1
|
Zhou C, Chen Z, Chen Q, Feng X. Case report: Heterozygous variation in the IGHMBP2 gene leading to spinal muscular atrophy with respiratory distress type 1. Front Neurol 2024; 15:1289625. [PMID: 38872814 PMCID: PMC11169606 DOI: 10.3389/fneur.2024.1289625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
A rare autosomal recessive genetic disease is spinal muscular atrophy with respiratory distress type 1 (SMARD 1; OMIM #604320), which is characterized by progressive distal limb muscle weakness, muscular atrophy, and early onset of respiratory failure. Herein, we report the case of a 4-month-old female infant with SMARD type 1 who was admitted to our hospital owing to unexplained distal limb muscle weakness and early respiratory failure. This report summarizes the characteristics of SMARD type 1 caused by heterozygous variation in the immunoglobulin mu DNA binding protein 2 (IGHMBP2) gene by analyzing its clinical manifestations, genetic variation characteristics, and related examinations, aiming to deepen clinicians' understanding of the disease, assisting pediatricians in providing medical information to parents and improving the decision-making process involved in establishing life support.
Collapse
Affiliation(s)
- Chaoai Zhou
- Department of Pediatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zefu Chen
- Department of Pediatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Qiqing Chen
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiaowei Feng
- Department of Pediatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
2
|
Tian Y, Xing J, Shi Y, Yuan E. Exploring the relationship between IGHMBP2 gene mutations and spinal muscular atrophy with respiratory distress type 1 and Charcot-Marie-Tooth disease type 2S: a systematic review. Front Neurosci 2023; 17:1252075. [PMID: 38046662 PMCID: PMC10690808 DOI: 10.3389/fnins.2023.1252075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
Background IGHMBP2 is a crucial gene for the development and maintenance of the nervous system, especially in the survival of motor neurons. Mutations in this gene have been associated with spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth disease type 2S (CMT2S). Methods We conducted a systematic literature search using the PubMed database to identify studies published up to April 1st, 2023, that investigated the association between IGHMBP2 mutations and SMARD1 or CMT2S. We compared the non-truncating mutations and truncating mutations of the IGHMBP2 gene and selected high-frequency mutations of the IGHMBP2 gene. Results We identified 52 articles that investigated the association between IGHMBP2 mutations and SMARD1/CMT2S. We found 6 hotspot mutations of the IGHMBP2 gene. The truncating mutations in trans were all associated with SMARD1. Conclusion This study provides evidence that the complete LOF mechanism of the IGHMBP2 gene defect may be an important cause of SMARD1.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfang Xing
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Shi
- Screening Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Enwu Yuan
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Villalón E, Lee NN, Marquez J, Lorson CL. Muscle fiber-type selective propensity to pathology in the nmd mouse model of SMARD1. Biochem Biophys Res Commun 2019; 516:313-319. [PMID: 31256932 DOI: 10.1016/j.bbrc.2019.06.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 12/01/2022]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disease that causes distal limb muscle atrophy, due to motor neuron degeneration. Similar to other motor neuron diseases, SMARD1 shows differential vulnerability to denervation in various muscle groups, which is recapitulated in the nmd mouse, a model of SMARD1. In multiple neurodegenerative disease models, transcriptomic analysis has identified differentially expressed genes between vulnerable motor neuron populations, but the mechanism leading to susceptibility is largely unknown. To investigate if denervation vulnerability is linked to intrinsic muscle properties, we analyzed muscle fiber-type composition in muscles from motor units that show different degrees of denervation in nmd mice: gastrocnemius, tibialis anterior (TA), and extensor digitorum longus (EDL). Our results revealed that denervation vulnerability correlated with atrophy and loss of MyHC-IIb and MyHC-IIx muscle fiber types. Interestingly, increased vulnerability also correlated with an increased abundance of MyHC-I and MyHC-IIa muscle fibers. These results indicated that MyHC-IIx muscle fibers are the most vulnerable to denervation, followed by MyHC-IIb muscle fibers. Moreover, our data indicate that type MyHC-IIa and MyHC-IIb muscle fibers show resistance to denervation and compensate for the loss of MyHC-IIx and MyHC-IIb muscle fibers in the most vulnerable muscles. Taken together these results provide a basis for the selective vulnerability to denervation of specific muscles in nmd mice and identifies new targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Eric Villalón
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Naomi N Lee
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Jose Marquez
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Spinal muscular atrophy with respiratory distress type 1: A multicenter retrospective study. Neuromuscul Disord 2019; 29:114-126. [DOI: 10.1016/j.nmd.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
|
5
|
Villalón E, Shababi M, Kline R, Lorson ZC, Florea KM, Lorson CL. Selective vulnerability in neuronal populations in nmd/SMARD1 mice. Hum Mol Genet 2019; 27:679-690. [PMID: 29272405 DOI: 10.1093/hmg/ddx434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease causing distal limb muscle atrophy that progresses proximally and is accompanied by diaphragmatic paralysis. Neuromuscular junction (NMJ) alterations have been reported in muscles of SMARD1 model mice, known as nmd mice, with varying degrees of severity, suggesting that different muscles are specifically and selectively resistant or susceptible to denervation. To evaluate the extent of NMJ pathology in a broad range of muscles, a panel of axial and appendicular muscles were isolated and immunostained from nmd mice. These analyses revealed that selective distal appendage muscles were highly vulnerable to denervation. Susceptibility to pathology was not limited to NMJ alterations, but included defects in myelination within those neurons innervating susceptible muscles. Interestingly, end plate fragmentation was present within all muscles independent of the extent of NMJ alterations, suggesting that end plate fragmentation is an early hallmark of SMARD1 pathogenesis. Expressing the full-length IGHMBP2 cDNA using an adeno-associated virus (AAV9) significantly decreased all aspects of muscle and nerve disease pathology. These results shed new light onto the pathogenesis of SMARD1 by identifying specific motor units that are resistant and susceptible to neurodegeneration in an important model of SMARD1.
