1
|
Alshawsh M, Wake M, Gecz J, Corbett M, Saffery R, Pitt J, Greaves R, Williams K, Field M, Cheong J, Bui M, Arora S, Sadedin S, Lunke S, Wall M, Amor DJ, Godler DE. Epigenomic newborn screening for conditions with intellectual disability and autistic features in Australian newborns. Epigenomics 2024; 16:1203-1214. [PMID: 39365098 PMCID: PMC11487350 DOI: 10.1080/17501911.2024.2402681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
This study describes a protocol to assess a novel workflow called Epi-Genomic Newborn Screening (EpiGNs) on 100,000 infants from the state of Victoria, Australia. The workflow uses a first-tier screening approach called methylation-specific quantitative melt analysis (MS-QMA), followed by second and third tier testing including targeted methylation and copy number variation analyzes with droplet digital PCR, EpiTYPER system and low-coverage whole genome sequencing. EpiGNs utilizes only two 3.2 mm newborn blood spot punches to screen for genetic conditions, including fragile X syndrome, Prader-Willi syndrome, Angelman syndrome, Dup15q syndrome and sex chromosome aneuploidies. The program aims to: identify clinically actionable methylation screening thresholds for the first-tier screen and estimate prevalence for the conditions screened.
Collapse
Affiliation(s)
- Mohammed Alshawsh
- Department of Paediatrics, Monash University, Melbourne, VIC, 3168, Australia
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
| | - Melissa Wake
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Jozef Gecz
- Robinson Research Institute & Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mark Corbett
- Robinson Research Institute & Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - James Pitt
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
| | - Ronda Greaves
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Katrina Williams
- Department of Paediatrics, Monash University, Melbourne, VIC, 3168, Australia
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, New South Wales, Australia
| | - Jeanie Cheong
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics, Gynaecology & Newborn Health, The Royal Women's Hospital, Melbourne, Australia
| | - Minh Bui
- Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, University of Melbourne, Carlton, Australia
| | - Sheena Arora
- Centre for Health Economics Research & Evaluation, University of Technology Sydney, Broadway, NSW, Australia
| | - Simon Sadedin
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sebastian Lunke
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Meg Wall
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - David E Godler
- Murdoch Children's Research Institute, Parkville, VIC, 3052Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Zhou Y, Jiang Y. Current Advances in Genetic Testing for Spinal Muscular Atrophy. Curr Genomics 2023; 24:273-286. [PMID: 38235355 PMCID: PMC10790334 DOI: 10.2174/0113892029273388231023072050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/19/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common genetic disorders worldwide, and genetic testing plays a key role in its diagnosis and prevention. The last decade has seen a continuous flow of new methods for SMA genetic testing that, along with traditional approaches, have affected clinical practice patterns to some degree. Targeting different application scenarios and selecting the appropriate technique for genetic testing have become priorities for optimizing the clinical pathway for SMA. In this review, we summarize the latest technological innovations in genetic testing for SMA, including MassArray®, digital PCR (dPCR), next-generation sequencing (NGS), and third-generation sequencing (TGS). Implementation recommendations for rationally choosing different technical strategies in the tertiary prevention of SMA are also explored.
Collapse
Affiliation(s)
- Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, P.R. China
- Biobank, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yu Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine & School of Public Health, Xiamen University, Xiamen, Fujian 361003, P.R. China
- Biobank, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
3
|
Setyaningrum CTS, Harahap ISK, Nurputra DK, Ar Rochmah M, Sadewa AH, Alkarani GH, Harahap NIF. Clinical characterizations of three adults with genetically confirmed spinal muscular atrophy: a case series. J Med Case Rep 2022; 16:435. [DOI: 10.1186/s13256-022-03633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Spinal muscular atrophy is a recessively inherited autosomal neuromuscular disorder, with characteristic progressive muscle weakness. Most spinal muscular atrophy cases clinically manifest during infancy or childhood, although it may first manifest in adulthood. Although spinal muscular atrophy has come to the era of newborn screening and promising treatments, genetically confirmed spinal muscular atrophy patients are still rare in third world countries, including Indonesia.
