1
|
Antonioli L, El-Tayeb A, Pellegrini C, Fornai M, Awwad O, Giustarini G, Natale G, Ryskalin L, Németh ZH, Müller CE, Blandizzi C, Colucci R. Anti-inflammatory effect of a novel locally acting A 2A receptor agonist in a rat model of oxazolone-induced colitis. Purinergic Signal 2017; 14:27-36. [PMID: 29116551 DOI: 10.1007/s11302-017-9591-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022] Open
Abstract
Adenosine represents a powerful modulating factor, which has been shown to orchestrate the scope, duration, and remission of the inflammatory response through the activation of four specific receptors, classified as A1, A2A, A2B, and A3, all being widely expressed in a variety of immune cells. Several selective A2A receptor agonists have displayed anti-inflammatory effects, through the suppression of IL-12, TNF, and IFN-γ production by monocytes and lymphocytes, in the setting of chronic intestinal inflammation. However, the therapeutic application of A2A receptor agonists remains hindered by the risk of serious cardiovascular adverse effects arising from the wide systemic distribution of A2A receptors. The present study focused on evaluating the anti-inflammatory effects of the novel poorly absorbed A2A receptor agonist PSB-0777 in a rat model of oxazolone-induced colitis as well as to evaluate its cardiovascular adverse effects, paying particular attention to the onset of hypotension, one of the main adverse effects associated with the systemic pharmacological activation of A2A receptors. Colitis was associated with decreased body weight, an enhanced microscopic damage score and increased levels of colonic myeloperoxidase (MPO). PSB-0777, but not dexamethasone, improved body weight. PSB-0777 and dexamethasone ameliorated microscopic indexes of inflammation and reduced MPO levels. The beneficial effects of PSB-0777 on inflammatory parameters were prevented by the pharmacological blockade of A2A receptors. No adverse cardiovascular events were observed upon PSB-0777 administration. The novel A2A receptor agonist PSB-0777 could represent the base for the development of innovative pharmacological entities able to act in an event-specific and site-specific manner.
Collapse
Affiliation(s)
- L Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - A El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - C Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - M Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - O Awwad
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - G Giustarini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - G Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - L Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Z H Németh
- Department of Surgery, Morristown Medical Center, Morristown, NJ, USA
| | - C E Müller
- PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - R Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Qi L, Thomas E, White SH, Smith SK, Lee CA, Wilson LR, Sombers LA. Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes. Anal Chem 2016; 88:8129-36. [PMID: 27441547 DOI: 10.1021/acs.analchem.6b01871] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
L-DOPA has been the gold standard for symptomatic treatment of Parkinson's disease. However, its efficacy wanes over time as motor complications develop. Very little is known about how L-DOPA therapy affects the dynamics of fluctuating dopamine concentrations in the striatum on a rapid time scale (seconds). Electrochemical studies investigating the effects of L-DOPA treatment on electrically evoked dopamine release have reported conflicting results with significant variability. We hypothesize that the uncertainty in the electrochemical data is largely due to electrode fouling caused by polymerization of L-DOPA and endogenous catecholamines on the electrode surface. Thus, we have systematically optimized the procedure for fabricating cylindrical, Nafion-coated, carbon-fiber microelectrodes. This has enabled rapid and reliable detection of L-DOPA's effects on striatal dopamine signaling in intact rat brain using fast-scan cyclic voltammetry. An acute dose of 5 mg/kg L-DOPA had no significant effect on dopamine dynamics, demonstrating the highly efficient regulatory mechanisms at work in the intact brain. In contrast, administration of 200 mg/kg L-DOPA significantly increased the amplitude of evoked dopamine release by ∼200%. Overall, this work describes a reliable tool that allows a better measure of L-DOPA augmented dopamine release in vivo, measured using fast-scan cyclic voltammetry. It provides a methodology that improves the stability and performance of the carbon-fiber microelectrode when studying the molecular mechanisms underlying L-DOPA therapy and also promises to benefit a wide variety of studies because Nafion is so commonly used in electroanalytical chemistry.
