1
|
Abstract
MicroRNAs are a family of small noncoding ribonucleic acids involved in regulation of gene activity. They have been implicated in both normal cellular pathways related to proliferation, differentiation, and apoptosis and pathological processes leading to disease. It is believed that better understanding of their structure and function will shed more light on a number of cellular functions while at the same time providing the basis for development of novel therapeutic applications. That is why identification and quantification of miRNAs are of great scientific interest. Several techniques have been developed which allow accurate, fast, and easy detection of these RNA species. This chapter focuses on in situ hybridization (ISH), a method which combines identification of miRNAs with histochemistry (ICH). We describe in detail a protocol for ISH in formalin-fixed paraffin-embedded tissue with the help of synthetic nonradioactive LNA oligonucleotide probes.
Collapse
|
2
|
Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations. Brain Struct Funct 2014; 220:3413-34. [DOI: 10.1007/s00429-014-0864-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023]
|
3
|
Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RAD, Sutton SW, Gundlach AL. Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol 2010; 518:4016-45. [PMID: 20737598 DOI: 10.1002/cne.22442] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Relaxin-3 (RLN3) and its native receptor, relaxin family peptide 3 receptor (RXFP3), constitute a newly identified neuropeptide system enriched in mammalian brain. The distribution of RLN3/RXFP3 networks in rat brain and recent experimental studies suggest a role for this system in modulation of arousal, stress, metabolism, and cognition. In order to facilitate exploration of the biology of RLN3/RXFP3 in complementary murine models, this study mapped the neuroanatomical distribution of the RLN3/RXFP3 system in mouse brain. Adult, male wildtype and RLN3 knock-out (KO)/LacZ knock-in (KI) mice were used to map the central distribution of RLN3 gene expression and RLN3-like immunoreactivity (-LI). The distribution of RXFP3 mRNA and protein was determined using [(35)S]-oligonucleotide probes and a radiolabeled RXFP3-selective agonist ([(125)I]-R3/I5), respectively. High densities of neurons expressing RLN3 mRNA, RLN3-associated beta-galactosidase activity and RLN3-LI were detected in the nucleus incertus (or nucleus O), while smaller populations of positive neurons were observed in the pontine raphé, the periaqueductal gray and a region adjacent to the lateral substantia nigra. RLN3-LI was observed in nerve fibers/terminals in nucleus incertus and broadly throughout the pons, midbrain, hypothalamus, thalamus, septum, hippocampus, and neocortex, but was absent in RLN3 KO/LacZ KI mice. This RLN3 neural network overlapped the regional distribution of RXFP3 mRNA and [(125)I]-R3/I5 binding sites in wildtype and RLN3 KO/LacZ KI mice. These findings provide further evidence for the conserved nature of RLN3/RXFP3 systems in mammalian brain and the ability of RLN3/RXFP3 signaling to modulate "behavioral state" and an array of circuits involved in arousal, stress responses, affective state, and cognition.
Collapse
Affiliation(s)
- Craig M Smith
- Florey Neuroscience Institutes, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
4
|
High brain lactate is a hallmark of aging and caused by a shift in the lactate dehydrogenase A/B ratio. Proc Natl Acad Sci U S A 2010; 107:20087-92. [PMID: 21041631 DOI: 10.1073/pnas.1008189107] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes.
Collapse
|
5
|
Cremer CM, Cremer M, Escobar JL, Speckmann EJ, Zilles K. Fast, quantitative in situ hybridization of rare mRNAs using 14C-standards and phosphorus imaging. J Neurosci Methods 2009; 185:56-61. [PMID: 19761793 DOI: 10.1016/j.jneumeth.2009.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 11/18/2022]
Abstract
The use of radiolabelled probes for in situ hybridization (ISH) bears the advantage of high sensitivity and quantifiability. The crucial disadvantages are laborious hybridization protocols, exposition of hybridized sections to film for up to several weeks and the time consuming need to prepare tissue standards with relatively short-lived isotopes like (33)P or (35)S for each experiment. The quantification of rare mRNAs like those encoding for subunits of neurotransmitter receptors is therefore a challenge in ISH. Here, we describe a method for fast, quantitative in situ hybridization (qISH) of mRNAs using (33)P-labelled oligonucleotides together with (14)C-polymer standards (Microscales, Amersham Biosciences) and a phosphorus imaging system (BAS 5000 BioImage Analyzer, Raytest-Fuji). It enables a complete analysis of rare mRNAs by ISH. The preparation of short-lived (33)P-standards for each experiment was replaced by co-exposition and calibration of long-lived (14)C-standards together with (33)P-labelled brain paste standards. The use of a phosphorus imaging system allowed a reduction of exposition time following hybridization from several weeks to a few hours or days. We used this approach as an example for applications to quantify the expression of GluR1 and GluR2 subunit mRNAs of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor in the hippocampus of untreated rats, and after intraperitoneal application of the organo-arsenic compound dimethyl arsenic acid.
