1
|
Day M, Gibb R, Kolb B. Tactile stimulation facilitates functional recovery and dendritic change following neonatal hemidecortication in rats. Behav Brain Res 2023; 452:114582. [PMID: 37454933 DOI: 10.1016/j.bbr.2023.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
After large neocortical lesions, such as hemidecortication, children can show significant motor and cognitive impairments. It thus is of considerable interest to identify treatments that might enhance long-term functional outcome. We have previously shown that tactile stimulation enhances recovery from perinatal focal cortical lesions in rats, so the goal of the present experiment was to explore the effectiveness of postlesion tactile stimulation in reducing functional deficits associated with neonatal hemidecortication. Rats were given hemidecortications on postnatal day 10 (P10). Half of the group was then exposed to a daily tactile stimulation treatment for 15 min, three times a day for eleven days following the surgery. All groups were then tested on a number of behavioural tasks (Morris water task, skilled reaching, forelimb placing during spontaneous vertical exploration, and a sunflower seed opening task) beginning at P 120. The brains of the male animals were prepared for Golgi-Cox staining and subsequent analysis of dendritic arborisation and spine density. There were two main findings in this experiment: 1) Tactile stimulation improved cognitive ability and some motor performance after P 10 hemidecortication; and, 2) Tactile stimulation altered cortical organization after P10 hemidecortication. Tactile stimulation may provide an important noninvasive therapy after hemispherectomy in children.
Collapse
Affiliation(s)
- Morgan Day
- Dept of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robbin Gibb
- Dept of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Bryan Kolb
- Dept of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
2
|
Hossain SR, Karem H, Jafari Z, Kolb BE, Mohajerani MH. Tactile stimulation improves cognition, motor, and anxiety-like behaviors and attenuates the Alzheimer's disease pathology in adult APP NL-G-F/NL-G-F mice. Synapse 2023; 77:e22257. [PMID: 36255152 DOI: 10.1002/syn.22257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is one of the largest health crises in the world. There are limited pharmaceutical interventions to treat AD, however, and most of the treatment options are not for cure or prevention, but rather to slow down the progression of the disease. The aim of this study was to examine the effect of tactile stimulation (TS) on AD-like symptoms and pathology in APPNL-G-F/NL-G-F mice, a mouse model of AD. The results show that TS reduces the AD-like symptoms on tests of cognition, motor, and anxiety-like behaviors and these improvements in behavior are associated with reduced AD pathology in APP mice. Thus, TS appears to be a promising noninvasive strategy for slowing the onset of dementia in aging animals.
Collapse
Affiliation(s)
- Shakhawat R Hossain
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
3
|
Fernandez-Teruel A. The power of "touch" and early enriched stimulation: neuroplasticity effects in rodents and preterm infants. Neural Regen Res 2021; 17:1248-1250. [PMID: 34782558 PMCID: PMC8643065 DOI: 10.4103/1673-5374.327336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alberto Fernandez-Teruel
- Department of Psychiatry and Forensic Medicine & Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Taschetto Vey L, Zuquetto Rosa H, Cristine Silva Barcelos R, Tironi Dias V, Izabel Ugalde Marques da Rocha M, Escobar Burger M. Neonatal handling increases neurogenesis, BDNF and GR in the hippocampus favoring memory acquisition in rats. Brain Res 2020; 1745:146921. [PMID: 32505752 DOI: 10.1016/j.brainres.2020.146921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/01/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Early life is a critical period for the development of the central nervous system (CNS) when the brain undergoes functional organization, neuronal proliferation and migration. This study aimed to evaluate influences and possible interactions of the neonatal handling (NH) on morphologic, biochemical and molecular markers in the hippocampus, as well as on Mu opioid receptors (MOR) immunoreactivity when adolescent rats were exposed to morphine. On postnatal day (PND) 1, male pups were assigned to two experimental groups: unhandled (UH) or neonatal handling (NH), whose procedure was applied from PND2 to PND9. On PND 50, animals were submitted to memory behavioral test, anesthesia and euthanasia for blood collection and hippocampus removal. Animals exposed to NH showed: i) increased levels of proBDNF and brain-derived neurotrophic factor (BDNF); ii) increased memory performance; iii) decreased lipid peroxidation (LP) in plasma and hippocampus; iv) increased antioxidant defenses; v) increased glucocorticoids receptor (GR) levels. Interestingly, our data showed a positive correlation between BDNF and working memory after NH procedure (r2 = 0.73; P = 0.006). Animals submitted to NH showed an increased per se of MOR immunoreactivity regardless of morphine exposure, while this increasing was also observed in the UH group after morphine exposure, even in a small extent. NH beneficial influence during early stage of life can be reflected during the development of the puppies, enhancing memory performance, preventing oxidative events and improving molecular targets in hippocampus. Further experimental studies in addition to clinical ones are needed to validate NH protocol as a therapeutic tool.
Collapse
Affiliation(s)
- Luciana Taschetto Vey
- Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | | | | | | | - Maria Izabel Ugalde Marques da Rocha
- Programa de Pós Graduação em Farmacologia, UFSM, Santa Maria, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, Santa Maria, RS, Brazil
| | - Marilise Escobar Burger
- Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil; Programa de Pós Graduação em Farmacologia, UFSM, Santa Maria, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Halis H, Bitiktaş S, Baştuğ O, Tan B, Kavraal Ş, Güneş T, Süer C. Differential Effects of Pentoxifylline on Learning and Memory Impairment Induced by Hypoxic-ischemic Brain Injury in Rats. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:388-399. [PMID: 31352705 PMCID: PMC6705102 DOI: 10.9758/cpn.2019.17.3.388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/10/2023]
Abstract
Objective Hypoxic-ischemic (HI) brain injury in the human perinatal period often leads to significant long-term neurobehavioral dysfunction in the cognitive and sensory-motor domains. Using a neonatal HI injury model (unilateral carotid ligation followed by hypoxia) in postnatal day seven rats, the present study investigated the long-term effects of HI and potential behavioral protective effect of pentoxifylline. Methods Seven-day-old rats underwent right carotid ligation, followed by hypoxia (FiO2 = 0.08). Rats received pentoxifylline immediately after and again 2 hours after hypoxia (two doses, 60‒100 mg/kg/dose), or serum physiologic. Another set of seven-day-old rats was included to sham group exposed to surgical stress but not ligated. These rats were tested for spatial learning and memory on the simple place task in the Morris water maze from postnatal days 77 to 85. Results HI rats displayed significant tissue loss in the right hippocampus, as well as severe spatial memory deficits. Low-dose treatment with pentoxifylline resulted in significant protection against both HI-induced hippocampus tissue losses and spatial memory impairments. Beneficial effects are, however, negated if pentoxifylline is administered at high dose. Conclusion These findings indicate that unilateral HI brain injury in a neonatal rodent model is associated with cognitive deficits, and that low dose pentoxifylline treatment is protective against spatial memory impairment.