Collapse
Affiliation(s)
- Lingjiao Qi
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Elina Thomas
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Stephanie H White
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Samantha K Smith
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Christie A Lee
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Leslie R Wilson
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Leslie A Sombers
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Anti-inflammatory, antioxidant, and antiparkinsonian effects of adenosine A 2A receptor antagonists. Pharmacol Biochem Behav 2015; 132:71-78. [PMID: 25735490 DOI: 10.1016/j.pbb.2015.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 11/21/2022]
Abstract
The purpose of the study was to examine derivatives of annelated xanthines (imidazo-, pyrimido-, and diazepino-purinediones) for potential anti-inflammatory effects in carrageenan-induced paw edema in mice. Additionally, their antioxidant activity using the FRAP (ferric-reducing ability of plasma) assay and lipid peroxidation in rat brain homogenate were analyzed. All the studied derivatives showed affinity for adenosine A2A receptor. The preliminary assays found that five (KD-114, KD-57, KD-129, KD-50, and KD-358) pyrimidopurinedione derivatives, administered intraperitoneally (i.p.) at a dose of 100mg/kg, had stronger anti-inflammatory effects. At a concentration of 10-5M, three of the derivatives KD-57, KD-114, and KD-129 most influenced the total antioxidant ability. The most efficient anti-inflammatory compound, KD-114, also showed the strongest binding to A2A receptors and when administered at a dose of 5mg/kg (i.p.), effectively reversed haloperidol-induced catalepsy and significantly increased the striatal extracellular dopamine level in the rat striatum. This effect was weaker than the one produced by CSC (1mg/kg i.p.), and only slightly weaker than that produced by ZM 241385 (3mg/kg i.p.) used as reference drugs. From the results of the present studies, it may be concluded that anti-inflammatory and antiparkinsonian effects of the examined compounds correlate with their influence on adenosine A2A receptors, the most probable antagonism to these subtype receptors.
Collapse
|
4
|
Domin H, Gołembiowska K, Jantas D, Kamińska K, Zięba B, Smiałowska M. Group III mGlu receptor agonist, ACPT-I, exerts potential neuroprotective effects in vitro and in vivo. Neurotox Res 2014; 26:99-113. [PMID: 24402869 PMCID: PMC4035549 DOI: 10.1007/s12640-013-9455-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 12/22/2013] [Accepted: 12/24/2013] [Indexed: 01/09/2023]
Abstract
Many evidence suggest that metabotropic glutamate receptors (mGluRs) may modulate glutamatergic transmission, hence, these receptors are regarded as potential targets for neuroprotective drugs. Since group III mGlu receptor agonists are known to reduce glutamatergic transmission by inhibiting glutamate release, we decided to investigate the neuroprotective potential of the group III mGlu receptor agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid (ACPT-I) against kainate (KA)-induced excitotoxicity in vitro and in vivo. In primary neuronal cell cultures ACPT-I (1-200 μM), applied 30 min-3 h after starting the exposure to KA (150 μM), significantly attenuated the KA-induced LDH release, increased cell viability, and inhibited caspase-3 activity both in cortical and hippocampal cell cultures. The effects were dose-, time- and structure-dependent. The neuroprotective effects of ACPT-I were reversed by (RS)-alpha-cyclopropyl-4-phosphonophenyl glycine, a group III mGluR antagonist. In the in vivo studies, KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region and the size of degeneration was examined by stereological counting of surviving neurons in the CA pyramidal layer. It was found that ACPT-I (7.5 or 15 nmol/1 μl), injected into the dorsal hippocampus 30 min, 1 or 3 h after KA in dose-dependent manner prevented the KA-induced neuronal damage. Moreover, in vivo microdialysis studies in the rat hippocampus showed that ACPT-I (200 μM) given simultaneously with KA (50 μM) significantly diminished the KA-induced glutamate release in the hippocampus. This mechanism seems to play a role in mediating the neuroprotective effect of ACPT-I.