Case presentations
We presented three Indonesian patients with spinal muscular atrophy genetically confirmed during adulthood. The first case was a 40-year-old male who presented with weakness in his lower limbs that started when he was 9 years old. At the age of 16 years, he could no longer walk and started using a wheelchair. He first came to our clinic at the age of 38 years, and was diagnosed with spinal muscular atrophy 2 years later. The second patient was a 58-year-old male who presented with lower limb weakness since he was 12 years old. Owing to the geographical distance and financial problems, he was referred to our clinic at the age of 56 years, when he already used a walker to walk. Lastly, the third patient was a 28-year-old woman, who was in the first semester of her second pregnancy, and who presented with slowly progressing lower limb weakness. Her limb weakness began at the age of 8 years, and slowly progressed until she became dependent on her wheelchair 8 years later until now. She had successfully given birth to a healthy daughter 3 years before her first visit to our clinic. All three patients were diagnosed with neuromuscular disorder diseases, with the differential diagnoses of Duchenne muscular dystrophy, spinal muscular atrophy, and Becker muscular dystrophy. These patients were finally confirmed to have spinal muscular atrophy due to SMN1 deletion by polymerase chain reaction and restriction fragment length polymorphism.
Conclusions
Many genetic diseases are often neglected in developing countries owing to the difficulty in diagnosis and unavailable treatment. Our case series focused on the disease courses, diagnosis difficulties, and clinical presentations of three patients that finally lead to diagnoses of spinal muscular atrophy.
Collapse
|
4
|
Maggi L, Vita G, Marconi E, Taddeo D, Davì M, Lovato V, Cricelli C, Lapi F. Opportunities for an early recognition of spinal muscular atrophy in primary care: a nationwide, population-based, study in Italy. Fam Pract 2022; 40:308-313. [PMID: 35950319 DOI: 10.1093/fampra/cmac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a rare genetic disease with a broad spectrum of severity. Although an early diagnosis of SMA is crucial to allow proper management of patients, the diagnostic delay is still an issue. Therefore, this study aimed to investigate the clinical correlates of SMA among primary care patients. METHODS The Health Search Database (HSD) was adopted. To estimate the prevalence and incidence rate of SMA, a cohort study was conducted on the population (aged ≥6 years) being registered in HSD from 1 January 2000 up to 31 December 2019. To investigate the clinical correlates of SMA, a nested case-control study was performed. SMA cases have been classified according to a clinically based iterative process as "certain", "probable" or "possible". To test the association between clinical correlates and SMA cases a multivariate conditional logistic regression model was estimated. RESULTS The SMA prevalence combining "certain", "probable" and "possible" cases was 5.1 per 100,000 in 2019 (i.e. 1.12 per 100,000 when limited to "certain" cases), while the yearly incidence rate ranged from 0.12 to 0.56 cases per 100,000. Comparing "certain" cases with matched controls, the presence of neurology visits (OR = 6.5; 95% CI: 1.6-25.6) and prescription of electromyography (OR = 4.6; 95% CI: 1.1-18.7) were associated with higher odds of SMA diagnosis. CONCLUSIONS Our findings suggest that primary care databases may be used to enhance the early identification of SMA. Additional efforts are needed to exploit the electronic health records of general practitioners to allow early recognition of SMA.
Collapse
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disease Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milano, Italy
| | - Gianluca Vita
- Unit of Neurology, IRCCS Centro Neurolesi Bonino-Pulejo P.O. Piemonte, Messina, Italy
| | - Ettore Marconi
- Health Search, Italian College of General Practitioners and Primary Care, Florence, Italy
| | - Daiana Taddeo
- Italian College of General Practitioners and Primary Care, Florence, Italy
| | | | | | - Claudio Cricelli
- Italian College of General Practitioners and Primary Care, Florence, Italy
| | - Francesco Lapi
- Health Search, Italian College of General Practitioners and Primary Care, Florence, Italy
| |
Collapse
|
5
|
DBS Screening for Glycogen Storage Disease Type 1a: Detection of c.648G>T Mutation in G6PC by Combination of Modified Competitive Oligonucleotide Priming-PCR and Melting Curve Analysis. Int J Neonatal Screen 2021; 7:ijns7040079. [PMID: 34842616 PMCID: PMC8628980 DOI: 10.3390/ijns7040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Glycogen storage disease type Ia (GSDIa) is an autosomal recessive disorder caused by glucose-6-phosphatase (G6PC) deficiency. GSDIa causes not only life-threatening hypoglycemia in infancy, but also hepatocellular adenoma as a long-term complication. Hepatocellular adenoma may undergo malignant transformation to hepatocellular carcinoma. New treatment approaches are keenly anticipated for the prevention of hepatic tumors. Gene replacement therapy (GRT) is a promising approach, although early treatment in infancy is essential for its safety and efficiency. Thus, GRT requires screening systems for early disease detection. In this study, we developed a screening system for GSDIa using dried blood spots (DBS) on filter paper, which can detect the most common causative mutation in the East-Asian population, c.648G>T in the G6PC gene. Our system consisted of nested PCR analysis with modified competitive oligonucleotide priming (mCOP)-PCR in the second round and melting curve analysis of the amplified products. Here, we tested 54 DBS samples from 50 c.648G (wild type) controls and four c.648T (mutant) patients. This system, using DBS samples, specifically amplified and clearly detected wild-type and mutant alleles from controls and patients, respectively. In conclusion, our system will be applicable to newborn screening for GSDIa in the real world.
