department of Neurology, Stanford University Medical Center, MC 5979, 213 Quarry Road, Palo Alto, CA, 94304, USA.
| | - Jerry R Mendell
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, Ohio State University, Columbus, OH, USA
- Department of Neurology, Ohio State University, Columbus, OH, USA
| | - Eugenio Mercuri
- Department of Paediatric Neurology and Nemo Clinical Centre, Catholic University, Rome, Italy
- Centro Clinico Nemo, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Richard S Finkel
- Department of Pediatrics, Nemours Children's Hospital, Orlando, FL, USA
- Center for Experimental Neurotherapeutics, St. Jude's Children's Research Hospital, Memphis, TN, USA
| | - Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, USA
- Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
- Department of Pediatrics, University of Massachusetts School of Medicine, Worcester, MA, USA
- Department of Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Aaron Kleyn
- Novartis Gene Therapies, Inc., Bannockburn, IL, USA
| | | | | | | | - Deepa H Chand
- Novartis Gene Therapies, Inc., Bannockburn, IL, USA
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO, USA
| |
Collapse
|
5
|
Baranello G, Gorni K, Daigl M, Kotzeva A, Evans R, Hawkins N, Scott DA, Mahajan A, Muntoni F, Servais L. Prognostic Factors and Treatment-Effect Modifiers in Spinal Muscular Atrophy. Clin Pharmacol Ther 2021; 110:1435-1454. [PMID: 33792051 PMCID: PMC9292571 DOI: 10.1002/cpt.2247] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/21/2021] [Indexed: 12/20/2022]
Abstract
Spinal muscular atrophy (SMA) is a rare, progressive neuromuscular disease characterized by loss of motor neurons and muscle atrophy. Untreated infants with type 1 SMA do not achieve major motor milestones, and death from respiratory failure typically occurs before 2 years of age. Individuals with types 2 and 3 SMA exhibit milder phenotypes and have better functional and survival outcomes. Herein, a systematic literature review was conducted to identify factors that influence the prognosis of types 1, 2, and 3 SMA. In untreated infants with type 1 SMA, absence of symptoms at birth, a later symptom onset, and a higher survival of motor neuron 2 (SMN2) copy number are all associated with increased survival. Disease duration, age at treatment initiation, and, to a lesser extent, baseline function were identified as potential treatment‐modifying factors for survival, emphasizing that early treatment with disease‐modifying therapies (DMT) is essential in type 1 SMA. In patients with types 2 and 3 SMA, factors considered prognostic of changes in motor function were SMN2 copy number, age, and ambulatory status. Individuals aged 6–15 years were particularly vulnerable to developing complications (scoliosis and progressive joint contractures) which negatively influence functional outcomes and may also affect the therapeutic response in patients. Age at the time of treatment initiation emerged as a treatment‐effect modifier on the outcome of DMTs. Factors identified in this review should be considered prior to designing or analyzing studies in an SMA population, conducting population matching, or summarizing results from different studies on the treatments for SMA.
Collapse
Affiliation(s)
- Giovanni Baranello
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Developmental Neurology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | | | | | | | | | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre, University College of London Great Ormond Street Institute of Child Health, Great Ormond Street Hospital National Health Service Trust, London, UK
| | - Laurent Servais
- Division of Child Neurology Reference Center for Neuromuscular Disease, Department of Pediatrics, Centre Hospitalier Régional de Références des Maladies Neuromusculaires, University Hospital Liège & University of La Citadelle, Liège, Belgium.,Department of Paediatrics, Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Ball LJ, Chavez S, Perez G, Bharucha-Goebel D, Smart K, Kundrat K, Carruthers L, Brady C, Leach M, Evans S. Communication skills among children with spinal muscular atrophy type 1: A parent survey. Assist Technol 2019; 33:38-48. [DOI: 10.1080/10400435.2019.1586788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Laura J. Ball
- Center for Translational Science, Children’s National Health System, Washington DC, USA
- Department of Physical Medicine and Rehabilitation, Children’s National Health System, Washington DC, USA
| | - Stephen Chavez
- Department of Nutrition, Children’s National Health System, Washington DC, USA
| | - Geovanny Perez
- Department of Pulmonology, Children’s National Health System, Washington DC, USA
| | | | - Kathleen Smart
- Department of Neurology, Children’s National Health System, Washington DC, USA
| | - Katherine Kundrat
- Department of Physical Medicine and Rehabilitation, Children’s National Health System, Washington DC, USA
| | - Lauren Carruthers
- Department of Physical Medicine and Rehabilitation, Children’s National Health System, Washington DC, USA
| | - Caitlin Brady
- Department of Physical Medicine and Rehabilitation, Children’s National Health System, Washington DC, USA
| | - Meganne Leach
- Department of Pediatrics, Oregon Health Science University, Portland, Oregon, USA
| | - Sally Evans
- Department of Physical Medicine and Rehabilitation, Children’s National Health System, Washington DC, USA
| |
Collapse
|
7
|