Collapse
Affiliation(s)
- Hülya Halis
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Soner Bitiktaş
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Osman Baştuğ
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Burak Tan
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Şehrazat Kavraal
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tamer Güneş
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Cem Süer
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Muntsant A, Shrivastava K, Recasens M, Giménez-Llort L. Severe Perinatal Hypoxic-Ischemic Brain Injury Induces Long-Term Sensorimotor Deficits, Anxiety-Like Behaviors and Cognitive Impairment in a Sex-, Age- and Task-Selective Manner in C57BL/6 Mice but Can Be Modulated by Neonatal Handling. Front Behav Neurosci 2019; 13:7. [PMID: 30814939 PMCID: PMC6381068 DOI: 10.3389/fnbeh.2019.00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Perinatal brain injury (PBI) leads to neurological disabilities throughout life, from motor deficits, cognitive limitations to severe cerebral palsy. Yet, perinatal brain damage has limited therapeutic outcomes. Besides, the immature brain of premature children is at increased risk of hypoxic/ischemic (HI) injury, with males being more susceptible to it and less responsive to protective/therapeutical interventions. Here, we model in male and female C57BL/6 mice, the impact of neonatal HI and the protective effects of neonatal handling (NH), an early life tactile and proprioceptive sensory stimulation. From postnatal day 1 (PND1, modeling pre-term) to PND21 randomized litters received either NH or left undisturbed. HI brain damage occurred by permanent left carotid occlusion followed by hypoxia at PND7 (modeling full-term) in half of the animals. The behavioral and functional screening of the pups at weaning (PND23) and their long-term outcomes (adulthood, PND70) were evaluated in a longitudinal study, as follows: somatic development (weight), sensorimotor functions (reflexes, rods and hanger tests), exploration [activity (ACT) and open-field (OF) test], emotional and anxiety-like behaviors [corner, open-field and dark-light box (DLB) tests], learning and memory [T-maze (TM) and Morris Water-Maze (MWM)]. HI induced similar brain damage in both sexes but affected motor development, sensorimotor functions, induced hyperactivity at weaning, and anxiety-like behaviors and cognitive deficits at adulthood, in a sex- and age-dependent manner. Thus, during ontogeny, HI affected equilibrium especially in females and prehensility in males, but only reflexes at adulthood. Hyperactivity of HI males was normalized at adulthood. HI increased neophobia and other anxiety-like behaviors in males but emotionality in females. Both sexes showed worse short/long-term learning, but memory was more affected in males. Striking neuroprotective effects of NH were found, with significantly lower injury scores, mostly in HI males. At the functional level, NH reversed the impaired reflex responses and improved memory performances in hippocampal-dependent spatial-learning tasks, especially in males. Finally, neuropathological correlates referred to atrophy, neuronal densities and cellularity in the affected areas [hippocampal-CA, caudate/putamen, thalamus, neocortex and corpus callosum (CC)] point out distinct neuronal substrates underlying the sex- and age- functional impacts of these risk/protection interventions on sensorimotor, behavioral and cognitive outcomes from ontogeny to adulthood.
Collapse
Affiliation(s)
- Aida Muntsant
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kalpana Shrivastava
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Recasens
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology & Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Severe Hyperhomocysteinemia Decreases Creatine Kinase Activity and Causes Memory Impairment: Neuroprotective Role of Creatine. Neurotox Res 2017; 32:585-593. [DOI: 10.1007/s12640-017-9767-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 12/26/2022]
|
8
|
Antoniazzi CTD, Metz VG, Roversi K, Freitas DL, Vey LT, Dias VT, Segat HJ, Duarte MMMF, Burger ME. Tactile stimulation during different developmental periods modifies hippocampal BDNF and GR, affecting memory and behavior in adult rats. Hippocampus 2016; 27:210-220. [PMID: 27874237 DOI: 10.1002/hipo.22686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/20/2016] [Accepted: 11/20/2016] [Indexed: 12/27/2022]
Abstract
Recent studies have shown that tactile stimulation (TS) in pups is able to prevent and/or minimize fear, anxiety behaviors, and addiction to psychostimulant drugs in adult rats. In these studies, animals have been exposed to handling from postnatal day (PND) 1-21. This study was designed to precisely establish which period of preweaning development has a greater influence of TS on neuronal development. After birth, male pups were exposed to TS from PND1-7, PND8-14, and PND15-21. In adulthood, the different periods of postnatal TS were assessed through behavioral, biochemical, and molecular assessments. Animals that received TS from PND8-14 showed lower anxiety-like symptoms, as observed by decreased anxiety index in elevated plus maze. This same TS period was able to improve rats' working memory by increasing the percentage of alternation rate in Y-maze, and induce better ability to cope with stressful situations, as showed in the defensive burying test by a reduced time of burying behavior. On the other hand, animals receiving TS in the first week of life showed longest cumulative burying time, which is directly related to increased anxiety-like behavior. Moreover, TS from PND8-14 showed lower corticosterone levels and better oxidative status, as observed by decreased lipid peroxidation and increased catalase activity in the hippocampus. Brain-derived neurotrophic factor (BDNF) immunocontent was increased in the hippocampus of animals receiving TS from PND8-14, while glucocorticoid receptors immunocontent was decreased in both TS1-7 and TS15-21 , but not TS8-14 . To the best of our knowledge, this study is the first to show TS can be more efficient if applied over a focused period of neonatal development (PND8-14) and this beneficial influence can be reflected on reduced emotionality and increased ability to address stressful situations in adulthood. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caren T D Antoniazzi
- Programa de Pós-graduação em Farmacologia Universidade Federal de Santa Maria, RS, Brazil
| | - Vinícia G Metz
- Departamento de Fisiologia e Farmacologia Universidade Federal de Santa Maria, RS, Brazil
| | - Karine Roversi
- Programa de Pós-graduação em Farmacologia Universidade Federal de Santa Maria, RS, Brazil
| | - Daniele L Freitas
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica Universidade Federal de Santa Maria, RS, Brazil
| | - Luciana T Vey
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica Universidade Federal de Santa Maria, RS, Brazil
| | - Verônica T Dias
- Programa de Pós-graduação em Farmacologia Universidade Federal de Santa Maria, RS, Brazil
| | - Hecson J Segat
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica Universidade Federal de Santa Maria, RS, Brazil
| | | | - Marilise E Burger
- Programa de Pós-graduação em Farmacologia Universidade Federal de Santa Maria, RS, Brazil.,Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica Universidade Federal de Santa Maria, RS, Brazil
| |
Collapse
|
9
|
Dönmez RA, Candansayar S, Derinöz O, Gülbahar Ö, Bolay H. Adulthood behavioral and neurodevelopmental effects of being raised byan ambivalent mother in rats: what does not kill you makes you stronger. Turk J Med Sci 2016; 46:1546-1560. [PMID: 27966328 DOI: 10.3906/sag-1502-39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/13/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM This study aimed to investigate the effects of early adverse life events and being raised by an ambivalent mother on rats. MATERIALS AND METHODS The rats were separated into four groups: 1) the control group (n = 12), which was raised under standard care; 2) the early handling (EH) group, which was raised using an EH model (n = 16); 3) the early deprivation (ED) group, which was raised using an ED model (n = 13), and 4) the ambivalent mother (AM) group, which spent 3 h/day with a "fake mother" (n = 17). When they became adults, their anxiety levels, depressive-like behaviors, and memory functions were measured using the elevated plus maze test, the forced swim test, and the novel object recognition test, respectively. Their neurodevelopment was evaluated by measuring the brain-derived neurotrophic factor (BDNF) levels in the prefrontal cortex, the dentate gyrus, and the cerebellum via ELISA. RESULTS The rats in the ED and AM groups exhibited less anxiety and depressive-like behavior than those in the control and EH groups, particularly in females. There was no significant difference between the groups in memory function or brain BDNF levels. CONCLUSION Severe and ambivalent early adverse life events may decrease anxiety and depressive-like behavior in adult rats.