Collapse
|
6
|
Wijaya YOS, Nishio H, Niba ETE, Okamoto K, Shintaku H, Takeshima Y, Saito T, Shinohara M, Awano H. Detection of Spinal Muscular Atrophy Patients Using Dried Saliva Spots. Genes (Basel) 2021; 12:genes12101621. [PMID: 34681015 PMCID: PMC8535962 DOI: 10.3390/genes12101621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a lower motor neuron disease, once considered incurable. The main symptoms are muscle weakness and muscular atrophy. More than 90% of cases of SMA are caused by homozygous deletion of survival motor neuron 1 (SMN1). Emerging treatments, such as splicing modulation of SMN2 and SMN gene replacement therapy, have improved the prognoses and motor functions of patients. However, confirmed diagnosis by SMN1 testing is often delayed, suggesting the presence of diagnosis-delayed or undiagnosed cases. To enable patients to access the right treatments, a screening system for SMA is essential. Even so, the current newborn screening system using dried blood spots is still invasive and cumbersome. Here, we developed a completely non-invasive screening system using dried saliva spots (DSS) as an alternative DNA source to detect SMN1 deletion. In this study, 60 DSS (40 SMA patients and 20 controls) were tested. The combination of modified competitive oligonucleotide priming-polymerase chain reaction and melting peak analysis clearly distinguished DSS samples with and without SMN1. In conclusion, these results suggest that our system with DSS is applicable to SMA patient detection in the real world.
Collapse
Affiliation(s)
- Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Hyogo, Japan
- Correspondence: ; Tel.: +81-789-745-073
| | - Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishiicho, Imabari 794-0006, Ehime, Japan;
| | - Haruo Shintaku
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-ku, Osaka 545-8585, Osaka, Japan;
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Hyogo, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Osaka, Japan;
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Hyogo, Japan;
| |
Collapse
|
7
|
Wijaya YOS, Ar Rohmah M, Niba ETE, Morisada N, Noguchi Y, Hidaka Y, Ozasa S, Inoue T, Shimazu T, Takahashi Y, Tozawa T, Chiyonobu T, Inoue T, Shiroshita T, Yokoyama A, Okamoto K, Awano H, Takeshima Y, Saito T, Saito K, Nishio H, Shinohara M. Phenotypes of SMA patients retaining SMN1 with intragenic mutation. Brain Dev 2021; 43:745-758. [PMID: 33892995 DOI: 10.1016/j.braindev.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by homozygous deletion or intragenic mutation of the SMN1 gene. It is well-known that high copy number of its homologous gene, SMN2, modifies the phenotype of SMN1-deleted patients. However, in the patients with intragenic SMN1 mutation, the relationship between phenotype and SMN2 copy number remains unclear. METHODS We have analyzed a total of 515 Japanese patients with SMA-like symptoms (delayed developmental milestones, respiratory failures, muscle weakness etc.) from 1996 to 2019. SMN1 and SMN2 copy numbers were determined by quantitative polymerase chain reaction (PCR) method and/or multiplex ligation-dependent probe amplification (MLPA) method. Intragenic SMN1 mutations were identified through DNA and RNA analysis of the fresh blood samples. RESULTS A total of 241 patients were diagnosed as having SMA. The majority of SMA patients showed complete loss of SMN1 (n = 228, 95%), but some patients retained SMN1 and carried an intragenic mutation in the retaining SMN1 (n = 13, 5%). Ten different mutations were identified in these 13 patients, consisting of missense, nonsense, frameshift and splicing defect-causing mutations. The ten mutations were c.275G > C (p.Trp92Ser), c.819_820insT (p.Thr274Tyrfs*32), c.830A > G (p.Tyr277Cys), c.5C > T (p.Ala2Val), c.826 T > C (p.Tyr276His), c.79C > T (p.Gln27*), c.188C > A (p.Ser63*), c.422 T > C (p.Leu141Pro), c.835-2A > G (exon 7 skipping) and c.835-3C > A (exon 7 skipping). It should be noted here that some patients with milder phenotype carried only a single SMN2 copy (n = 3), while other patients with severe phenotype carried 3 SMN2 copies (n = 4). CONCLUSION Intragenic mutations in SMN1 may contribute more significantly to clinical severity than SMN2 copy numbers.