Collapse
Affiliation(s)
- Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland,
| | | | | | | | | | | |
Collapse
|
5
|
Haduch A, Bromek E, Sadakierska-Chudy A, Wójcikowski J, Daniel WA. The catalytic competence of cytochrome P450 in the synthesis of serotonin from 5-methoxytryptamine in the brain: an in vitro study. Pharmacol Res 2012; 67:53-9. [PMID: 23098818 DOI: 10.1016/j.phrs.2012.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/10/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
Brain serotonin has been implicated in the pathophysiology of a wide spectrum of psychiatric disorders, as well as in the mechanism of action of psychotropic drugs. The aim of present study was to identify rat cytochrome P450 (CYP) isoforms which can catalyze the O-demethylation of 5-methoxytryptamine to serotonin, and to find out whether that alternative pathway of serotonin synthesis may take place in the brain. The study was conducted on cDNA-expressed CYPs (rat CYP1A1/2, 2A1/2, 2B1, 2C6/11/13, 2D1/2/4/18, 2E1, 3A2 and human CYP2D6), on rat brain and liver microsomes and on human liver microsomes (the wild-type CYP2D6 or the allelic variant 2D6*4*4). Of the rat CYP isoforms studied, CYP2D isoforms were the most efficient in catalyzing the O-demethylation of 5-methoxytryptamine to serotonin, but they were less effective than the human isoform CYP2D6. Microsomes from different brain regions were capable of metabolizing 5-methoxytryptamine to serotonin. The reaction was inhibited by the specific CYP2D inhibitors quinine and fluoxetine. Human liver microsomes of the wild-type CYP2D6 metabolized 5-methoxytryptamine to serotonin more effectively than did the defective CYP2D6*4*4 ones. The obtained results indicate that rat brain CYP2D isoforms catalyze the formation of serotonin from 5-methoxytryptamine, and that the deficit or genetic defect of CYP2D may affect serotonin metabolism in the brain. The results are discussed in the context of their possible physiological and pharmacological significance in vivo.
Collapse
Affiliation(s)
- Anna Haduch
- Polish Academy of Sciences, Institute of Pharmacology, Smętna 12, 31-343 Kraków, Poland
| | | | | | | | | |
Collapse
|
6
|
Śmiałowska M, Gołembiowska K, Kajta M, Zięba B, Dziubina A, Domin H. Selective mGluR1 antagonist EMQMCM inhibits the kainate-induced excitotoxicity in primary neuronal cultures and in the rat hippocampus. Neurotox Res 2012; 21:379-92. [PMID: 22144346 PMCID: PMC3296950 DOI: 10.1007/s12640-011-9293-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 11/07/2011] [Accepted: 11/23/2011] [Indexed: 10/25/2022]
Abstract
Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1-100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5-10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated.
Collapse
Affiliation(s)
- Maria Śmiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
7
|
Szabó N, Kincses ZT, Vécsei L. Novel therapy in Parkinson's disease: adenosine A2Areceptor antagonists. Expert Opin Drug Metab Toxicol 2011; 7:441-55. [DOI: 10.1517/17425255.2011.557066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Domin H, Zięba B, Gołembiowska K, Kowalska M, Dziubina A, Śmiałowska M. Neuroprotective potential of mGluR5 antagonist MTEP: effects on kainate-induced excitotoxicity in the rat hippocampus. Pharmacol Rep 2010; 62:1051-61. [DOI: 10.1016/s1734-1140(10)70367-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/19/2010] [Indexed: 11/16/2022]
|
9
|
Gołembiowska K, Dziubina A, Kowalska M, Kamińska K. Effect of adenosine A(2A) receptor antagonists on L-DOPA-induced hydroxyl radical formation in rat striatum. Neurotox Res 2009; 15:155-66. [PMID: 19384578 DOI: 10.1007/s12640-009-9016-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/20/2008] [Accepted: 11/24/2008] [Indexed: 11/25/2022]
Abstract
A(2A) adenosine receptor antagonists have been proposed as a new therapy for Parkinson's disease (PD). Since oxidative stress plays an important role in the pathogenesis of PD, we studied the effect of the selective A(2A) adenosine receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) on L: -3,4-dihydroxyphenylalanine (L: -DOPA)-induced hydroxyl radical generation using in vivo microdialysis in the striatum of freely moving rats. L: -DOPA (100 mg/kg; in the presence of benserazide, 50 mg/kg) given acutely or repeatedly for 14 days generated a high level of hydroxyl radicals, measured by HPLC with electrochemical detection, as the product of their reaction with p-hydroxybenzoic acid (PBA). CSC (1 mg/kg) and ZM 241385 (3 mg/kg) decreased haloperidol (0.5 mg/kg)-induced catalepsy, while at low doses of 0.1 and 0.3 mg/kg, respectively, they did not display an effect. CSC (1 and 5 mg/kg) and ZM 241385 (3 and 9 mg/kg) given acutely, or CSC (1 mg/kg) and ZM 241385 (3 mg/kg) given repeatedly, increased the production of hydroxyl radicals in dialysates from rat striatum. Both acute and repeated administration of CSC (0.1 and 1 mg/kg) and ZM 241385 (3 mg/kg) decreased L: -DOPA-induced generation of hydroxyl radicals. However, a high single dose of either CSC (5 mg/kg) and ZM 241385 (9 mg/kg) markedly potentiated the effect of L: -DOPA on hydroxyl radical production. The increase in hydroxyl radical production by acute and chronic injection of CSC and ZM 241385 may be related to the increased release of dopamine (DA) and its metabolism in striatal dialysates. Similarly, increased DA release following a single high dose of CSC or ZM 241385 appears to be responsible for augmentation of L: -DOPA-induced hydroxyl radical formation. Conversely, the inhibition of L: -DOPA-induced production of hydroxyl radical by single and repeated low doses of CSC or repeated low doses of ZM 241385 may be related to reduced DA metabolism. Summing up, A(2A) antagonists, used as a supplement of L: -DOPA therapy, depending on the dose used, may have a beneficial or adverse effect on ongoing neurodegenerative processes and accompanying oxidative stress.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Kraków 31-343, Poland.