Shorrock HK, Gillingwater TH, Groen EJN. Molecular Mechanisms Underlying Sensory-Motor Circuit Dysfunction in SMA. Front Mol Neurosci 2019; 12:59. [PMID: 30886572 PMCID: PMC6409332 DOI: 10.3389/fnmol.2019.00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
Activation of skeletal muscle in response to acetylcholine release from the neuromuscular junction triggered by motor neuron firing forms the basis of all mammalian locomotion. Intricate feedback and control mechanisms, both from within the central nervous system and from sensory organs in the periphery, provide essential inputs that regulate and finetune motor neuron activity. Interestingly, in motor neuron diseases, such as spinal muscular atrophy (SMA), pathological studies in patients have identified alterations in multiple parts of the sensory-motor system. This has stimulated significant research efforts across a range of different animal models of SMA in order to understand these defects and their contribution to disease pathogenesis. Several recent studies have demonstrated that defects in sensory components of the sensory-motor system contribute to dysfunction of motor neurons early in the pathogenic process. In this review, we provide an overview of these findings, with a specific focus on studies that have provided mechanistic insights into the molecular processes that underlie dysfunction of the sensory-motor system in SMA. These findings highlight the role that cell types other than motor neurons play in SMA pathogenesis, and reinforce the need for therapeutic interventions that target and rescue the wide array of defects that occur in SMA.
Collapse
Affiliation(s)
- Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ewout J N Groen
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Lin CW, Kalb SJ, Yeh WS. Delay in Diagnosis of Spinal Muscular Atrophy: A Systematic Literature Review. Pediatr Neurol 2015; 53:293-300. [PMID: 26260993 DOI: 10.1016/j.pediatrneurol.2015.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/18/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Spinal muscular atrophy is a rare genetic disease with devastating neurodegenerative consequences. Timing of diagnosis is crucial for spinal muscular atrophy because early diagnosis may lead to early supportive care and reduction in patient and caregiver stress. The purpose of this study was to examine the published literature for diagnostic delay in spinal muscular atrophy. METHODS A systematic literature search was conducted in the PubMed and Web of Science databases for studies published between 2000 and 2014 that listed any type of spinal muscular atrophy and without molecular, mouse, or pathology in the keywords. Mean and/or median age of onset and diagnosis and delay in diagnosis was extracted or calculated. All estimates were weighted by the number of patients and descriptive statistics are reported. RESULTS A total of 21 studies were included in the final analysis. The weighted mean (standard deviation) ages of onset were 2.5 (0.6), 8.3 (1.6), and 39.0 (32.6) months for spinal muscular atrophy types I, II, and III, respectively, and the weighted mean (standard deviation) ages of confirmed spinal muscular atrophy genetic diagnosis were 6.3 (2.2), 20.7 (2.6), and 50.3 (12.9) months, respectively, for types I, II, and III. For studies reporting both age of onset and diagnosis, the weighted diagnostic delay was 3.6, 14.3, and 43.6 months for types I, II, and III, respectively. CONCLUSIONS Diagnostic delay is common in spinal muscular atrophy. The length of delay varied by severity (type) of spinal muscular atrophy. Further studies evaluating this delay and tools such as newborn screening are warranted to end the diagnostic delay in spinal muscular atrophy.
Collapse
Affiliation(s)
- Chia-Wei Lin
- University of Southern California, Los Angeles, California
| | | | | |
Collapse
|
9
|
Faravelli I, Nizzardo M, Comi GP, Corti S. Spinal muscular atrophy--recent therapeutic advances for an old challenge. Nat Rev Neurol 2015; 11:351-9. [PMID: 25986506 DOI: 10.1038/nrneurol.2015.77] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, improved understanding of spinal muscular atrophy (SMA) aetiopathogenesis has brought us to a historical turning point: we are at the verge of development of disease-modifying treatments for this hitherto incurable disease. The increasingly precise delineation of molecular targets within the survival of motor neuron (SMN) gene locus has led to the development of promising therapeutic strategies. These novel avenues in treatment for SMA include gene therapy, molecular therapy with antisense oligonucleotides, and small molecules that aim to increase expression of SMN protein. Stem cell studies of SMA have provided an in vitro model for SMA, and stem cell transplantation could be used as a complementary strategy with a potential to treat the symptomatic phases of the disease. Here, we provide an overview of established data and novel insights into SMA pathogenesis, including discussion of the crucial function of the SMN protein. Preclinical evidence and recent advances from ongoing clinical trials are thoroughly reviewed. The final remarks are dedicated to future clinical perspectives in this rapidly evolving field, with a broad discussion on the comparison between the outlined therapeutic approaches and the remaining open questions.
Collapse
Affiliation(s)
- Irene Faravelli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|