Collapse
Affiliation(s)
- Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Mawaddah Ar Rohmah
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Naoya Morisada
- Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan.
| | - Yoriko Noguchi
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan.
| | - Yasufumi Hidaka
- Department of Pediatrics, Kitakyushu Municipal Medical Center, Kitakyushu, Japan.
| | - Shiro Ozasa
- Department of Pediatrics, Kumamoto University, Kumamoto, Japan.
| | - Takeshi Inoue
- Department of Neonatology, Kumamoto City Hospital, Kumamoto, Japan.
| | - Tomoyuki Shimazu
- Department of Pediatrics, National Hospital Organization Kumamoto Saishunso Hospital, Kumamoto, Japan.
| | - Yuya Takahashi
- Department of Pediatrics, Nagaoka Red Cross Hospital, Nagaoka, Japan.
| | - Takenori Tozawa
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Takushi Inoue
- Department of Pediatrics, National Hospital Organization Okayama Medical Center, Okayama, Japan.
| | | | - Atsushi Yokoyama
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, Imabari, Japan.
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Toshio Saito
- Division of Child Neurology, Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan.
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan; Faculty of Medical Rehabilitation, Kobe Gakuin University, Kobe, Japan.
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
8
|
Wijaya YOS, Purevsuren J, Harahap NIF, Niba ETE, Bouike Y, Nurputra DK, Rochmah MA, Thursina C, Hapsara S, Yamaguchi S, Nishio H, Shinohara M. Assessment of Spinal Muscular Atrophy Carrier Status by Determining SMN1 Copy Number Using Dried Blood Spots. Int J Neonatal Screen 2020; 6:43. [PMID: 33073034 PMCID: PMC7423012 DOI: 10.3390/ijns6020043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 01/16/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a common neuromuscular disease with autosomal recessive inheritance. The disease gene, SMN1, is homozygously deleted in 95% of SMA patients. Although SMA has been an incurable disease, treatment in infancy with newly developed drugs has dramatically improved the disease severity. Thus, there is a strong rationale for newborn and carrier screening for SMA, although implementing SMA carrier screening in the general population is controversial. We previously developed a simple, accurate newborn SMA screening system to detect homozygous SMN1 deletions using dried blood spots (DBS) on filter paper. Here, we modified our previous system to detect the heterozygous deletions of SMN1, which indicates SMA carrier status. The system involves a calibrator-normalized relative quantification method using quantitative nested PCR technology. Our system clearly separated the DBS samples with one SMN1 copy (carrier status with a heterozygous deletion of SMN1) from the DBS samples with two SMN1 copies (non-carrier status with no deletion of SMN1). We also analyzed DBS samples from SMA families, confirmed SMA in the affected children, and determined the carrier status of their parents based on the SMN1 copy number. In conclusion, our system will provide essential information for risk assessment and genetic counseling, at least for SMA families.
Collapse
Affiliation(s)
- Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
| | - Jamiyan Purevsuren
- Medical Genetics Laboratory, National Center for Maternal and Child Health, Khuvisgalchdyn Street, Bayangol District, Ulaanbaatar 16060, Mongolia;
| | - Nur Imma Fatimah Harahap
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Universitas Gadjah Mada, Radiopoetro Building 5th floor, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
| | - Yoshihiro Bouike
- Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan;
| | - Dian Kesumapramudya Nurputra
- Department of Pediatrics, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No.1, Sekip, Yogyakarta 55281, Indonesia; (D.K.N.); (S.H.)
| | - Mawaddah Ar Rochmah
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No.1, Sekip, Yogyakarta 55281, Indonesia; (M.A.R.); (C.T.)
| | - Cempaka Thursina
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No.1, Sekip, Yogyakarta 55281, Indonesia; (M.A.R.); (C.T.)
| | - Sunartini Hapsara
- Department of Pediatrics, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No.1, Sekip, Yogyakarta 55281, Indonesia; (D.K.N.); (S.H.)
