1
|
Sadeghi M, Manaheji H, Zaringhalam J, Haghparast A, Nazemi S, Bahari Z, Noorbakhsh SM. Evaluation of the GABAA Receptor Expression and the Effects of Muscimol on the Activity of Wide Dynamic Range Neurons Following Chronic Constriction Injury of Sciatic Nerve in Rats. Basic Clin Neurosci 2021; 12:651-666. [PMID: 35173919 PMCID: PMC8818116 DOI: 10.32598/bcn.2021.1726.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/05/2020] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction The modality of γ-aminobutyric acid type a receptors (GABAA) controls dorsal horn neuronal excitability and inhibits sensory information. This study aimed to investigate the expression of the GABAA receptor and the effects of its agonist muscimol on Wide Dynamic Range (WDR) neuronal activity in the Chronic Constriction Injury (CCI) model of neuropathic pain. Methods Adult male Wistar rats weighing 200 to 250 g were used to induce CCI neuropathy. Fourteen days after surgery, muscimol (0.5, 1, and 2 mg/kg IP) was injected. Then, the behavioral tests were performed. After that, the animals were killed, and the lumbar segments of the spinal cords were collected for Western blot analysis of the GABAA receptor α1 subunit expression. The electrophysiological properties of WDR neurons were studied by single-unit recordings in separate groups 14 days after CCI. Results The outcomes indicated the development of thermal hyperalgesia and mechanical allodynia after neuropathy; nonetheless, the expression of the GABAA receptor α1 subunit did not change significantly. Moreover, the evoked responses of the WDR neurons to electrical, mechanical, and thermal stimuli increased considerably. Fourteen days after CCI, muscimol administration decreased thermal hyperalgesia, mechanical allodynia, and hyper-responsiveness of the WDR neurons in CCI rats. Conclusion The modulation of the spinal GABAA receptors after nerve injury can offer further insights to design new therapeutic agents to reduce neuropathic pain symptoms.
Collapse
Affiliation(s)
- Mehdi Sadeghi
- Department of Physiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samad Nazemi
- Department of Physiology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Noorbakhsh
- Department of Physiology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
3
|
Wang Y, Lu YF, Li CL, Sun W, Li Z, Wang RR, He T, Yang F, Yang Y, Wang XL, Guan SM, Chen J. Involvement of Rac1 signalling pathway in the development and maintenance of acute inflammatory pain induced by bee venom injection. Br J Pharmacol 2016; 173:937-50. [PMID: 26700000 DOI: 10.1111/bph.13413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The Rho GTPase, Rac1, is involved in the pathogenesis of neuropathic pain induced by malformation of dendritic spines in the spinal dorsal horn (sDH) neurons. In the present study, the contribution of spinal Rac1 to peripheral inflammatory pain was studied. EXPERIMENTAL APPROACH Effects of s.c. bee venom (BV) injection on cellular localization of Rac1 in the rat sDH was determined with double labelling immunofluorescence. Activation of Rac1 and its downstream effector p21-activated kinase (PAK), ERKs and p38 MAPK in inflammatory pain states was evaluated with a pull-down assay and Western blotting. The preventive and therapeutic analgesic effects of intrathecal administration of NSC23766, a selective inhibitor of Rac1, on BV-induced spontaneous nociception and pain hypersensitivity were investigated. KEY RESULTS Rac1 labelling was mainly localized within neurons in both the superficial and deep layers of the sDH in rats of naïve, vehicle-treated and inflamed (BV injected) groups. GTP-Rac1-PAK and ERKs/p38 were activated following s.c. BV injection. Post-treatment with intrathecal NSC23766 significantly inhibited GTP-Rac1 activity and phosphorylation of Rac1-PAK, ERKs and p38 MAPK in the sDH. Both pre-treatment and post-treatment with intrathecal NSC23766 dose-dependently attenuated the paw flinches, primary thermal and mechanical hyperalgesia and the mirror-image thermal hyperalgesia induced by BV injection, but without affecting the baseline pain sensitivity and motor coordination. CONCLUSIONS AND IMPLICATIONS The spinal GTP-Rac1-PAK-ERK/p38MAPK signalling pathway is involved in both the development and maintenance of peripheral inflammatory pain and can be used as a potential molecular target for developing a novel therapeutic strategy for clinical pain.
Collapse
Affiliation(s)
- Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Yun-Fei Lu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Zhen Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Ting He
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Fan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China
| | - Su-Min Guan
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
7
|
Chen J, Lariviere WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 2010; 92:151-83. [PMID: 20558236 DOI: 10.1016/j.pneurobio.2010.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/31/2010] [Accepted: 06/08/2010] [Indexed: 12/23/2022]
Abstract
Bee venom injection as a therapy, like many other complementary and alternative medicine approaches, has been used for thousands of years to attempt to alleviate a range of diseases including arthritis. More recently, additional theraupeutic goals have been added to the list of diseases making this a critical time to evaluate the evidence for the beneficial and adverse effects of bee venom injection. Although reports of pain reduction (analgesic and antinociceptive) and anti-inflammatory effects of bee venom injection are accumulating in the literature, it is common knowledge that bee venom stings are painful and produce inflammation. In addition, a significant number of studies have been performed in the past decade highlighting that injection of bee venom and components of bee venom produce significant signs of pain or nociception, inflammation and many effects at multiple levels of immediate, acute and prolonged pain processes. This report reviews the extensive new data regarding the deleterious effects of bee venom injection in people and animals, our current understanding of the responsible underlying mechanisms and critical venom components, and provides a critical evaluation of reports of the beneficial effects of bee venom injection in people and animals and the proposed underlying mechanisms. Although further studies are required to make firm conclusions, therapeutic bee venom injection may be beneficial for some patients, but may also be harmful. This report highlights key patterns of results, critical shortcomings, and essential areas requiring further study.
Collapse
Affiliation(s)
- Jun Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Baqiao District, Xi'an 710038, PR China.
| | | |
Collapse
|