1
|
Domínguez Carral J, Reinhard C, Ebrahimi-Fakhari D, Dorison N, Galosi S, Garone G, Malenica M, Ravelli C, Serdaroglu E, van de Pol LA, Koy A, Leuzzi V, Roubertie A, Lin JP, Doummar D, Cif L, Ortigoza-Escobar JD. Dyskinetic crisis in GNAO1-related disorders: clinical perspectives and management strategies. Front Neurol 2024; 15:1403815. [PMID: 38903163 PMCID: PMC11188927 DOI: 10.3389/fneur.2024.1403815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Background GNAO1-related disorders (GNAO1-RD) encompass a diverse spectrum of neurodevelopmental and movement disorders arising from variants in the GNAO1 gene. Dyskinetic crises, marked by sudden and intense exacerbations of abnormal involuntary movements, present a significant challenge in GNAO1-RD. Objectives This study aimed to establish a standardized framework for understanding dyskinetic crises, addressing crucial aspects such as definition, triggers, diagnostic criteria, complications, and management strategies. Methods A Delphi consensus process was conducted involving international experts in GNAO1-RD. The panel of thirteen experts participated in three voting rounds, discussing 90 statements generated through a literature review and clinical expertise. Results Consensus was achieved on 31 statements, defining dyskinetic crises as abrupt, paroxysmal episodes involving distinct abnormal movements in multiple body regions, triggered by emotional stress or infections. Dyskinetic crises may lead to functional impairment and complications, emphasizing the need for prompt recognition. While individualized pharmacological recommendations were not provided, benzodiazepines and clonidine were suggested for acute crisis management. Chronic treatment options included tetrabenazine, benzodiazepines, gabapentin, and clonidine. Deep brain stimulation should be considered early in the treatment of refractory or prolonged dyskinetic crisis. Conclusion This consensus provides a foundation for understanding and managing dyskinetic crises in GNAO1-RD for clinicians, caregivers, and researchers. The study emphasizes the importance of targeted parental and caregiver education, which enables early recognition and intervention, thereby potentially minimizing both short- and long-term complications. Future research should concentrate on differentiating dyskinetic crises from other neurological events and investigating potential risk factors that influence their occurrence and nature. The proposed standardized framework improves clinical management, stakeholder communication, and future GNAO1-RD research.
Collapse
Affiliation(s)
- Jana Domínguez Carral
- Member of the ERN EpiCARE, Epilepsy Unit, Department of Child Neurology, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carola Reinhard
- Centre for Rare Diseases and Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nathalie Dorison
- Dyspa Unit, Pediatric Neurosurgery, Hôpital Fondation Rothschild, Paris, France
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Giacomo Garone
- Neurology, Epilepsy and Movement Disorders Unit, IRCCS Bambino Gesù Children Hospital, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Masa Malenica
- Member of the ERN EpiCARE, Department of Pediatrics, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Claudia Ravelli
- Sorbonne Université, Service de Neuropédiatrie-Pathologie du développement, Centre de référence neurogénétique, Hôpital Trousseau AP-HP.SU, Paris, France
| | - Esra Serdaroglu
- Department of Pediatric Neurology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Laura A. van de Pol
- Emma Children’s Hospital, Amsterdam Universitary Medical Centers, Amsterdam, Netherlands
- Department of Child Neurology, Amsterdam Universitary Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Agathe Roubertie
- CHU Montpellier, Département de Neuropédiatrie, INM, Université de Montpellier, Inserm U, Montpellier, France
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Women and Children's Institute, Faculty of Life Sciences and Medicine (FolSM), King's College London, London, United Kingdom
| | - Diane Doummar
- Sorbonne Université, Service de Neuropédiatrie-Pathologie du développement, Centre de référence neurogénétique, Hôpital Trousseau AP-HP.SU, Paris, France
| | - Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
- Service de Neurologie, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Laboratoire de Recherche en Neurosciences Cliniques, Montferrier-sur-Lez, France
| | - Juan Darío Ortigoza-Escobar
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
- Movement Disorders Unit, Department of Child Neurology, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- U-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
2
|
Novelli M, Galosi S, Zorzi G, Martinelli S, Capuano A, Nardecchia F, Granata T, Pollini L, Di Rocco M, Marras CE, Nardocci N, Leuzzi V. GNAO1-related movement disorder: An update on phenomenology, clinical course, and response to treatments. Parkinsonism Relat Disord 2023:105405. [PMID: 37142469 DOI: 10.1016/j.parkreldis.2023.105405] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