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University School of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan;
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
| |
Collapse
|
9
|
Lin Y, Lin CH, Yin X, Zhu L, Yang J, Shen Y, Yang C, Chen X, Hu H, Ma Q, Shi X, Shen Y, Hu Z, Huang C, Huang X. Newborn Screening for Spinal Muscular Atrophy in China Using DNA Mass Spectrometry. Front Genet 2019; 10:1255. [PMID: 31921298 PMCID: PMC6928056 DOI: 10.3389/fgene.2019.01255] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is the most common neurodegenerative disorder and the leading genetic cause of infant mortality. Early detection of SMA through newborn screening (NBS) is essential to selecting pre-symptomatic treatment and ensuring optimal outcome, as well as, prompting the urgent need for effective screening methods. This study aimed to determine the feasibility of applying an Agena iPLEX SMA assay in NBS for SMA in China. Methods: We developed an Agena iPLEX SMA assay based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and evaluated the performance of this assay through assessment of 167 previously-genotyped samples. Then we conducted a pilot study to apply this assay for SMA NBS. The SMN1 and SMN2 copy number of screen-positive patients were determined by multiplex ligation-dependent probe amplification analysis. Results: The sensitivity and specificity of the Agena iPLEX SMA assay were both 100%. Three patients with homozygous SMN1 deletion were successfully identified and conformed by multiplex ligation-dependent probe amplification analysis. Two patients had two SMN2 copies, which was correlated with severe SMA type I phenotype; both of them exhibited neurogenic lesion and with decreased muscle power. Another patient with four SMN2 copies, whose genotype correlated with milder SMA type III or IV phenotype, had normal growth and development without clinical symptoms. Conclusions: The Agena iPLEX SMA assay is an effective and reliable approach for population-based SMA NBS. The first large-scale pilot study using this assay in the Mainland of China showed that large-scale implementation of population-based NBS for SMA is feasible.
Collapse
Affiliation(s)
- Yiming Lin
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Chien-Hsing Lin
- Department of Research and Development, Feng Chi Biotech Corp, Taipei, Taiwan
| | - Xiaoshan Yin
- Department of Clinical Psychology, School of Health in Social Science, The University of Edinburg, Edinburg, United Kingdom
| | - Lin Zhu
- Department of Translational Medicine, Hangzhou Genuine Clinical Laboratory Co. Ltd, Hangzhou, China
| | - Jianbin Yang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuyan Shen
- Neonatal Disease Screening Center, Huaihua Maternal and Child Health Hospital, Huaihua, China
| | - Chiju Yang
- Neonatal Disease Screening Center, Jining Maternal and Child Health Family Service Center, Jining, China
| | - Xigui Chen
- Neonatal Disease Screening Center, Jining Maternal and Child Health Family Service Center, Jining, China
| | - Haili Hu
- Neonatal Disease Screening Center, Hefei Women and Children's Health Care Hospital, Hefei, China
| | - Qingqing Ma
- Neonatal Disease Screening Center, Hefei Women and Children's Health Care Hospital, Hefei, China
| | - Xueqin Shi
- Department of Pediatrics, Yancheng Maternity and Child Health Care Hospital, Yancheng, China
| | - Yaping Shen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chenggang Huang
- Research and Development Center, Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
10
|
Shinohara M, Niba ETE, Wijaya YOS, Takayama I, Mitsuishi C, Kumasaka S, Kondo Y, Takatera A, Hokuto I, Morioka I, Ogiwara K, Tobita K, Takeuchi A, Nishio H. A Novel System for Spinal Muscular Atrophy Screening in Newborns: Japanese Pilot Study. Int J Neonatal Screen 2019; 5:41. [PMID: 33072999 PMCID: PMC7510215 DOI: 10.3390/ijns5040041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 01/23/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by SMN1 gene deletion/mutation. The drug nusinersen modifies SMN2 mRNA splicing, increasing the production of the full-length SMN protein. Recent studies have demonstrated the beneficial effects of nusinersen in patients with SMA, particularly when treated in early infancy. Because nusinersen treatment can alter disease trajectory, there is a strong rationale for newborn screening. In the current study, we validated the accuracy of a new system for detecting SMN1 deletion (Japanese patent application No. 2017-196967, PCT/JP2018/37732) using dried blood spots (DBS) from 50 patients with genetically confirmed SMA and 50 controls. Our system consists of two steps: (1) targeted pre-amplification of SMN genes by direct polymerase chain reaction (PCR) and (2) detection of SMN1 deletion by real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) using the pre-amplified products. Compared with PCR analysis results of freshly collected blood samples, our system exhibited a sensitivity of 1.00 (95% confidence interval [CI] 0.96-1.00) and a specificity of 1.00 (95% CI 0.96-1.00). We also conducted a prospective SMA screening study using DBS from 4157 Japanese newborns. All DBS tested negative, and there were no screening failures. Our results indicate that the new system can be reliably used in SMA newborn screening.