| | | | | | | |
Collapse
|
10
|
Aguiar LM, Macêdo DS, Vasconcelos SM, Oliveira AA, de Sousa FCF, Viana GS. CSC, an adenosine A2A receptor antagonist and MAO B inhibitor, reverses behavior, monoamine neurotransmission, and amino acid alterations in the 6-OHDA-lesioned rats. Brain Res 2008; 1191:192-9. [DOI: 10.1016/j.brainres.2007.11.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 11/18/2007] [Accepted: 11/23/2007] [Indexed: 11/27/2022]
|
11
|
Pérez V, Sosti V, Rubio A, Barbanoj M, Rodríguez-Alvarez J, Kulisevsky J. Modulation of the motor response to dopaminergic drugs in a parkinsonian model of combined dopaminergic and noradrenergic degeneration. Eur J Pharmacol 2007; 576:83-90. [PMID: 17888901 DOI: 10.1016/j.ejphar.2007.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 08/10/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Besides dopaminergic deficiency, other neurotransmitter systems such as noradrenergic nuclei are affected in Parkinson's disease. Locus coeruleus degeneration might influence the response to dopamine replacement and the presence of long-term complications such as dyskinesias. In this scenario of noradrenergic and dopaminergic neurodegeneration, behavioural effects induced by dopaminergic-interacting drugs are incompletely known. We investigated whether noradrenergic lesion modulates the levodopa (l-DOPA) response and modifies the response to adenosine antagonists and its interaction with l-DOPA. We examined the motor behaviour induced by: 1) subthreshold doses of l-DOPA (2mg/kg, i.p.), 2) the adenosine-receptor antagonist caffeine (10mg/kg), and 3) the combination of l-DOPA (2mg/kg) and caffeine (10mg/kg). Each study was done in two experimental conditions: a) rats with unilateral 6-OHDA lesion and b) rats with a lesion of the nigrostriatal pathway (6-OHDA) combined with selective denervation of locus coeruleus-noradrenergic terminal fields by N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4). While only 28% of the 6-OHDA-lesioned animals presented circling behaviour after l-DOPA challenge, all (100%) double-denervated animals rotated after the same l-DOPA dose (p<0.05). No statistical differences in the percentage of rotating animals were observed between single- and double-denervated rats after caffeine challenge. Combined l-DOPA-caffeine challenge produced rotational behaviour in all (100%) single- and double-denervated rats. No differences in total turns were observed between single- and double-denervated animals in each treatment condition. These findings suggest that additional noradrenergic denervation selectively decreases the motor threshold to l-DOPA treatment without modifying the magnitude or the pattern of the motor response to adenosinergic antagonism.
Collapse
Affiliation(s)
- Virgili Pérez
- Laboratori de Neuropsicofarmacologia, Institut de Recerca de l'Hospital de la Santa Creu i de Sant Pau, Avgda. St. Antoni M(a) Claret, 167, 08025 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Rodríguez M, Morales I, González-Mora JL, Gómez I, Sabaté M, Dopico JG, Rodríguez-Oroz MC, Obeso JA. Different levodopa actions on the extracellular dopamine pools in the rat striatum. Synapse 2007; 61:61-71. [PMID: 17117421 DOI: 10.1002/syn.20342] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Levodopa has been the mainstay treatment for Parkinson's disease for several decades, but the precise mechanism for its therapeutic action is still not well understood. To date, little distinction has been made between the effects of levodopa on the different brain DA pools. We studied the levodopa action on two extracellular DA pools: one was analyzed by microdialysis (often considered as indicative of volume transmission) and the other by in vivo amperometry during nigrostriatal cell stimulation (more indicative of neurotransmission). Levodopa administration induced a moderate (increased 200%) and tardy (began at 60 min) increase in the DA-pool measured by microdialysis, an effect that increased (increased 500%) and accelerated (began at 10 min) after DA-cell degeneration. Levodopa action on the DA-pool measured by amperometry was very fast (10 min) and prominent (increased 600%) in normal rats. The DA-denervated striatum showed a fast exhaustion during cell stimulation, which prevented further study of the levodopa effect on the DA amperometry-pool under this condition. This study suggests a different kinetic for levodopa action on the volume transmitter and neurotransmitter DA-pool, showing marked changes in levodopa action in the denervated striatum.