AIM To evaluate clinical phenotype and molecular findings of 157 cases with GNAO1 pathogenic or likely pathogenic variants delineating the clinical spectrum, course, and response to treatments. METHOD Clinical phenotype, genetic data, and pharmacological and surgical treatment history of 11 novel cases and 146 previously published patients were analyzed. RESULTS Complex hyperkinetic movement disorder (MD) characterizes 88% of GNAO1 patients. Severe hypotonia and prominent disturbance of postural control seem to be hallmarks in the early stages preceding the hyperkinetic MD. In a subgroup of patients, paroxysmal exacerbations became so severe as to require admission to intensive care units (ICU). Almost all patients had a good response to deep brain stimulation (DBS). Milder phenotypes with late-onset focal/segmental dystonia, mild to moderate intellectual disability, and other minor neurological signs (i.e., parkinsonism and myoclonus) are emerging. MRI, previously considered noncontributory to a diagnosis, can show recurrent findings (i.e., cerebral atrophy, myelination and/or basal ganglia abnormalities). Fifty-eight GNAO1 pathogenic variants, including missense changes and a few recurrent splice site defects, have been reported. Substitutions at residues Gly203, Arg209 and Glu246, together with the intronic c.724-8G > A change, account for more than 50% of cases. INTERPRETATION Infantile or childhood-onset complex hyperkinetic MD (chorea and/or dystonia) with or without paroxysmal exacerbations, associated hypotonia, and developmental disorders should prompt research for GNAO1 mutations. DBS effectively controls and prevents severe exacerbations and should be considered early in patients with specific GNAO1 variants and refractory MD. Prospective and natural history studies are necessary to define genotype-phenotype correlations further and clarify neurological outcomes.
Collapse
Affiliation(s)
- Maria Novelli
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Italy.
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Tiziana Granata
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Luca Pollini
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Martina Di Rocco
- Department of Human Neuroscience, Sapienza University of Rome, Italy; Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Nardo Nardocci
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| |
Collapse
|
3
|
JoJo Yang QZ, Porter BE, Axeen ET. GNAO1-related neurodevelopmental disorder: Literature review and caregiver survey. Epilepsy Behav Rep 2022; 21:100582. [PMID: 36654732 PMCID: PMC9841045 DOI: 10.1016/j.ebr.2022.100582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Background GNAO1-related neurodevelopmental disorder is a heterogeneous condition characterized by hypotonia, developmental delay, epilepsy, and movement disorder. This study aims to better understand the spectrum of epilepsy associated with GNAO1 variants and experience with anti-seizure medications, and to review published epilepsy phenotypes in GNAO1. Methods An online survey was distributed to caregivers of individuals diagnosed with GNAO1 pathogenic variants, and a literature review was conducted. Results Fifteen respondents completed the survey with the median age of 39 months, including a novel variant p.Q52P. Nine had epilepsy - six had onset in the first week of life, three in the first year of life - but two reported no ongoing seizures. Seizure types varied. Individuals were taking a median of 3 seizure medications without a single best treatment. Our cohort was compared to a literature review of epilepsy in GNAO1. In 86 cases, 38 discrete variants were described; epilepsy is reported in 53 % cases, and a developmental and epileptic encephalopathy in 36 %. Conclusions While GNAO1-related epilepsy is most often early-onset and severe, seizures may not always be drug resistant or lifelong. Experience with anti-seizure medications is varied. Certain variant "hotspots" may correlate with epilepsy phenotype though genotype-phenotype correlation is poorly understood.
Collapse
Affiliation(s)
- Qian-Zhou JoJo Yang
- Division of Child Neurology, Department of Neurology, University of North Carolina, Chapel Hill, NC, United States,Corresponding author at: 170 Manning Dr, Campus Box 7025, Chapel Hill, NC 27599, United States
| | - Brenda E Porter
- Division of Child Neurology, Department of Neurology, Stanford University, Palo Alto, CA, United States
| | - Erika T Axeen
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, United States
| |
Collapse
|
4
|
The Sequential Use of Extracorporeal Cytokine Removal Devices in an Adolescent With COVID-19 Receiving Continuous Renal Replacement Therapy. ASAIO J 2022; 68:e230-e234. [PMID: 36318755 DOI: 10.1097/mat.0000000000001834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 14-year-old male developed multisystem inflammatory syndrome in children (MIS-C) after acquiring the SARS-CoV-2 infection. He deteriorated rapidly requiring inotropic and ventilatory support as well as continuous renal replacement therapy (CRRT) due to rhabdomyolysis-associated acute kidney injury. A hemoadsoprtion column Cytosorb® was first incorporated into the CRRT circuit for myoglobin and cytokines removal, which was followed by sequential use of another type of cytokine-removing hemofilter (Oxiris®) (altogether 100 hours of extracorporeal blood purification [EBP] therapy). There was no major complication related to the EBP therapy. Cytokine profile revealed a marked reduction of levels of several cytokines including tumor necrosis factor-α, interleukin (IL)-6, IL-8, and IL-10 after the EBP therapy. It was noted that both pro-inflammatory and anti-inflammatory cytokines were removed, and the removal efficacy varied between different devices. His condition improved and the serum ferritin, C-reactive protein, and procalcitonin levels also dropped gradually, which correlated well with his clinical progress and the trend of cytokine levels. Our case demonstrated that extracorporeal cytokine removal can be safely applied in children with MIS-C and can be considered as adjunctive therapy in selected patients with critically ill conditions.