Collapse
Affiliation(s)
| | | | - Okşan Derinöz
- Department of Pediatric Emergency, Gazi University Hospital, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Medical Biochemistry, Gazi University Hospital, Ankara, Turkey
| | - Hayrunnisa Bolay
- Department of Neurology, Gazi University Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Marcelino TB, de Lemos Rodrigues PI, Klein CP, Santos BGD, Miguel PM, Netto CA, Silva LOP, Matté C. Behavioral benefits of maternal swimming are counteracted by neonatal hypoxia-ischemia in the offspring. Behav Brain Res 2016; 312:30-8. [PMID: 27283975 DOI: 10.1016/j.bbr.2016.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
Hypoxia-ischemia (HI) represents one of the most common causes of neonatal encephalopathy. The central nervous system injury comprises several mechanisms, including inflammatory, excitotoxicity, and redox homeostasis unbalance leading to cell death and cognitive impairment. Exercise during pregnancy is a potential therapeutic tool due to benefits offered to mother and fetus. Swimming during pregnancy elicits a strong metabolic programming in the offspring's brain, evidenced by increased antioxidant enzymes, mitochondrial biogenesis, and neurogenesis. This article aims to evaluate whether the benefits of maternal exercise are able to prevent behavioral brain injury caused by neonatal HI. Female adult Wistar rats swam before and during pregnancy (30min/day, 5 days/week, 4 weeks). At 7(th) day after birth, the offspring was submitted to HI protocol and, in adulthood (60(th) day), it performed the behavioral tests. It was observed an increase in motor activity in the open field test in HI-rats, which was not prevented by maternal exercise. The rats subjected to maternal swimming presented an improved long-term memory in the object recognition task, which was totally reversed by neonatal HI encephalopathy. BDNF brain levels were not altered; suggesting that HI or maternal exercise effects were BDNF-independent. In summary, our data suggest a beneficial long-term effect of maternal swimming, despite not being robust enough to protect from HI injury.
Collapse
Affiliation(s)
- Thiago Beltram Marcelino
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Caroline Peres Klein
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bernardo Gindri Dos Santos
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia Maidana Miguel
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira Silva
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Matté
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia. Neurosci Lett 2016; 617:101-7. [PMID: 26872850 DOI: 10.1016/j.neulet.2016.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
Our previous results demonstrated improved cognition in adolescent rats housed in environmental enrichment (EE) that underwent neonatal hypoxia-ischemia (HI). The aim of this study was to investigate the effects of early EE on neurobehavioral development and brain damage in rats submitted to neonatal HI. Wistar rats were submitted to the HI procedure on the 7th postnatal day (PND) and housed in an enriched environment (8th-20th PND). The maturation of physical characteristics and the neurological reflexes were evaluated and the volume of striatum, corpus callosum and neocortex was measured. Data analysis demonstrated a clear effect of EE on neurobehavioral development; also, daily performance was improved in enriched rats on righting, negative geotaxis and cliff aversion reflex. HI caused a transient motor deficit on gait latency. Brain atrophy was found in HI animals and this damage was partially prevented by the EE. In conclusion, early EE stimulated neurobehavioral development in neonate rats and also protects the neocortex and the corpus callosum from atrophy following HI. These findings reinforce the potential of EE as a strategy for rehabilitation following neonatal HI and provide scientific support to the use of this therapeutic strategy in the treatment of neonatal brain injuries in humans.
Collapse
|
12
|
Neonatal tactile stimulation decreases depression‐like and anxiety‐like behaviors and potentiates sertraline action in young rats. Int J Dev Neurosci 2015; 47:192-7. [DOI: 10.1016/j.ijdevneu.2015.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 01/03/2023] Open
|
13
|
Marcelino TB, de Lemos Rodrigues PI, Miguel PM, Netto CA, Pereira Silva LO, Matté C. Effect of maternal exercise on biochemical parameters in rats submitted to neonatal hypoxia-ischemia. Brain Res 2015; 1622:91-101. [DOI: 10.1016/j.brainres.2015.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/25/2023]
|
14
|
Vey LT, Rosa HZ, Barcelos RCS, Segat HJ, Metz VG, Dias VT, Duarte T, Duarte MMMF, Burger ME. Stress during the gestational period modifies pups' emotionality parameters and favors preference for morphine in adolescent rats. Behav Brain Res 2015; 296:408-417. [PMID: 26300452 DOI: 10.1016/j.bbr.2015.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 12/27/2022]
Abstract
Experimental animal studies have shown that early life periods are highly vulnerable to environmental factors, which may exert prolonged impact on HPA axis function and on subsequent neurochemical and behavioral responses in adulthood. Here we evaluated the influence of environmental stressful situations in two different early life stages on stress-related behaviors, and morphine-conditioned place preference (CPP), which is indicative of addiction. While in the gestational stress (Gest-S) dams were exposed to daily sessions of chronic mild stress (CMS) for 2 weeks, in the postnatal stress (post-NS) the offspring were exposed daily to neonatal isolation from postnatal day (PND) 2 to PND 9 for 60 min. Animals exposed to post-NS showed lesser anxiety in different behavioral paradigms (elevated plus maze-EPM and defensive burying test-DBT) as well as increased exploratory behavior (open-field task-OFT), and no preference for morphine in CPP. In contrast, animals exposed to Gest-S showed increased corticosterone plasma levels together with anxiety symptoms and greater preference for morphine following three days of drug withdrawal. Our findings indicate that the gestational period is critical for stress, whose effects may be manifest throughout life. On the other hand, post-NS can trigger neuroadaptations able to overcome emotional consequences of early life. We hypothesized that Gest-S is able to modify responses to opioids along adulthood, which may facilitate development of addiction to these drugs.