Collapse
Affiliation(s)
- Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (M.S.); (E.T.E.N.); (Y.O.S.W.); (I.T.)
| | - Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (M.S.); (E.T.E.N.); (Y.O.S.W.); (I.T.)
| | - Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (M.S.); (E.T.E.N.); (Y.O.S.W.); (I.T.)
| | - Izumi Takayama
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (M.S.); (E.T.E.N.); (Y.O.S.W.); (I.T.)
| | - Chisako Mitsuishi
- Japanese Red Cross Katsushika Maternity Hospital, 5-11-12 Tateishi, Katsushika-ku, Tokyo 124-0012, Japan; (C.M.); (S.K.)
| | - Sakae Kumasaka
- Japanese Red Cross Katsushika Maternity Hospital, 5-11-12 Tateishi, Katsushika-ku, Tokyo 124-0012, Japan; (C.M.); (S.K.)
| | - Yoichi Kondo
- Matsuyama Red Cross Hospital, 1 Bunkyo-cho, Matsuyama 790-8524, Japan;
| | - Akihiro Takatera
- Chibune General Hospital, 3-2-39 Fukumachi, Nishiyodogawa-ku, Osaka 555-0034, Japan;
| | - Isamu Hokuto
- Department of Pediatrics, St. Marianna University School of Medicine, 2-16-1 Sugao, Kawasaki 216-8511, Japan;
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 30-1 Oyaguchi kamicho, Itabashi-ku, Tokyo 173-8610, Japan;
| | - Kazutaka Ogiwara
- Biogen Japan Ltd., 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.O.); (K.T.)
| | - Kimimasa Tobita
- Biogen Japan Ltd., 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (K.O.); (K.T.)
| | - Atsuko Takeuchi
- Kobe Pharmaceutical University, 4-19-1, Motoyamakitamachi, Higashinada-ku, Kobe 658-8558, Japan;
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (M.S.); (E.T.E.N.); (Y.O.S.W.); (I.T.)
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| |
Collapse
|
11
|
NIBA EMMATABEEKO, ROCHMAH MAWADDAHAR, HARAHAP NURIMMAFATIMAH, AWANO HIROYUKI, MORIOKA ICHIRO, IIJIMA KAZUMOTO, TAKESHIMA YASUHIRO, SAITO TOSHIO, SAITO KAYOKO, TAKEUCHI ATSUKO, LAI POHSAN, BOUIKE YOSHIHIRO, MATSUO MASAFUMI, NISHIO HISAHIDE, SHINOHARA MASAKAZU. Spinal Muscular Atrophy: New Screening System with Real-Time mCOP-PCR and PCR-RFLP for SMN1 Deletion. THE KOBE JOURNAL OF MEDICAL SCIENCES 2019; 65:E44-E48. [PMID: 31956255 PMCID: PMC7012196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) is a common autosomal recessive neuromuscular disorder characterized by degeneration or loss of lower motor neurons. More than 95% of SMA patients show homozygous deletion for the survival motor neuron 1 (SMN1) gene. For the screening of SMN1 deletion, it is necessary to differentiate SMN1 from its highly homologous gene, SMN2. We developed a modified competitive oligonucleotide priming-PCR (mCOP-PCR) method using dried blood spot (DBS)-DNA, in which SMN1 and SMN2-specific PCR products are detected with gel-electrophoresis. Next, we added a targeted pre-amplification step prior to the mCOP-PCR step, to avoid unexpected, non-specific amplification. The pre-amplification step enabled us to combine mCOP-PCR and real-time PCR. In this study, we combined real-time mCOP-PCR and PCR-restriction fragment length polymorphism (PCR-RFLP) to develop a new screening system for detection of SMN1 deletion. METHODS DBS samples of the subjects were stored at room temperature for a period of less than one year. Each subject had already been genotyped by the first PCR-RFLP using fresh blood DNA. SMN1/SMN2 exon 7 was collectively amplified using conventional PCR (targeted pre-amplification), the products of which were then used as a template in the real-time PCR with mCOP-primer sets. To confirm the results, the pre-amplified products were subject to the second PCR-RFLP. RESULTS The real-time mCOP-PCR separately amplified SMN1 and SMN2 exon7, and clearly demonstrated SMN1 deletion in an SMA patient. The results of the real-time mCOP-PCR using DBS-DNA were completely consistent with those of the first and second PCR-RFLP analysis. CONCLUSION In our new system for detection of SMN1 deletion, real-time mCOP-PCR rapidly proved the presence or absence of SMN1 and SMN2, and the results were easily tested by PCR-RFLP. This solid genotyping system will be useful for SMA screening.