Collapse
|
5
|
Ling W, Huang D, Yang F, Yang Z, Liu M, Zhu Q, Huang J, Zhou R, Chen X. Treating GNAO1 mutation-related severe movement disorders with oxcarbazepine: a case report. Transl Pediatr 2022; 11:1577-1587. [PMID: 36247896 PMCID: PMC9561508 DOI: 10.21037/tp-22-297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND GNAO1 variants have been found to be associated with epileptic encephalopathies, developmental delays (DDs), and movement disorders (MDs). Therapies for patients with GNAO1 variants vary. However, treatments for GNAO1-related diseases are still in their infancy. Previous reports suggest that few pharmacological treatments are effective for patients with GNAO1 variant-related MDs. Deep brain stimulation (DBS) treatment appears to be effective, however surgical procedures and equipment failures pose risks to the patients. Effectiveness for oxcarbazepine (OXC) in GNAO1 variant-related MDs is first reported in our study, and it expand the effective drugs for MD treatment. CASE DESCRIPTION We report the case of a 5-year-old male patient with a MD, who suffered from hypotonia and refractory choreoathetosis. The patient was found to have a DD and an intellectual disability. A de-novo variant of the GNAO1 gene (NM_138736: exom6: c.709G>A [p. Glu237Lys]) was identified by whole exome sequencing (WES) when he was 8 months old. The patient visited our hospital at the age of 4 years and 3 months because of fever and recurrent convulsions. Electroencephalogram (EEG) results show abnormal spikes, and magnetic resonance imaging (MRI) showed the enlargement of the lateral ventricles. The administration of tiapride hydrochloride, phenobarbital, midazolam, and hormones had no effect. OXC treatment was then initiated. No MD behaviors, such as rigidity and twisting of the limbs and trunk, or chorea, were observed after 10 days OXC treatment. Eventually, incremental doses of OXC were effective, and our patient achieved good control of his MD. CONCLUSIONS We are the first to demonstrate the role of OXC in alleviating MDs associated with GNAO1 mutations. This report provides a novel possibility for the clinical treatment of this rare disease. To manage MDs associated with GNAO1 mutations, we recommend that OXC treatment be attempted before invasive surgical therapy.
Collapse
Affiliation(s)
- Weihao Ling
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Danping Huang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | | | | | - Min Liu
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Qiujiao Zhu
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Huang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Rui Zhou
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| | - Xuqin Chen
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Yang X, Niu X, Yang Y, Cheng M, Zhang J, Chen J, Yang Z, Zhang Y. Phenotypes of GNAO1 Variants in a Chinese Cohort. Front Neurol 2021; 12:662162. [PMID: 34122306 PMCID: PMC8193119 DOI: 10.3389/fneur.2021.662162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to analyze the genotypes and phenotypes of GNAO1 variants in a Chinese cohort. Seven male and four female patients with GNAO1 variants were enrolled, including siblings of brothers. Ten different GNAO1 variants (nine missense and one splicing site) were identified, among which six were novel. All the variants were confirmed to be de novo in peripheral blood DNA. Eight (73%, 8/11) patients had epilepsy; the seizure onset age ranged from 6 h after birth to 4 months (median age, 2.5 months). Focal seizures were observed in all eight patients, epileptic spasms occurred in six (75%, 6/8), tonic spasm in four (50%, 4/8), tonic seizures in two, atypical absence in one, and generalized tonic–clonic seizures in one. Seven patients had multiple seizure types. Eight (73%, 8/11) patients had movement disorders, seven of them having only dystonia, and one having dystonia with choreoathetosis. Varying degrees of developmental delay (DD) were present in all 11 patients. The phenotypes were diagnosed as early infantile epileptic encephalopathy (EIEE) in two (18%) patients, which were further diagnosed as West syndrome. Movement disorders (MD) with developmental delay were diagnosed in two (18%) brothers. EIEE and MD were overlapped in six (55%) patients, among which two were diagnosed with West syndrome, one with Ohtahara syndrome, and the other three with non-specific EIEE. One (9%) patient was diagnosed as DD alone. The onset age of GNAO1-related disorders was early infancy. The phenotypic spectrum of GNAO1 included EIEE, MD with DD, and DD alone.
Collapse
Affiliation(s)
- Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiaoyang Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|