Collapse
Affiliation(s)
- Luciana Taschetto Vey
- Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Prédio 18, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Higor Zuquetto Rosa
- Departamento de Fisiologia e Farmacologia, UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Raquel Cristine Silva Barcelos
- Programa de Pós Graduação em Farmacologia UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Hecson Jesser Segat
- Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Prédio 18, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Vinícia Garzella Metz
- Departamento de Fisiologia e Farmacologia, UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Verônica Tironi Dias
- Programa de Pós Graduação em Farmacologia UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Thiago Duarte
- Programa de Pós Graduação em Farmacologia UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil
| | - Marta M M F Duarte
- Programa de Pós Graduação em Farmacologia UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil; Lutheran University of Brazil (ULBRA), Santa Maria, Brazil
| | - Marilise Escobar Burger
- Programa de Pós Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Prédio 18, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil; Programa de Pós Graduação em Farmacologia UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil; Departamento de Fisiologia e Farmacologia, UFSM, Av. Roraima, 1000, Prédio 21, Cidade Universitária, CEP 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Antoniazzi CT, Boufleur N, Dolci G, Roversi K, Kuhn F, Pase CS, Dias VT, Roversi K, Barcelos R, Benvegnú DM, Bürger ME. Influence of neonatal tactile stimulation on amphetamine preference in young rats: Parameters of addiction and oxidative stress. Pharmacol Biochem Behav 2014; 124:341-9. [DOI: 10.1016/j.pbb.2014.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/20/2014] [Accepted: 07/06/2014] [Indexed: 01/13/2023]
|
16
|
Zucchi FCR, Yao Y, Ilnytskyy Y, Robbins JC, Soltanpour N, Kovalchuk I, Kovalchuk O, Metz GAS. Lifetime stress cumulatively programs brain transcriptome and impedes stroke recovery: benefit of sensory stimulation. PLoS One 2014; 9:e92130. [PMID: 24651125 PMCID: PMC3961295 DOI: 10.1371/journal.pone.0092130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/18/2014] [Indexed: 12/24/2022] Open
Abstract
Prenatal stress (PS) represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1) if PS modulates recovery following cortical ischemia in adulthood; (2) if a second hit by adult stress (AS) exaggerates stress responses and ischemic damage; and (3) if tactile stimulation (TS) attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health.
Collapse
Affiliation(s)
- Fabíola C. R. Zucchi
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Departments of Medicine and Biological Sciences, University of Mato Grosso State, Cáceres, MT, Brazil
| | - Youli Yao
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jerrah C. Robbins
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Nasrin Soltanpour
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
17
|
Tactile stimulation and neonatal isolation affect behavior and oxidative status linked to cocaine administration in young rats. Behav Processes 2014; 103:297-305. [DOI: 10.1016/j.beproc.2014.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 11/19/2022]
|
18
|
Gu Q, Zhai L, Feng X, Chen J, Miao Z, Ren L, Qian X, Yu J, Li Y, Xu X, Liu CF. Apelin-36, a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway. Neurochem Int 2013; 63:535-40. [DOI: 10.1016/j.neuint.2013.09.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/17/2013] [Accepted: 09/22/2013] [Indexed: 01/08/2023]
|
19
|
Mychasiuk R, Gibb R, Kolb B. Visualizing the effects of a positive early experience, tactile stimulation, on dendritic morphology and synaptic connectivity with Golgi-cox staining. J Vis Exp 2013:e50694. [PMID: 24121525 PMCID: PMC3935738 DOI: 10.3791/50694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To generate longer-term changes in behavior, experiences must be producing stable changes in neuronal morphology and synaptic connectivity. Tactile stimulation is a positive early experience that mimics maternal licking and grooming in the rat. Exposing rat pups to this positive experience can be completed easily and cost-effectively by using highly accessible materials such as a household duster. Using a cross-litter design, pups are either stroked or left undisturbed, for 15 min, three times per day throughout the perinatal period. To measure the neuroplastic changes related to this positive early experience, Golgi-Cox staining of brain tissue is utilized. Owing to the fact that Golgi-Cox impregnation stains a discrete number of neurons rather than all of the cells, staining of the rodent brain with Golgi-Cox solution permits the visualization of entire neuronal elements, including the cell body, dendrites, axons, and dendritic spines. The staining procedure is carried out over several days and requires that the researcher pay close attention to detail. However, once staining is completed, the entire brain has been impregnated and can be preserved indefinitely for ongoing analysis. Therefore, Golgi-Cox staining is a valuable resource for studying experience-dependent plasticity.
Collapse
|
20
|
Motor Skill Training Promotes Sensorimotor Recovery and Increases Microtubule-Associated Protein-2 (MAP-2) Immunoreactivity in the Motor Cortex after Intracerebral Hemorrhage in the Rat. ISRN NEUROLOGY 2013; 2013:159184. [PMID: 23956876 PMCID: PMC3727191 DOI: 10.1155/2013/159184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/15/2013] [Indexed: 11/29/2022]
Abstract
Motor skill learning may induce behavioral and neurophysiological adaptations after intracerebral hemorrhage (ICH). Learning a new motor skill is associated with dendritic reorganization and requires protein synthesis and expression of MAP-2. The purpose of this study was to evaluate motor performance and expression of MAP-2 in the motor cortex of rats submitted to intracerebral hemorrhage model (ICH) and skill task training (SK) or unskilled training (US) during 4 weeks. The Staircase test was used for behavioral evaluation, and relative optical densities and morphometrical analysis were used to estimate MAP-2 immunoreactivity and parameters of brain tissue in both motor cortices. Results show that skill task training performed with the impaired forelimb was able to increase MAP-2 immunoreactivity in the motor cortex either in sham or in ICH groups in both cortices: ipsilesional [F(5,35) = 14.25 (P < 0.01)] and contralesional hemispheres [F(5,35) = 9.70 (P < 0.01)]. ICH alone also increased MAP-2 immunoreactivity despite the absence of functional gains. Behavioral evaluation revealed that ICH-SK group performed better than ICH and ICH-US animals in the Staircase test. Data suggest that motor skill training induces plastic modifications in both motor cortices, either in physiological or pathological conditions and that skill motor training produces higher brain plasticity and positive functional outcomes than unskilled training after experimental intracerebral hemorrhage.
