1
|
Jellinger KA. Pathomechanisms of behavioral abnormalities in Huntington disease: an update. J Neural Transm (Vienna) 2024; 131:999-1012. [PMID: 38874766 DOI: 10.1007/s00702-024-02794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Huntington disease (HD), a devastating autosomal-dominant neurodegenerative disease caused by an expanded CAG trinucleotide repeat, is clinically characterized by a triad of symptoms including involuntary motions, behavior problems and cognitive deficits. Behavioral symptoms with anxiety, irritability, obsessive-compulsive behaviors, apathy and other neuropsychiatric symptoms, occurring in over 50% of HD patients are important features of this disease and contribute to impairment of quality of life, but their pathophysiology is poorly understood. Behavior problems, more frequent than depression, can be manifest before obvious motor symptoms and occur across all HD stages, usually correlated with duration of illness. While specific neuropathological data are missing, the relations between gene expression and behavior have been elucidated in transgenic models of HD. Disruption of interneuronal communications, with involvement of prefronto-striato-thalamic networks and hippocampal dysfunctions produce deficits in multiple behavioral domains. These changes that have been confirmed by multistructural neuroimaging studies are due to a causal cascade linking molecular pathologies (glutamate-mediated excitotoxicity, mitochondrial dysfunctions inducing multiple biochemical and structural alterations) and deficits in multiple behavioral domains. The disruption of large-scale connectivities may explain the variability of behavior profiles and is useful in understanding the biological backgrounds of functional decline in HD. Such findings offer new avenues for targeted treatments in terms of minimizing neurobehavioral impairment in HD.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
2
|
García-García E, Ramón-Lainez A, Conde-Berriozabal S, Del Toro D, Escaramis G, Giralt A, Masana M, Alberch J, Rodríguez MJ. VPS13A knockdown impairs corticostriatal synaptic plasticity and locomotor behavior in a new mouse model of chorea-acanthocytosis. Neurobiol Dis 2023; 187:106292. [PMID: 37714309 DOI: 10.1016/j.nbd.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chorea-acanthocytosis (ChAc) is an inherited neurodegenerative movement disorder caused by VPS13A gene mutations leading to the absence of protein expression. The striatum is the most affected brain region in ChAc patients. However, the study of the VPS13A function in the brain has been poorly addressed. Here we generated a VPS13A knockdown (KD) model and aimed to elucidate the contribution of VPS13A to synaptic plasticity and neuronal communication in the corticostriatal circuit. First, we infected primary cortical neurons with miR30-shRNA against VPS13A and analyzed its effects on neuronal plasticity. VPS13A-KD neurons showed a higher degree of branching than controls, accompanied by decreased BDNF and PSD-95 levels, indicative of synaptic alterations. We then injected AAV-KD bilaterally in the frontal cortex and two different regions of the striatum of mice and analyzed the effects of VPS13A-KD on animal behavior and synaptic plasticity. VPS13A-KD mice showed modification of the locomotor behavior pattern, with increased exploratory behavior and hyperlocomotion. Corticostriatal dysfunction in VPS13A-KD mice was evidenced by impaired striatal long-term depression (LTD) after stimulation of cortical afferents, which was partially recovered by BDNF administration. VPS13A-KD did not lead to neuronal loss in the cortex or the striatum but induced a decrease in the neuronal release of CX3CL1 and triggered a microglial reaction, especially in the striatum. Notably, CX3CL1 administration partially restored the impaired corticostriatal LTD in VPS13A-KD mice. Our results unveil the involvement of VPS13A in neuronal connectivity modifying BDNF and CX3CL1 release. Moreover, the involvement of VPS13A in synaptic plasticity and motor behavior provides key information to further understand not only ChAc pathophysiology but also other neurological disorders.
Collapse
Affiliation(s)
- Esther García-García
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Alba Ramón-Lainez
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Sara Conde-Berriozabal
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Daniel Del Toro
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Georgia Escaramis
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Ministerio de Ciencia e Innovación, Madrid, Spain.
| | - Albert Giralt
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Mercè Masana
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| | - Jordi Alberch
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain; Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, E-08036 Barcelona, Spain.
| | - Manuel J Rodríguez
- Dept Biomedical Sciences, School of Medicine and Health Sciences, Institute of Neurosciences, Universitat de Barcelona, E-08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E-08036 Barcelona, Spain; Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), E-08036 Barcelona, Spain.