Collapse
Affiliation(s)
- EMMA TABE EKO NIBA
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - MAWADDAH AR ROCHMAH
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - NUR IMMA FATIMAH HARAHAP
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - HIROYUKI AWANO
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - ICHIRO MORIOKA
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KAZUMOTO IIJIMA
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - TOSHIO SAITO
- Division of Child Neurology, Department of Neurology, National Hospital Organization Toneyama National Hospital, Toneyama, Japan
| | - KAYOKO SAITO
- Institute of Medical Genetics, Tokyo Women’s Medical University, Tokyo, Japan
| | | | - POH SAN LAI
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - MASAFUMI MATSUO
- Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - HISAHIDE NISHIO
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
- Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - MASAKAZU SHINOHARA
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
12
|
Strunk A, Abbes A, Stuitje AR, Hettinga C, Sepers EM, Snetselaar R, Schouten J, Asselman FL, Cuppen I, Lemmink H, van der Pol WL, Engel H. Validation of a Fast, Robust, Inexpensive, Two-Tiered Neonatal Screening Test algorithm on Dried Blood Spots for Spinal Muscular Atrophy. Int J Neonatal Screen 2019; 5:21. [PMID: 33072980 PMCID: PMC7510214 DOI: 10.3390/ijns5020021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 11/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is one of the leading genetic causes of infant mortality with an incidence of 1:10,000. The recently-introduced antisense oligonucleotide treatment improves the outcome of this disease, in particular when applied at an early stage of progression. The genetic cause of SMA is, in >95% of cases, a homozygous deletion of the survival motor neuron 1 (SMN1) gene, which makes the low-cost detection of SMA cases as part of newborn screening programs feasible. We developed and validated a new SALSA MC002 melting curve assay that detects the absence of the SMN1 exon 7 DNA sequence without detecting asymptomatic carriers and reliably discriminates SMN1 from its genetic homolog SMN2 using crude extracts from newborn screening cards. Melting curve analysis shows peaks specific for both the SMN1 gene and the disease modifying SMN2 homolog. The detection of the SMN2 homolog, of which the only clinically relevant difference from the SMN1 gene is a single nucleotide in exon 7, was only used to confirm a correct reaction in samples that lacked the SMN1 gene, and not for SMN2 quantification. We retrieved 47 DBS samples from children with genetically-confirmed SMA, after informed consent from parents, and 375 controls from the national archive of the Dutch National Institute for Public Health and the Environment (RIVM). The assay correctly identified all anonymized and randomized SMA and control samples (i.e., sensitivity and specificity of 100%), without the detection of carriers, on the three most commonly-used PCR platforms with melting curve analysis. This test's concordance with the second-tier 'golden standard' P021 SMA MLPA test was 100%. Using the new P021-B1 version, crude extracts from DBS cards could also be used to determine the SMN2 copy number of SMA patients with a high level of accuracy. The MC002 test showed the feasibility and accuracy of SMA screening in a neonatal screening program.