Collapse
|
21
|
Boufleur N, Antoniazzi CTD, Pase CS, Benvegnú DM, Dias VT, Segat HJ, Roversi K, Roversi K, Nora MD, Koakoskia G, Rosa JG, Barcellos LJG, Bürger ME. Neonatal handling prevents anxiety-like symptoms in rats exposed to chronic mild stress: behavioral and oxidative parameters. Stress 2013; 16:321-30. [PMID: 22998434 DOI: 10.3109/10253890.2012.723075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated the influence of neonatal handling on behavioral and biochemical consequences of chronic mild stress (CMS) in adulthood. Male rat pups were submitted to daily tactile stimulation (TS) or maternal separation (MS), from postnatal day 1 (PND1) to postnatal day 21 (PND21), for 10 min/day. In adulthood, half the number of animals were exposed to CMS for 3 weeks and submitted to behavioral testing, including sucrose preference (SP), elevated plus maze (EPM), and defensive burying tasks (DBTs), followed by biochemical assessments. CMS reduced SP, increased anxiety in EPM and DBT, and increased adrenal weight. In addition, CMS decreased plasma vitamin C (VIT C) levels and increased protein carbonyl (PC) levels, catalase (CAT) activity in hippocampus and cortex, and superoxide dismutase (SOD) levels in cortex. In contrast, both forms of neonatal handling were able to prevent reduction in SP, anxiety behavior in DBT, and CMS-induced adrenal weight increase. Furthermore, they were also able to prevent plasma VIT C reduction, hippocampal PC levels increase, CAT activity increase in hippocampus and cortex, and SOD levels increase in cortex following CMS. Only TS was able to prevent CMS-induced anxiety symptoms in EPM and PC levels in cortex. Taken together, these findings show the protective role of neonatal handling, especially TS, which may enhance ability to cope with stressful situations in adulthood.
Collapse
MESH Headings
- Adaptation, Psychological
- Adrenal Glands/pathology
- Age Factors
- Animals
- Animals, Newborn
- Anxiety/blood
- Anxiety/etiology
- Anxiety/pathology
- Anxiety/prevention & control
- Anxiety/psychology
- Anxiety, Separation/psychology
- Ascorbic Acid/blood
- Behavior, Animal
- Biomarkers/blood
- Catalase/blood
- Cerebral Cortex/metabolism
- Conditioning, Psychological
- Food Preferences
- Handling, Psychological
- Hippocampus/metabolism
- Male
- Maze Learning
- Organ Size
- Oxidative Stress
- Protein Carbonylation
- Rats
- Rats, Wistar
- Stress, Psychological/blood
- Stress, Psychological/complications
- Stress, Psychological/pathology
- Stress, Psychological/psychology
- Sucrose
- Superoxide Dismutase/blood
- Touch
Collapse
Affiliation(s)
- Nardeli Boufleur
- Programa de pós Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rojas JJ, Deniz BF, Miguel PM, Diaz R, Hermel ÉDES, Achaval M, Netto CA, Pereira LO. Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia–ischemia in the rat. Exp Neurol 2013; 241:25-33. [DOI: 10.1016/j.expneurol.2012.11.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 11/24/2022]
|
23
|
Boufleur N, Antoniazzi CT, Pase CS, Benvegnú DM, Barcelos RC, Dolci GS, Dias VT, Roversi K, Roversi K, Koakoskia G, Rosa JG, Barcellos LJ, Bürger ME. Neonatal tactile stimulation changes anxiety-like behavior and improves responsiveness of rats to diazepam. Brain Res 2012; 1474:50-9. [DOI: 10.1016/j.brainres.2012.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/28/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
|
24
|
Tactile stimulation during development alters behaviour and neuroanatomical organization of normal rats. Behav Brain Res 2012; 231:86-91. [DOI: 10.1016/j.bbr.2012.02.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/21/2012] [Accepted: 02/25/2012] [Indexed: 11/18/2022]
|
25
|
Neonatal hypoxia–ischemia induces sex-related changes in rat brain mitochondria. Mitochondrion 2012; 12:271-9. [DOI: 10.1016/j.mito.2011.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/10/2011] [Accepted: 10/17/2011] [Indexed: 12/13/2022]
|
26
|
Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment. Brain Res Bull 2011; 87:109-16. [PMID: 22040859 DOI: 10.1016/j.brainresbull.2011.10.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/15/2011] [Accepted: 10/17/2011] [Indexed: 11/22/2022]
Abstract
Reduction of cerebral blood flow is an important risk factor for dementia states and other brain dysfunctions. In present study, the effects of permanent occlusion of common carotid arteries (2VO), a well established experimental model of brain ischemia, on memory function were investigated, as assessed by reference and working spatial memory protocols and the object recognition task; cell damage to the hippocampus, as measured through changes in immunoreactivity for GFAP and the neuronal marker NeuN was also studied. The working hypothesis is that metabolic impairment following hypoperfusion will affect neuron and glial function and result in functional damage. Adult male Wistar rats were submitted to the modified 2VO method, with the right common carotid artery being occluded first and the left one week later, and tested seven days, three and six months after the ischemic event. A significant cognitive deficit was found in both reference and working spatial memory, as well as in the object recognition task, three and six months after surgery. Neuronal death and reactive astrogliosis were already present at 7 days and continued for up to 3 months after the occlusion; interestingly, there was no significant reduction in hippocampal volume. Present data suggests that cognitive impairment caused by brain hypoperfusion is long - lasting and persists beyond the time point of recovery from glial activation and neuronal loss.
Collapse
|
27
|
Winkelmann-Duarte EC, Padilha-Hoffmann CB, Martins DF, Schuh AFS, Fernandes MC, Santin R, Merlo S, Sanvitto GL, Lucion AB. Early-life environmental intervention may increase the number of neurons, astrocytes, and cellular proliferation in the hippocampus of rats. Exp Brain Res 2011; 215:163-72. [DOI: 10.1007/s00221-011-2881-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 09/17/2011] [Indexed: 12/23/2022]
|
28
|
Weis SN, Schunck RVA, Pettenuzzo LF, Krolow R, Matté C, Manfredini V, do Carmo R Peralba M, Vargas CR, Dalmaz C, Wyse ATS, Netto CA. Early biochemical effects after unilateral hypoxia-ischemia in the immature rat brain. Int J Dev Neurosci 2011; 29:115-20. [PMID: 21255637 DOI: 10.1016/j.ijdevneu.2010.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/25/2010] [Accepted: 12/26/2010] [Indexed: 11/30/2022] Open
Abstract
Perinatal hypoxia-ischemia (HI) gives rise to inadequate substrate supply to the brain tissue, resulting in damage to neural cells. Previous studies at different time points of development, and with different animal species, suggest that the HI insult causes oxidative damage and changes Na+, K+-ATPase activity, which is known to be very susceptible to free radical-related lipid peroxidation. The aim of the present study was to establish the onset of the oxidative damage response in neonatal Wistar rats subjected to brain HI, evaluating parameters of oxidative stress, namely nitric oxide production, lipoperoxidation by thiobarbituric acid reactive substances (TBA-RS) production and malondialdehyde (MDA) levels, reactive species production by DCFH oxidation, antioxidant enzymatic activities of catalase, glutathione peroxidase, superoxide dismutase as well as Na+, K+-ATPase activity in hippocampus and cerebral cortex. Rat pups were subjected to right common carotid ligation followed by exposure to a hypoxic atmosphere (8% oxygen and 92% nitrogen) for 90 min. Animals were sacrificed by decapitation 0, 1 and 2 h after HI and both hippocampus and cerebral cortex from the right hemisphere (ipsilateral to the carotid occlusion) were dissected out for further experimentation. Results show an early decrease of Na+, K+-ATPase activity (at 0 and 1 h), as well as a late increase in MDA levels (2 h) and superoxide dismutase activity (1 and 2 h after HI) in the hippocampus. There was a late increase in both MDA levels and DCFH oxidation (1 and 2 h) and an increase in superoxide dismutase activity (2 h after HI) in cortex; however Na+, K+-ATPase activity remained unchanged. We suggest that neonatal HI induces oxidative damage to both hippocampus and cortex, in addition to a decrease in Na+, K+-ATPase activity in hippocampus early after the insult. These events might contribute to the later morphological damage in the brain and indicate that it would be essential to pursue neuroprotective strategies, aimed to counteract oxidative stress, as early as possible after the HI insult.
