1
|
Fang QY, Wang YP, Zhang RQ, Fan M, Feng LX, Guo XD, Cheng CR, Zhang XW, Liu X. Carnosol ameliorated cancer cachexia-associated myotube atrophy by targeting P5CS and its downstream pathways. Front Pharmacol 2024; 14:1291194. [PMID: 38249348 PMCID: PMC10799341 DOI: 10.3389/fphar.2023.1291194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: Carnosol exhibited ameliorating effects on muscle atrophy of mice developed cancer cachexia in our previous research. Method: Here, the ameliorating effects of carnosol on the C2C12 myotube atrophy result from simulated cancer cachexia injury, the conditioned medium of the C26 tumor cells or the LLC tumor cells, were observed. To clarify the mechanisms of carnosol, the possible direct target proteins of carnosol were searched using DARTS (drug affinity responsive target stability) assay and then confirmed using CETSA (cellular thermal shift assay). Furthermore, proteomic analysis was used to search its possible indirect target proteins by comparing the protein expression profiles of C2C12 myotubes under treatment of C26 medium, with or without the presence of carnosol. The signal network between the direct and indirect target proteins of carnosol was then constructed. Results: Our results showed that, Delta-1-pyrroline-5-carboxylate synthase (P5CS) might be the direct target protein of carnosol in myotubes. The influence of carnosol on amino acid metabolism downstream of P5CS was confirmed. Carnosol could upregulate the expression of proteins related to glutathione metabolism, anti-oxidant system, and heat shock response. Knockdown of P5CS could also ameliorate myotube atrophy and further enhance the ameliorating effects of carnosol. Discussion: These results suggested that carnosol might ameliorate cancer cachexia-associated myotube atrophy by targeting P5CS and its downstream pathways.
Collapse
Affiliation(s)
- Qiao-Yu Fang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Ping Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Qin Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Li-Xing Feng
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China
| | - Xiao-Dong Guo
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Ru Cheng
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, China
| | - Xiong-Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Lucas AT, Lin AE, Cohen A, Muñoz W, Kahle KT, Shin JH, Buch K, Sahai I, Carroll RW. Atlantoaxial instability associated with ALDH18A1 mutation. Am J Med Genet A 2023; 191:2898-2902. [PMID: 37655511 DOI: 10.1002/ajmg.a.63388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
We report a 10-year-old boy with a de novo pathogenic variant in ALDH18A1, a rare form of metabolic cutis laxa, which was complicated by atlantoaxial instability and spinal cord compression following a fall from standing height. The patient required emergent cervical spine fusion and decompression followed by a 2-month hospitalization and rehabilitation. In addition to the core clinical features of joint and skin laxity, hypotonia, and developmental delays, we expand the connective tissue phenotype by adding a new potential feature of cervical spine instability. Patients with pathogenic variants in ALDH18A1 may warrant cervical spine screening to minimize possible morbidity. Neurosurgeons, geneticists, primary care providers, and families should be aware of the increased risk of severe cervical injury from minor trauma.
Collapse
Affiliation(s)
- Alexandra T Lucas
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Mass General for Children, Boston, Massachusetts, USA
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, Mass General for Children, Boston, Massachusetts, USA
| | - Andrew Cohen
- Department of Pediatrics, MassGeneral for Children, Harvard Medical School, Boston, Massachusetts, USA
| | - William Muñoz
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John H Shin
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Inderneel Sahai
- Medical Genetics, Department of Pediatrics, Mass General for Children, Boston, Massachusetts, USA
| | - Ryan W Carroll
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Mass General for Children, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Pedroso JL, Vale TC, Freitas JLD, Araújo FMM, Meira AT, Neto PB, França MC, Tumas V, Teive HAG, Barsottini OGP. Movement disorders in hereditary spastic paraplegias. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:1000-1007. [PMID: 38035585 PMCID: PMC10689114 DOI: 10.1055/s-0043-1777005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Hereditary or familial spastic paraplegias (SPG) comprise a group of genetically and phenotypically heterogeneous diseases characterized by progressive degeneration of the corticospinal tracts. The complicated forms evolve with other various neurological signs and symptoms, including movement disorders and ataxia. OBJECTIVE To summarize the clinical descriptions of SPG that manifest with movement disorders or ataxias to assist the clinician in the task of diagnosing these diseases. METHODS We conducted a narrative review of the literature, including case reports, case series, review articles and observational studies published in English until December 2022. RESULTS Juvenile or early-onset parkinsonism with variable levodopa-responsiveness have been reported, mainly in SPG7 and SPG11. Dystonia can be observed in patients with SPG7, SPG11, SPG22, SPG26, SPG35, SPG48, SPG49, SPG58, SPG64 and SPG76. Tremor is not a frequent finding in patients with SPG, but it is described in different types of SPG, including SPG7, SPG9, SPG11, SPG15, and SPG76. Myoclonus is rarely described in SPG, affecting patients with SPG4, SPG7, SPG35, SPG48, and SPOAN (spastic paraplegia, optic atrophy, and neuropathy). SPG4, SPG6, SPG10, SPG27, SPG30 and SPG31 may rarely present with ataxia with cerebellar atrophy. And autosomal recessive SPG such as SPG7 and SPG11 can also present with ataxia. CONCLUSION Patients with SPG may present with different forms of movement disorders such as parkinsonism, dystonia, tremor, myoclonus and ataxia. The specific movement disorder in the clinical manifestation of a patient with SPG may be a clinical clue for the diagnosis.