Collapse
Affiliation(s)
- Annuska Strunk
- Department of Clinical Chemistry and Neonatal Screening, Isala Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands
| | - Andre Abbes
- Department of Clinical Chemistry and Neonatal Screening, Isala Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands
| | - Antoine R. Stuitje
- MRC-Holland, Willem Schoutenstraat 1, 1057 DL Amsterdam, The Netherlands
| | - Chris Hettinga
- MRC-Holland, Willem Schoutenstraat 1, 1057 DL Amsterdam, The Netherlands
| | - Eline M. Sepers
- MRC-Holland, Willem Schoutenstraat 1, 1057 DL Amsterdam, The Netherlands
| | - Reinier Snetselaar
- MRC-Holland, Willem Schoutenstraat 1, 1057 DL Amsterdam, The Netherlands
| | - Jan Schouten
- MRC-Holland, Willem Schoutenstraat 1, 1057 DL Amsterdam, The Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Inge Cuppen
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Henny Lemmink
- Department of Genetics, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - W. Ludo van der Pol
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Henk Engel
- Department of Clinical Chemistry and Neonatal Screening, Isala Hospital, Dokter van Heesweg 2, 8025 AB Zwolle, The Netherlands
- Correspondence: ; Tel.: +31-38-424-7190
| |
Collapse
|
13
|
Vidal-Folch N, Gavrilov D, Raymond K, Rinaldo P, Tortorelli S, Matern D, Oglesbee D. Multiplex Droplet Digital PCR Method Applicable to Newborn Screening, Carrier Status, and Assessment of Spinal Muscular Atrophy. Clin Chem 2018; 64:1753-1761. [PMID: 30352867 DOI: 10.1373/clinchem.2018.293712] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/02/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a progressive neuromuscular disorder with neuronal degeneration leading to muscular atrophy and respiratory failure. SMA is frequently caused by homozygous deletions that include exon 7 of the survival motor neuron gene SMN1, and its clinical course is influenced by the copy number of a nearby 5q SMN1 paralog, SMN2. Multiple ligation probe amplification (MLPA) and real-time quantitative PCR (qPCR) can detect SMN1 deletions. Yet, qPCR needs normalization or standard curves, and MLPA demands DNA concentrations above those obtainable from dried blood spots (DBSs). We developed a multiplex, droplet digital PCR (ddPCR) method for the simultaneous detection of SMN1 deletions and SMN2 copy number variation in DBS and other tissues. An SMN1 Sanger sequencing process for DBS was also developed. METHODS SMN1, SMN2, and RPP30 concentrations were simultaneously measured with a Bio-Rad AutoDG and QX200 ddPCR system. A total of 1530 DBSs and 12 SMA patients were tested. RESULTS Population studies confirmed 1 to 5 SMN1 exon 7 copies detected in unaffected specimens, whereas patients with SMA revealed 0 SMN1 copies. Intraassay and interassay imprecisions were <7.1% CV for individuals with ≥1 SMN1 copies. Testing 12 SMA-positive samples resulted in 100% sensitivity and specificity. CONCLUSIONS This ddPCR method is sensitive, specific, and applicable to newborn screening and carrier status determination for SMA. It can also be incorporated with a parallel ddPCR T-cell excision circles assay for severe combined immunodeficiencies.
Collapse
Affiliation(s)
| | - Dimitar Gavrilov
- Departments of Laboratory Medicine and Pathology.,Medical Genetics
| | - Kimiyo Raymond
- Departments of Laboratory Medicine and Pathology.,Medical Genetics
| | - Piero Rinaldo
- Departments of Laboratory Medicine and Pathology.,Medical Genetics.,Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | | | - Dietrich Matern
- Departments of Laboratory Medicine and Pathology.,Medical Genetics.,Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Devin Oglesbee
- Departments of Laboratory Medicine and Pathology.,Medical Genetics
| |
Collapse
|
14
|
Boardman FK, Sadler C, Young PJ. Newborn genetic screening for spinal muscular atrophy in the UK: The views of the general population. Mol Genet Genomic Med 2017; 6:99-108. [PMID: 29169204 PMCID: PMC5823674 DOI: 10.1002/mgg3.353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/12/2017] [Accepted: 10/26/2017] [Indexed: 12/16/2022] Open
Abstract
Background Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and a leading genetic cause of infant death worldwide. However, there is no routine screening program for SMA in the UK. Lack of treatments and the inability of screening tests to accurately predict disease severity are among the key reasons implementation of screening has faltered in the UK. With the recent release of the first therapy for SMA (Nusinersen), calls are being made for a reconsideration of this stance; however, very little is known about the views of the general public. Methods An online survey was administered to 232 individuals with no prior relationship with SMA to assess their attitudes toward a newborn screening program for it. Results are compared with previously gathered data on the views of SMA‐affected families toward screening. Results Eighty‐four percent of participants were in favor of newborn screening. Key reasons for support were a belief that it would lead to better healthcare and life expectancy for affected infants and facilitate informed decision‐making for future pregnancies. Key reasons for nonsupport were a belief in the potential for significant negative impact on the family unit in terms of bonding and stress. Conclusions Public acceptability is a key component in the evaluation of any potential screening program in the UK. This study demonstrates that newborn screening for SMA is viewed largely positively by people unfamiliar with the condition. The importance of early identification overrode all other social and ethical concerns about screening for the majority of participants.
Collapse
Affiliation(s)
- Felicity K Boardman
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Chloe Sadler
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Philip J Young
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|