Collapse
Affiliation(s)
- Simone N Weis
- Programa de Pós-Graduação em Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sex differences in the benefits of rehabilitative training during adolescence following neonatal hypoxia–ischemia in rats. Exp Neurol 2010; 226:285-92. [DOI: 10.1016/j.expneurol.2010.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/18/2022]
|
30
|
Cechetti F, Worm PV, Pereira LO, Siqueira IR, A Netto C. The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate. Braz J Med Biol Res 2010; 43:1178-83. [PMID: 21085899 DOI: 10.1590/s0100-879x2010007500124] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 10/29/2010] [Indexed: 11/21/2022] Open
Abstract
Permanent bilateral occlusion of the common carotid arteries (2VO) in the rat has been established as a valid experimental model to investigate the effects of chronic cerebral hypoperfusion on cognitive function and neurodegenerative processes. Our aim was to compare the cognitive and morphological outcomes following the standard 2VO procedure, in which there is concomitant artery ligation, with those of a modified protocol, with a 1-week interval between artery occlusions to avoid an abrupt reduction of cerebral blood flow, as assessed by animal performance in the water maze and damage extension to the hippocampus and striatum. Male Wistar rats (N = 47) aged 3 months were subjected to chronic hypoperfusion by permanent bilateral ligation of the common carotid arteries using either the standard or the modified protocol, with the right carotid being the first to be occluded. Three months after the surgical procedure, rat performance in the water maze was assessed to investigate long-term effects on spatial learning and memory and their brains were processed in order to estimate hippocampal volume and striatal area. Both groups of hypoperfused rats showed deficits in reference (F(₈,₁₇₂) = 7.0951, P < 0.00001) and working spatial memory [2nd (F(₂,₄₄) = 7.6884, P < 0.001), 3rd (F(₂,₄₄) = 21.481, P < 0.00001) and 4th trials (F(₂,₄₄) = 28.620, P < 0.0001)]; however, no evidence of tissue atrophy was found in the brain structures studied. Despite similar behavioral and morphological outcomes, the rats submitted to the modified protocol showed a significant increase in survival rate, during the 3 months of the experiment (P < 0.02).
Collapse
Affiliation(s)
- F Cechetti
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
| | | | | | | | | |
Collapse
|
31
|
Lateralized and sex-dependent behavioral and morphological effects of unilateral neonatal cerebral hypoxia-ischemia in the rat. Behav Brain Res 2010; 210:92-8. [PMID: 20156487 DOI: 10.1016/j.bbr.2010.02.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 02/03/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
Abstract
Neonatal cerebral hypoxia-ischemia (HI) is an important cause of neurological deficits. The Levine-Rice model of unilateral HI is a useful experimental tool, but the resulting brain damage is mainly restricted to one hemisphere. Since the rat presents morphological and biochemical asymmetries between brain hemispheres, behavioral outcome from this model is probably dependent on which hemisphere is damaged. We here investigated the effects of sex and lesioned hemisphere on the outcome of open field, plus maze, inhibitory avoidance and water maze tasks in adult rats previously submitted to neonatal unilateral HI. Females were more active than males in some of studied parameters and males presented better spatial learning. Hypoxia-ischemia caused spatial deficits independently of sex or damaged hemisphere. Right-HI increased locomotion only in males and caused working memory in females and on aversive learning in both males and females. Morphological analysis showed that right-HI animals presented greater reduction of ipsilateral striatum area, with females being more affected. Interestingly, males showed greater hippocampal volume. These results show that task performance and cerebral damage extension are lateralized and sex-dependent, and that the right hemisphere, irrespective of sex, is more vulnerable to neonatal cerebral hypoxia-ischemia.
Collapse
|
32
|
Costa-Ferro ZSM, Vitola AS, Pedroso MF, Cunha FB, Xavier LL, Machado DC, Soares MBP, Ribeiro-dos-Santos R, DaCosta JC. Prevention of seizures and reorganization of hippocampal functions by transplantation of bone marrow cells in the acute phase of experimental epilepsy. Seizure 2010; 19:84-92. [PMID: 20080419 DOI: 10.1016/j.seizure.2009.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/11/2009] [Accepted: 12/17/2009] [Indexed: 12/24/2022] Open
Abstract
In this study, we investigated the therapeutic potential of bone marrow mononuclear cells (BMCs) in a model of epilepsy induced by pilocarpine in rats. BMCs obtained from green fluorescent protein (GFP) transgenic mice or rats were transplanted intravenously after induction of status epilepticus (SE). Spontaneous recurrent seizures (SRS) were monitored using Racine's seizure severity scale. All of the rats in the saline-treated epileptic control group developed SRS, whereas none of the BMC-treated epileptic animals had seizures in the short term (15 days after transplantation), regardless of the BMC source. Over the long-term chronic phase (120 days after transplantation), only 25% of BMC-treated epileptic animals had seizures, but with a lower frequency and duration compared to the epileptic control group. The density of hippocampal neurons in the brains of animals treated with BMCs was markedly preserved. At hippocampal Schaeffer collateral-CA1 synapses, long-term potentiation was preserved in BMC-transplanted rats compared to epileptic controls. The donor-derived GFP(+) cells were rarely found in the brains of transplanted epileptic rats. In conclusion, treatment with BMCs can prevent the development of chronic seizures, reduce neuronal loss, and influence the reorganization of the hippocampal neuronal network.