Collapse
Affiliation(s)
- Jose Luiz Pedroso
- Universidade Federal de São Paulo, Departamento de Neurologia, São Paulo SP, Brazil.
| | - Thiago Cardoso Vale
- Universidade Federal de Juiz de Fora, Hospital Universitário, Departamento de Clínica Médica, Serviço de Neurologia, Juiz de Fora MG, Brazil.
| | | | - Filipe Miranda Milagres Araújo
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências Comportamental, Ribeirão Preto SP, Brazil.
| | - Alex Tiburtino Meira
- Universidade Federal da Paraíba, Departamento de Medicina Interna, Serviço de Neurologia, João Pessoa PB, Brazil.
| | - Pedro Braga Neto
- Universidade Federal do Ceará, Departamento de Medicina Clínica, Divisão de Neurologia, Fortaleza CE, Brazil.
- Universidade Estadual do Ceará, Centro de Ciências da Saúde, Fortaleza CE, Brazil.
| | - Marcondes C. França
- Universidade Estadual de Campinas, Departamento de Neurologia, Campinas SP, Brazil.
| | - Vitor Tumas
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurociências Comportamental, Ribeirão Preto SP, Brazil.
| | | | | |
Collapse
|
4
|
Mahungu AC, Steyn E, Floudiotis N, Wilson LA, Vandrovcova J, Reilly MM, Record CJ, Benatar M, Wu G, Raga S, Wilmshurst JM, Naidu K, Hanna M, Nel M, Heckmann JM. The mutational profile in a South African cohort with inherited neuropathies and spastic paraplegia. Front Neurol 2023; 14:1239725. [PMID: 37712079 PMCID: PMC10497947 DOI: 10.3389/fneur.2023.1239725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Limited diagnostics are available for inherited neuromuscular diseases (NMD) in South Africa and (excluding muscle disease) are mainly aimed at the most frequent genes underlying genetic neuropathy (GN) and spastic ataxias in Europeans. In this study, we used next-generation sequencing to screen 61 probands with GN, hereditary spastic paraplegia (HSP), and spastic ataxias for a genetic diagnosis. Methods After identifying four GN probands with PMP22 duplication and one spastic ataxia proband with SCA1, the remaining probands underwent whole exome (n = 26) or genome sequencing (n = 30). The curation of coding/splice region variants using gene panels was guided by allele frequencies from internal African-ancestry control genomes (n = 537) and the Clinical Genome Resource's Sequence Variant Interpretation guidelines. Results Of 32 GN probands, 50% had African-genetic ancestry, and 44% were solved: PMP22 (n = 4); MFN2 (n = 3); one each of MORC2, ATP1A1, ADPRHL2, GJB1, GAN, MPZ, and ATM. Of 29 HSP probands (six with predominant ataxia), 66% had African-genetic ancestry, and 48% were solved: SPG11 (n = 3); KIF1A (n = 2); and one each of SPAST, ATL1, SPG7, PCYT2, PSEN1, ATXN1, ALDH18A1, CYP7B1, and RFT1. Structural variants in SPAST, SPG11, SPG7, MFN2, MPZ, KIF5A, and GJB1 were excluded by computational prediction and manual visualisation. Discussion In this preliminary cohort screening panel of disease genes using WES/WGS data, we solved ~50% of cases, which is similar to diagnostic yields reported for global cohorts. However, the mutational profile among South Africans with GN and HSP differs substantially from that in the Global North.