Collapse
Affiliation(s)
- M Rodríguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Milton SL, Lutz PL. Adenosine and ATP-sensitive potassium channels modulate dopamine release in the anoxic turtle (Trachemys scripta) striatum. Am J Physiol Regul Integr Comp Physiol 2005; 289:R77-83. [PMID: 15718391 DOI: 10.1152/ajpregu.00647.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive dopamine (DA) is known to cause hypoxic/ischemic damage to mammalian brain. The freshwater turtle Trachemys scripta, however, maintains basal striatal DA levels in anoxia. We investigated DA balance during early anoxia when energy status in the turtle brain is compromised. The roles of ATP-sensitive potassium (K(ATP)) channels and adenosine (AD) receptors were investigated as these factors affect DA balance in mammalian neurons. Striatal extracellular DA was determined by microdialysis with HPLC in the presence or absence of the specific DA transport blocker GBR-12909, the K(ATP) blocker 2,3-butanedione monoxime, or the nonspecific AD receptor blocker theophylline. We found that in contrast to long-term anoxia, blocking DA reuptake did not significantly increase extracellular levels in 1-h anoxic turtles. Low DA levels in early anoxia were maintained instead by activation of K(ATP) channels and AD receptors. Blocking K(ATP) resulted in a 227% increase in extracellular DA in 1-h anoxic turtles but had no effect after 4 h of anoxia. Similarly, blocking AD receptors increased DA during the first hour of anoxia but did not change DA levels at 4-h anoxia. Support for the role of K(ATP) channels in DA balance comes from normoxic animals treated with K(ATP) opener; infusing diazoxide but not adenosine into the normoxic turtle striatum resulted in an immediate DA decrease to 14% of basal values within 1.5 h. Alternative strategies to maintain low extracellular levels may prevent catastrophic DA increases when intracellular energy is compromised while permitting the turtle to maintain a functional neuronal network during long-term anoxia.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA.
| | | |
Collapse
|
14
|
Gołembiowska K, Dziubina A. Striatal adenosine A(2A) receptor blockade increases extracellular dopamine release following l-DOPA administration in intact and dopamine-denervated rats. Neuropharmacology 2004; 47:414-26. [PMID: 15275831 DOI: 10.1016/j.neuropharm.2004.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 03/30/2004] [Accepted: 04/22/2004] [Indexed: 11/22/2022]
Abstract
The influence of the selective adenosine A(2A) receptor antagonist ZM 241385 on exogenous l-DOPA-derived dopamine (DA) release in intact and dopamine-denervated rats was studied using an in vivo microdialysis in freely moving animals. Local infusion of l-DOPA (2.5 microM) produced a marked increase in striatal extracellular DA level in intact and malonate-lesioned rats. Intrastriatal perfusion of ZM 241385 (50-100 microM) had no effect on basal extracellular DA level, but enhanced dose-dependently the l-DOPA-induced DA release in intact and malonate-lesioned animals. A non-selective adenosine A(2A) receptor antagonist DMPX (100 microM), similarly to ZM 241385, accelerated conversion of l-DOPA in intact and malonate-denervated rats. This effect was not produced by the adenosine A(1) receptor antagonist, CPX (10-50 microM). However, ZM 241385 did not affect the l-DOPA-induced DA release in rats pretreated with reserpine (5 mg/kg i.p.) and alpha-methyl-p-tyrosine (AMPT, 300 mg/kg i.p.). Obtained results indicate that blockade of striatal adenosine A(2A) receptors increases the l-DOPA-derived DA release possibly by indirect mechanism exerted on DA terminals, an effect dependent on striatal tyrosine hydroxylase activity. Selective antagonists of adenosine A(2A) receptors may exert a beneficial effect at early stages of Parkinson's disease by enhancing the therapeutic efficacy of l-DOPA applied exogenously.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31343 Krakow, Poland.
| | | |
Collapse
|