Collapse
Affiliation(s)
- Zaquer S M Costa-Ferro
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
de Paula S, Vitola AS, Greggio S, de Paula D, Mello PB, Lubianca JM, Xavier LL, Fiori HH, Dacosta JC. Hemispheric brain injury and behavioral deficits induced by severe neonatal hypoxia-ischemia in rats are not attenuated by intravenous administration of human umbilical cord blood cells. Pediatr Res 2009; 65:631-5. [PMID: 19430381 DOI: 10.1203/pdr.0b013e31819ed5c8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is an important cause of mortality and morbidity in infants. Human umbilical cord blood (HUCB) is a potential source of cellular therapy in perinatology. We investigated the effects of HUCB cells on spatial memory, motor performance, and brain morphologic changes in neonate rats submitted to HI. Seven-day-old rats underwent right carotid artery occlusion followed by exposure to 8% O(2) inhalation for 2 h. Twenty-four hours after HI, rats received either saline solution or HUCB cells i.v. After 3 wk, rats were assessed using a Morris Water Maze and four motor tests. Subsequently, rats were killed for histologic, immunohistochemical, and polymerase chain reaction (PCR) analyses. HI rats showed significant spatial memory deficits and a volumetric decrease in the hemisphere ipsilateral to arterial occlusion. These deficits and decreases were not significantly attenuated by the injection of HUCB cells. Moreover, immunofluorescence and PCR analysis revealed few HUCB cells located in rat brain. Intravenous administration of HUCB cells requires optimization to achieve improved therapeutic outcomes in neonatal hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Simone de Paula
- Laboratório de Neurociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pereira LO, Nabinger PM, Strapasson ACP, Nardin P, Gonçalves CAS, Siqueira IR, Netto CA. Long-term effects of environmental stimulation following hypoxia–ischemia on the oxidative state and BDNF levels in rat hippocampus and frontal cortex. Brain Res 2009; 1247:188-95. [DOI: 10.1016/j.brainres.2008.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/30/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|
35
|
Camozzato TSC, Winkelmann-Duarte EC, Padilha CB, Miguel SPR, Bonzanini L, Anselmo-Franci JA, Fernandes MC, Lucion AB. Neonatal handling reduces the number of cells in the medial preoptic area of female rats. Brain Res 2008; 1247:92-9. [PMID: 18977206 DOI: 10.1016/j.brainres.2008.09.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/29/2008] [Accepted: 09/17/2008] [Indexed: 01/20/2023]
Abstract
Early-life events may induce alterations in neuronal function in adulthood. A crucial aspect in studying long-lasting effects induced by environmental interventions imposed to the animal several weeks before is finding a stable change that could be causally related to the phenotype observed in adulthood. In order to explain an adult trait, it seems necessary to look back to early life and establish a temporal line between events. The neonatal handling procedure is an experimental tool to analyze the long-lasting impact of early-life events. Aside from the neuroendocrine response to stress, neonatal handling also alters the functionality of the hypothalamus-pituitary-gonad (HPG) axis. Reductions in ovulation and surge of the luteinizing hormone (LH) on the proestrous day were shown in female rats. Considering the importance of the medial preoptic area (MPA) for the control of ovulation, the present study aimed to verify the effects of neonatal handling on the numerical density and cell size in the MPA in 11-day-old and 90-day-old female rats. Cellular proliferation was also assessed using BrdU (5-bromo-2'-deoxyuridine) in 11-day-old pups. Results showed that neonatal handling induces a stable reduction in the number of cells and in the size of the cell soma, which were lower in handled females than in nonhandled ones at both ages. Cellular proliferation in the MPA was also reduced 24 h after the last manipulation. The repeated mother-infant disruption imposed by the handling procedure "lesioned" the MPA. The dysfunction in the ovulation mechanisms induced by the handling procedure could be related to that neuronal loss. The study also illustrates the impact of an environmental intervention on the development of the brain.
Collapse
Affiliation(s)
- Tatiane S C Camozzato
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Sarmento Leite 500 90050-170 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Early enriched housing results in partial recovery of memory deficits in female, but not in male, rats after neonatal hypoxia–ischemia. Brain Res 2008; 1218:257-66. [DOI: 10.1016/j.brainres.2008.04.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 11/22/2022]
|
37
|
Silveira PP, Portella AK, Crema L, Correa M, Nieto FB, Diehl L, Lucion AB, Dalmaz C. Both infantile stimulation and exposure to sweet food lead to an increased sweet food ingestion in adult life. Physiol Behav 2007; 93:877-82. [PMID: 18191962 DOI: 10.1016/j.physbeh.2007.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 12/05/2007] [Accepted: 12/10/2007] [Indexed: 11/28/2022]
Abstract
We have reported that neonatal handling leads to increased sweet food preference in adult life. Our aim was to verify if these differences in feeding behavior appear before puberty, and whether other types of intervention in periadolescence (such as exposure to toys) could interfere with sweet food consumption later in life. Nests of Wistar rats were (1) non-handled or (2) handled (10 min/day) on days 1-10 after birth. Males from these groups were subdivided in two subgroups: one was habituated to sweet food (Froot Loops-Kellogs) in a new environment for 4 days and tested for sweet food preference at age 27 days, before submitting to a new habituation and test for sweet food ingestion again in adult life. The other subgroup was habituated and tested only in adulthood. In another set of experiments, neonatally non-handled rats were exposed or not to a new environment with toys in periadolescence, and tested for sweet food ingestion as adults. Neonatal handling increases sweet food consumption only if the habituation and tests are performed after puberty. Interestingly, infant exposure to sweet food had a similar effect as neonatal handling, since controls that were exposed to sweet food at age 22 to 27 days increased their ingestion as adults. Exposure to toys in periadolescence had the same effect. We suggest that an intervention during the first postnatal days or exposure to an enriched environment later in the pre-pubertal period leads to behavioral alterations that persist through adulthood, such as increased sweet food ingestion.
Collapse
Affiliation(s)
- P P Silveira
- Programa de Pós-Graduação em Neurociências, Departmento de Bioquímica e Fisiologia, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Imanaka A, Morinobu S, Toki S, Yamamoto S, Matsuki A, Kozuru T, Yamawaki S. Neonatal tactile stimulation reverses the effect of neonatal isolation on open-field and anxiety-like behavior, and pain sensitivity in male and female adult Sprague-Dawley rats. Behav Brain Res 2007; 186:91-7. [PMID: 17854917 DOI: 10.1016/j.bbr.2007.07.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/23/2007] [Accepted: 07/28/2007] [Indexed: 11/24/2022]
Abstract
It is well known that early life events induce long-lasting psychophysiological and psychobiological influences in later life. In rodent studies, environmental enrichment after weaning prevents the adulthood behavioral and emotional disturbances in response to early adversities. We compared the behavioral effect of neonatal isolation (NI) with the effect of NI accompanied by tactile stimulation (NTS) to determine whether NTS could reverse or prevent the effects of NI on the adulthood behavioral and emotional responses to environmental stimuli. In addition, we also examined the sex difference of the NTS effect. Measurements of body weights, an open-field locomotor test, an elevated plus maze test, a hot-plate test, and a contextual fear-conditioning test were performed on postnatal day 60. As compared with rats subjected to NI, rats subjected to NTS showed significantly higher activity and exploration in the open-field locomotor test, lower anxiety-like behavior in the elevated plus maze test, and significantly prolonged latencies in the hot-plate test, and this effect was equal among males and females. In the contextual fear-conditioning test, whereas NTS significantly reduced the enhanced freezing time due to NI in females, no significant difference in the freezing time between NI and NTS was found in males. These findings indicate that adequate tactile stimulation in early life plays an important role in the prevention of disturbances in the behavioral and emotional responses to environmental stimuli in adulthood induced by early adverse experiences.