Collapse
Affiliation(s)
- Christian M Cremer
- Institute for Neuroscience and Medicine (INM-2), Research Center Jülich, Jülich, Germany.
| | | | | | | | | |
Collapse
|
6
|
Banerjee A, Shen PJ, Ma S, Bathgate RAD, Gundlach AL. Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology 2009; 58:145-55. [PMID: 19560474 DOI: 10.1016/j.neuropharm.2009.06.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 11/29/2022]
Abstract
Relaxin-3 (RLX3), a newly identified member of the relaxin peptide family, is distinguished by its enriched expression in GABA projection neurons of the pontine nucleus incertus (NI), which are postulated to participate in forebrain neural circuits involved in behavioural activation and stress responses. In this regard, corticotrophin-releasing factor-1 receptor (CRF(1)) is abundantly expressed by NI neurons; central CRF administration activates c-fos expression in NI; and various stressors have been reported to increase NI neuron activity. In studies to determine whether a specific neurogenic stressor would activate RLX3 expression, we assessed the effect of a repeated forced swim (RFS) on levels of RLX3 mRNA and heteronuclear (hn) RNA in rat NI by in situ hybridization histochemistry of exon- and intron-directed oligonucleotide probes, respectively. Exposure of rats to an RFS (10 min at 23 degrees C, 24 h apart), markedly increased RLX3 mRNA levels in NI at 30-60 min after the second swim, before a gradual return to basal levels over 2-4 h, while RLX3 hnRNA levels were significantly up-regulated at 60-120 min post-RFS, following a transient decrease at 30 min. Systemic treatment of rats with a CRF(1) antagonist, antalarmin (20 mg/kg, i.p.) 30 min prior to the second swim, blunted the stress-induced effects on RLX3 transcripts. Relative levels of RLX3-immunostaining in NI neurons appeared elevated at 3 h post-swim, but not at earlier time points (30-60 min). These results suggest that acute stress-induced CRF secretion can rapidly alter RLX3 gene transcription by activation of CRF(1) present on NI neurons. More generally, these studies support a role for RLX3 neural networks in the normal neural and physiological response to neurogenic stressors in the rat.
Collapse
Affiliation(s)
- Avantika Banerjee
- Florey Neuroscience Institutes, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
7
|
Tomasetti C, Dell’Aversano C, Iasevoli F, de Bartolomeis A. Homer splice variants modulation within cortico-subcortical regions by dopamine D2 antagonists, a partial agonist, and an indirect agonist: Implication for glutamatergic postsynaptic density in antipsychotics action. Neuroscience 2007; 150:144-58. [DOI: 10.1016/j.neuroscience.2007.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/14/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
|
8
|
Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ. Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci 2007; 31:47-58. [PMID: 17416969 DOI: 10.1007/bf02686117] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 11/30/1999] [Accepted: 06/03/2006] [Indexed: 12/15/2022]
Abstract
Although protein phosphorylation has been characterized more extensively, modulation of the acetylation state of signaling molecules is now being recognized as a key means of signal transduction. The enzymes responsible for mediating these changes include histone acetyl transferases and histone deacetylases (HDACs). Members of the HDAC family of enzymes have been identified as potential therapeutic targets for diseases ranging from cancer to ischemia and neurodegeneration. We initiated a project to conduct comprehensive gene expression mapping of the 11 HDAC isoforms (HDAC1-11) (classes I, II, and IV) throughout the rat brain using high-resolution in situ hybridization (ISH) and imaging technology. Internal and external data bases were employed to identify the appropriate rat sequence information for probe selection. In addition, immunohistochemistry was performed on these samples to separately examine HDAC expression in neurons, astrocytes, oligodendrocytes, and endothelial cells in the CNS. This double-labeling approach enabled the identification of specific cell types in which the individual HDACs were expressed. The signals obtained by ISH were compared to radiolabeled standards and thereby enabled semiquantitative analysis of individual HDAC isoforms and defined relative levels of gene expression in >50 brain regions. This project produced an extensive atlas of 11 HDAC isoforms throughout the rat brain, including cell type localization, providing a valuable resource for examining the roles of specific HDACs in the brain and the development of future modulators of HDAC activity.