Collapse
Affiliation(s)
- Eric Villalón
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Monir Shababi
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Rachel Kline
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Zachary C Lorson
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Kyra M Florea
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.,Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Castiglioni C, Lozano-Arango A. Atrofias musculares espinales no asociadas a SMN1. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Measuring quality of life in children with spinal muscular atrophy: a systematic literature review. Qual Life Res 2018; 27:3087-3094. [DOI: 10.1007/s11136-018-1945-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
|
8
|
Wu S, Chen T, Li Y, Chen L, Xu Q, Xiao F, Bai Z. An atypical phenotype of a patient with infantile spinal muscular atrophy with respiratory distress type 1 (SMARD 1). Eur J Med Genet 2018; 61:602-606. [PMID: 29653221 DOI: 10.1016/j.ejmg.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/02/2018] [Accepted: 04/09/2018] [Indexed: 12/09/2022]
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a rare autosomal recessive disease characterized by infancy-onset diaphragmatic palsy and symmetrical distal muscular weakness. SMARD1 is caused by loss-of-function mutations in IGHMBP2 gene. In this article, we report a male SMARD1 patient with two compound heterozygous mutations (NM_002180.2: c.688C > G; p.(Gln230Glu)) and (NM_002180.2: c.1737C > A; p.(Phe579Leu)), one of which (c.688C > G; ClinVar accession: SUB3344743: SCV000612189) is novel. He suffered from diaphragmatic palsy and distal muscular weakness from 6 months of age. His lower limbs were at first in hypertonia, and then gradually progressed into hypotonia. More interestingly, bronchoscopy has shown the diffuse tracheobronchomalacia, which had been reported only once in a SMARD1 patient who also had the same mutation (c.1737C > A) as our patient. We constructed the model of IGHMBP2 and mapped both mutations in the structure to analyze the structural impact of both mutations (c.688C > G and c.1737C > A) on the IGHMBP2 protein, which showed that mutation c.688C > G reduces greatly the stability of domain 1A of IGHMBP2, while the structural impact of c.1737C > A is not extensive.
Collapse
Affiliation(s)
- Shuiyan Wu
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Chen
- Department of Endocrinology, Metabolism, and Genetic Diseases, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Li
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linqi Chen
- Department of Endocrinology, Metabolism, and Genetic Diseases, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiuqin Xu
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fei Xiao
- School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Zhenjiang Bai
- Department of Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Abstract
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.
Collapse
|
10
|
Yuan JH, Hashiguchi A, Yoshimura A, Yaguchi H, Tsuzaki K, Ikeda A, Wada-Isoe K, Ando M, Nakamura T, Higuchi Y, Hiramatsu Y, Okamoto Y, Takashima H. Clinical diversity caused by novel IGHMBP2 variants. J Hum Genet 2017; 62:599-604. [PMID: 28202949 DOI: 10.1038/jhg.2017.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/08/2017] [Accepted: 01/12/2017] [Indexed: 11/09/2022]
Abstract
Immunoglobulin helicase μ-binding protein 2 (IGHMBP2) gene is responsible for Charcot-Marie-Tooth disease (CMT) type 2S and spinal muscular atrophy with respiratory distress type 1 (SMARD1). From June 2014 to December 2015, we collected 408 cases, who referred to our genetic laboratory for genetic analysis, suspected with CMT disease or other inherited peripheral neuropathies (IPNs) on the basis of clinical manifestations and electrophysiological studies. Mutation screening was performed using Ion AmpliSeq Custom Panels, which comprise 72 disease-causing or candidate genes of IPNs. We identified novel homozygous or compound heterozygous variants of IGHMBP2 in four patients. Three patients presented with childhood-onset axonal predominant sensorimotor polyneuropathies, whereas the other case was diagnosed with SMARD1, manifesting as low birth weight, weak cry, reduced spontaneous movement and developed respiratory distress 4 months after birth. We present the original report of CMT type 2S in Japan, and illustrate that recessive IGHMBP2 variants account for ~1.6% of axonal CMT in our cohort.
Collapse
Affiliation(s)
- Jun-Hui Yuan
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Hiroshi Yaguchi
- Department of Neurology, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Koji Tsuzaki
- Department of Neurology, Kansai Electric Power Hospital, Osaka, Japan
| | - Azusa Ikeda
- Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Wada-Isoe
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Japan
| |
Collapse
|