Collapse
Affiliation(s)
- A Imanaka
- Department of Psychiatry and Neurosciences, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, 734-8551 Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Winkelmann-Duarte EC, Todeschin AS, Fernandes MC, Bittencourt LC, Pereira GAM, Samios VN, Schuh AFS, Achaval ME, Xavier LL, Sanvitto GL, Mandarim-de-Lacerda CA, Lucion AB. Plastic changes induced by neonatal handling in the hypothalamus of female rats. Brain Res 2007; 1170:20-30. [PMID: 17692831 DOI: 10.1016/j.brainres.2007.07.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 07/04/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Early-life events can exert profound long-lasting effects on several behaviors such as fear/anxiety, sexual activity, stress responses and reproductive functions. Present study aimed to examine the effects of neonatal handling on the volume and number of cells in the hypothalamic paraventricular nucleus (pPVN, parvocellular and mPVN, magnocellular regions) and the supraoptic nucleus (SON) in female rats at 11 and 90 days of age. Moreover, in the same areas, immunohistochemistry for oxytocin (OT) and glial fibrillary acidic protein (GFAP) were analyzed in the adult animals. Daily handling during the first 10 postnatal days reduced the number of cells in the pPVN and SON at both the 11 and 90 days. Handling decreased the number of OT-positive parvocellular cells in the PVN in adult females. No significant differences were detected on the optical density (OD) of GFAP-positive cells between the handled and nonhandled adult females. The effect of handling on cell loss was observed 24 h after the 10-day handling period and persisted into adulthood, indicating a stable morphological trace. Results suggest that neonatal handling can induce plastic changes in the central nervous system.
Collapse
Affiliation(s)
- Elisa C Winkelmann-Duarte
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite 500, Porto Alegre, RS 90050-170, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pereira LO, Arteni NS, Petersen RC, da Rocha AP, Achaval M, Netto CA. Effects of daily environmental enrichment on memory deficits and brain injury following neonatal hypoxia-ischemia in the rat. Neurobiol Learn Mem 2006; 87:101-8. [PMID: 16931063 DOI: 10.1016/j.nlm.2006.07.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 07/09/2006] [Accepted: 07/10/2006] [Indexed: 01/17/2023]
Abstract
Environmental enrichment (EE) results in improved learning and spatial memory, as well as attenuates morphological changes resulting from cerebral ischemia in adult animals. This study examined the effects of daily EE on memory deficits in the water maze and cerebral damage, assessed in the hippocampus and cerebral cortex, caused by neonatal hypoxia-ischemia. Male Wistar rats in the 7th postnatal day were submitted to the Levine-Rice model of neonatal hypoxia-ischemia (HI), comprising permanent occlusion of the right common carotid artery and a period of hypoxia (90 min, 8%O(2)-92%N(2)). Starting two weeks after the HI event, animals were stimulated by the enriched environment (1h/day for 9 weeks); subsequent to the stimulation, performance of animals in the water maze was assessed. HI resulted in spatial reference and working memory impairments that were completely reversed by EE. Following the behavioral study, animals were killed and the hippocampal volume and cortical area were estimated. There was a significant reduction of both hippocampal volume and cortical area, ipsilateral to arterial occlusion, in HI animals; environmental stimulation had no effect on these morphological measurements. Presented data indicate that stimulation by the daily environmental enrichment recovers spatial memory deficits caused by neonatal hypoxia-ischemia without affecting tissue atrophy in either hippocampus or cortex.
Collapse
Affiliation(s)
- Lenir Orlandi Pereira
- Programa de Pós-graduação em Neurociências, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Akers KG, Nakazawa M, Romeo RD, Connor JA, McEwen BS, Tang AC. Early life modulators and predictors of adult synaptic plasticity. Eur J Neurosci 2006; 24:547-54. [PMID: 16903856 DOI: 10.1111/j.1460-9568.2006.04921.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Early life experience can induce long-lasting changes in brain and behaviour that are opposite in direction, such as enhancement or impairment in regulation of stress response, structural and functional integrity of the hippocampus, and learning and memory. To explore how multiple early life events jointly determine developmental outcome, we investigated the combined effects of neonatal trauma (anoxia on postnatal day 1, P1) and neonatal novelty exposure (P2-21) on adult social recognition memory (3 months of age) and synaptic plasticity in the CA1 of the rat hippocampus (4.5-8 months of age). While neonatal anoxia selectively reduced post-tetanic potentiation (PTP), neonatal novel exposure selectively increased long-term potentiation (LTP). No interaction between anoxia and novelty exposure was found on either PTP or LTP. These findings suggest that the two contrasting neonatal events have selective and distinct effects on two different forms of synaptic plasticity. At the level of behaviour, the effect of novelty exposure on LTP was associated with increased social memory, and the effect of anoxia on PTP was not accompanied by changes in social memory. Such a finding suggests a bias toward the involvement of LTP over PTP in social memory. Finally, we report a surprising finding that an early behavioural measure of emotional response to a novel environment obtained at 25 days of age can predict adult LTP measured several months later. Therefore, individual differences in emotional responses present during the juvenile stage may contribute to adult individual differences in cellular mechanisms that underlie learning and memory.
Collapse
Affiliation(s)
- Katherine G Akers
- Department of Psychology, University of New Mexico, Albuquerque, 87131, USA
| | | | | | | | | | | |
Collapse
|
42
|
Tang AC, Nakazawa M. Neonatal novelty exposure ameliorates anoxia-induced hyperactivity in the open field. Behav Brain Res 2005; 163:1-9. [PMID: 15925415 DOI: 10.1016/j.bbr.2005.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/22/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
We investigated in an animal model of neonatal anoxia whether effects of oxygen deprivation on emotional reactivity can be reversed by neonatal novelty exposure, a behavioral method, involving daily 3min away from the home cage for the first 3 weeks of life. Male neonates were exposed to either 100% N2 gas (Anoxia) or room air (Control) for 25min on postnatal day 1. Within each of the two treatment conditions, one-half of the neonates were further individually exposed to relatively novel non-home cages for 3min daily during postnatal days 2-21 (Novel: NAnoxia=20; NControl=16), while the other half remained in the home cage (Home: NAnoxia=19; NControl=19). Emotional reactivity to an open field was evaluated on postnatal day 25 during four 20-s trials. Among home rats, temporal patterns of open-field activity across multiple trials and initial-trial activity significantly differed between the Anoxia and Control rats. In contrast, these differences were eliminated among the Novel rats. These results show that neonatal novelty exposure, an early-stimulation method that has recently been shown to enhance spatial and social memory, adaptive control of stress response, and hippocampal synaptic plasticity, can also eliminate neonatal anoxia-induced changes in emotional reactivity. These findings suggest that brief and repeated, but mild, changes in the postnatal environment may serve to counteract some of the aversive effects induced by neonatal trauma associated with oxygen deprivation.
Collapse
Affiliation(s)
- Akaysha C Tang
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|