Collapse
|
9
|
Yue C, Mutsuga N, Scordalakes EM, Gainer H. Studies of oxytocin and vasopressin gene expression in the rat hypothalamus using exon- and intron-specific probes. Am J Physiol Regul Integr Comp Physiol 2005; 290:R1233-41. [PMID: 16357095 DOI: 10.1152/ajpregu.00709.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To develop a comprehensive approach for the study of oxytocin (OT) and vasopressin (VP) gene expression in the rat hypothalamus, we first developed an intronic riboprobe to measure OT heteronuclear RNA (hnRNA) levels by in situ hybridization histochemistry (ISHH). Using this 84-bp riboprobe, directed against intron 2 of the OT gene, we demonstrate strong and specific signals in neurons confined to the supraoptic (SON) and paraventricular (PVN) nuclei of the rat hypothalamus. We used this new intronic OT probe, together with other well-established intronic and exonic OT and VP probes, to reevaluate OT and VP gene expression in the hypothalamus under two classical physiological conditions, acute osmotic stimulation, and lactation. We found that magnocellular neurons in 7- to 8-day lactating female rats exhibit increased OT but not VP hnRNA. Since VP mRNA is increased during lactation, this suggests that decreased VP mRNA degradation during lactation may be responsible for this change. In contrast, whereas there was the expected large increase in VP hnRNA after acute salt loading, there was no change in OT hnRNA, suggesting that acute hyperosmotic stimuli produce increased VP but not OT gene transcription. Hence, the use of both exon- and intron-specific probes, which distinguish the changes in hnRNA and mRNA levels, respectively, can provide insight into the relative roles of transcription and mRNA degradation processes in changes in gene expression evoked by physiological stimuli.
Collapse
Affiliation(s)
- Chunmei Yue
- Molecular Neuroscience Section, Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
10
|
Nédélec S, Foucher I, Brunet I, Bouillot C, Prochiantz A, Trembleau A. Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons. Proc Natl Acad Sci U S A 2004; 101:10815-20. [PMID: 15247416 PMCID: PMC490017 DOI: 10.1073/pnas.0403824101] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report that Emx2 homeogene is expressed at the mRNA and protein levels in the adult mouse olfactory neuroepithelium. As expected for a transcription factor, Emx2 is present in the nucleus of immature and mature olfactory sensory neurons. However, the protein is also detected in the axonal compartment of these neurons, both in the olfactory mucosa axon bundles and in axon terminals within the olfactory bulb. Emx2 axonal staining is heterogeneous, suggesting an association with particles. Subcellular fractionations of olfactory bulb synaptosomes, combined with chemical lesions of olfactory neurons, confirm the presence of Emx2 in axon terminals. Significant amounts of Emx2 protein cosediment with high density synaptosomal subfractions containing eukaryotic translation initiation factor 4E (eIF4E). Nonionic detergents and RNase treatments failed to detach eIF4E and Emx2 from these high-density fractions enriched in vesicles and granular structures. In addition, Emx2 and eIF4E can be coimmunoprecipitated from olfactory mucosa and bulb extracts and interact directly, as demonstrated in pull-down experiments. Emx2 axonal localization, association with high-density particles and interaction with eIF4E strongly suggest that this transcription factor has new nonnuclear functions most probably related to the local control of protein translation in the olfactory sensory neuron axons. Finally, we show that two other brain-expressed homeoproteins, Otx2 and Engrailed 2, also bind eIF4E, indicating that several homeoproteins may modulate eIF4E functions in the developing and adult nervous system.
Collapse
Affiliation(s)
- Stéphane Nédélec
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8542, Neuropharmacology and Development, Ecole Normale Supérieure, 46 Rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|