Collapse
Affiliation(s)
- Amokelani C. Mahungu
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elizabeth Steyn
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Niki Floudiotis
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lindsay A. Wilson
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mary M. Reilly
- Department of Neuromuscular Disease, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Christopher J. Record
- Department of Neuromuscular Disease, Queen Square UCL Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sharika Raga
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Paediatric Neurology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Jo M. Wilmshurst
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Division of Paediatric Neurology, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Kireshnee Naidu
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michael Hanna
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Melissa Nel
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jeannine M. Heckmann
- Neurology Research Group, Division of Neurology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Popescu C. WASHC5 mutation extends the genotypic heterogeneity in early-onset Parkinson’s disease. FUTURE NEUROLOGY 2022. [DOI: 10.2217/fnl-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Materials & methods: Herein, we are reporting a 31-year-old man diagnosed with Parkinson’s disease (PD) without evidence of family co-segregation. Analysis across the PD loci was carried out followed by whole-exome sequencing. Results: We identified a novel heterozygous WASHC5 variant, c.775T >C p. (Tyr259His) segregating with PD. WASHC5 or strumpellin has previously been identified in autosomal dominant disorder hereditary spastic paraplegia type 8 (HSP8). Conclusion: We present clinical, genetic and physiopathological data supporting a relevant role of c.775T >C p. (Tyr259His) variant in early-onset PD. One can hypothesizes a model wherein the clinical continuum of strumpellin-associated neurological syndromes share common pathways based on endo-lysosomal trafficking dysfunction. This novel mutation extends the spectrum of WASHC5 gene mutations and supports the allelic heterogeneity of PD.
Collapse
|
6
|
Chen YJ, Zhang ZQ, Wang MW, Qiu YS, Yuan RY, Dong EL, Zhao Z, Zhou HT, Wang N, Chen WJ, Lin X. Novel Compound Missense and Intronic Splicing Mutation in ALDH18A1 Causes Autosomal Recessive Spastic Paraplegia. Front Neurol 2021; 12:627531. [PMID: 34093392 PMCID: PMC8170465 DOI: 10.3389/fneur.2021.627531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Hereditary spastic paraplegia (HSP) caused by mutations in ALDH18A1 have been reported as spastic paraplegia 9 (SPG9), with autosomal dominant and autosomal recessive transmission (SPG9A and SPG9B). SPG9 is rare and has shown phenotypic and genotypic heterogeneity in previous reports. Methods: This study screened ALDH18A1 mutations in autosomal recessive HSP patients using combined whole exome sequencing and RNA splicing analysis. We conducted in silico investigations, co-segregation analysis, and ELISA-based analysis of P5CS (Δ1-pyrroline-5-carboxylate synthetase; encoded by ALDH18A1) concentration to validate the pathogenicity of the detected ALDH18A1 variants. All previously reported bi-allelic ALDH18A1 mutations and cases were reviewed to summarize the genetic and clinical features of ALDH18A1-related HSP. Results: A novel missense mutation c.880T>C, p.S294P and an intronic splicing mutation c.-28-13A>G were both detected in ALDH18A1 in an autosomal recessive family presenting with a complicated form HSP. ELISA assays revealed significantly decreased P5CS concentration in the proband's plasma compared with that in the healthy controls. Moreover, review of previously reported recessive cases showed that SPG9B patients in our cohort presented with milder symptoms, i.e., later age at onset and without cognitive impairment. Conclusion: The present study expands the genetic and clinical spectrum of SPG9B caused by ALDH18A1 mutation. Our work defines new genetic variants to facilitate future diagnoses, in addition to demonstrating the highly informative value of splicing mutation prediction in the characterization of disease-related intronic variants.
Collapse
Affiliation(s)
- Yi-Jun Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zai-Qiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meng-Wen Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - En-Lin Dong
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hai-Tao Zhou
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|