| |
Collapse
|
3
|
Fertan E, Wong AA, Montbrun TSGD, Purdon MK, Roddick KM, Yamamoto T, Brown RE. Early postnatal development of the MDGA2 +/- mouse model of synaptic dysfunction. Behav Brain Res 2023; 452:114590. [PMID: 37499910 DOI: 10.1016/j.bbr.2023.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Synaptic dysfunction underlies many neurodevelopmental disorders (NDDs). The membrane-associated mucin domain-containing glycosylphosphatidylinositol anchor proteins (MDGAs) regulate synaptic development by modulating neurexin-neuroligin complex formation. Since understanding the neurodevelopmental profile and the sex-based differences in the manifestation of the symptoms of NDDs is important for their early diagnosis, we tested a mouse model haploinsufficient for MDGA2 (MDGA2+/-) on a neurodevelopmental test battery, containing sensory, motor, and cognitive measures, as well as ultrasonic vocalizations. When male and female MDGA2+/- and wildtype (WT) C57BL/6 J mice were examined from 2 to 23 days of age using this test battery, genotype and sex differences in body weight, sensory-motor processes, and ultrasonic vocalizations were observed. The auditory startle reflex appeared earlier in the MDGA2+/- than in WT mice and the MDGA2+/- mice produced fewer ultrasonic vocalizations. The MDGA2+/- mice showed reduced locomotion and rearing than WT mice in the open field after 17 days of age and spent less time investigating a novel object than WT mice at 21 days of age. Female MDGA2+/- mice weighed less than WT females and showed lower grip strength, indicating a delay in sensory-motor development in MDGA2+/- mice, which appears to be more pronounced in females than males. The behavioural phenotypes resulting from MDGA2 haploinsufficiency suggests that it shows delayed development of motor behaviour, grip strength and exploratory behaviour, non-social phenotypes of NDDs.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Michaela K Purdon
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kyle M Roddick
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kagawa 761-0793, Japan
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
4
|
Blok LER, Boon M, van Reijmersdal B, Höffler KD, Fenckova M, Schenck A. Genetics, molecular control and clinical relevance of habituation learning. Neurosci Biobehav Rev 2022; 143:104883. [PMID: 36152842 DOI: 10.1016/j.neubiorev.2022.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
Abstract
Habituation is the most fundamental form of learning. As a firewall that protects our brain from sensory overload, it is indispensable for cognitive processes. Studies in humans and animal models provide increasing evidence that habituation is affected in autism and related monogenic neurodevelopmental disorders (NDDs). An integrated application of habituation assessment in NDDs and their animal models has unexploited potential for neuroscience and medical care. With the aim to gain mechanistic insights, we systematically retrieved genes that have been demonstrated in the literature to underlie habituation. We identified 258 evolutionarily conserved genes across species, describe the biological processes they converge on, and highlight regulatory pathways and drugs that may alleviate habituation deficits. We also summarize current habituation paradigms and extract the most decisive arguments that support the crucial role of habituation for cognition in health and disease. We conclude that habituation is a conserved, quantitative, cognition- and disease-relevant process that can connect preclinical and clinical work, and hence is a powerful tool to advance research, diagnostics, and treatment of NDDs.
Collapse
Affiliation(s)
- Laura Elisabeth Rosalie Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Marina Boon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Boyd van Reijmersdal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Kira Daniela Höffler
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| | - Michaela Fenckova
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands; Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525GA, Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Pupak A, Singh A, Sancho-Balsells A, Alcalá-Vida R, Espina M, Giralt A, Martí E, Ørom UAV, Ginés S, Brito V. Altered m6A RNA methylation contributes to hippocampal memory deficits in Huntington's disease mice. Cell Mol Life Sci 2022; 79:416. [PMID: 35819730 PMCID: PMC9276730 DOI: 10.1007/s00018-022-04444-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
N6-methyladenosine (m6A) regulates many aspects of RNA metabolism and is involved in learning and memory processes. Yet, the impact of a dysregulation of post-transcriptional m6A editing on synaptic impairments in neurodegenerative disorders remains unknown. Here we investigated the m6A methylation pattern in the hippocampus of Huntington’s disease (HD) mice and the potential role of the m6A RNA modification in HD cognitive symptomatology. m6A modifications were evaluated in HD mice subjected to a hippocampal cognitive training task through m6A immunoprecipitation sequencing (MeRIP-seq) and the relative levels of m6A-modifying proteins (FTO and METTL14) by subcellular fractionation and Western blot analysis. Stereotaxic CA1 hippocampal delivery of AAV-shFTO was performed to investigate the effect of RNA m6A dysregulation in HD memory deficits. Our results reveal a m6A hypermethylation in relevant HD and synaptic related genes in the hippocampal transcriptome of Hdh+/Q111 mice. Conversely, m6A is aberrantly regulated in an experience-dependent manner in the HD hippocampus leading to demethylation of important components of synapse organization. Notably, the levels of RNA demethylase (FTO) and methyltransferase (METTL14) were modulated after training in the hippocampus of WT mice but not in Hdh+/Q111 mice. Finally, inhibition of FTO expression in the hippocampal CA1 region restored memory disturbances in symptomatic Hdh+/Q111 mice. Altogether, our results suggest that a differential RNA methylation landscape contributes to HD cognitive symptoms and uncover a role of m6A as a novel hallmark of HD.
Collapse
Affiliation(s)
- Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ankita Singh
- Department for Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Rafael Alcalá-Vida
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), University of Strasbourg, Strasbourg, France
| | - Marc Espina
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eulàlia Martí
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
6
|
Ciancia M, Rataj-Baniowska M, Zinter N, Baldassarro VA, Fraulob V, Charles AL, Alvarez R, Muramatsu SI, de Lera AR, Geny B, Dollé P, Niewiadomska-Cimicka A, Krezel W. Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration. Prog Neurobiol 2022; 212:102246. [DOI: 10.1016/j.pneurobio.2022.102246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022]
|
7
|
Klonarakis M, De Vos M, Woo E, Ralph L, Thacker JS, Gil-Mohapel J. The three sisters of fate: Genetics, pathophysiology and outcomes of animal models of neurodegenerative diseases. Neurosci Biobehav Rev 2022; 135:104541. [DOI: 10.1016/j.neubiorev.2022.104541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
|
8
|
Isoform-Specific Reduction of the Basic Helix-Loop-Helix Transcription Factor TCF4 Levels in Huntington's Disease. eNeuro 2021; 8:ENEURO.0197-21.2021. [PMID: 34518368 PMCID: PMC8519306 DOI: 10.1523/eneuro.0197-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder with onset of characteristic motor symptoms at midlife, preceded by subtle cognitive and behavioral disturbances. Transcriptional dysregulation emerges early in the disease course and is considered central to HD pathogenesis. Using wild-type (wt) and HD knock-in mouse striatal cell lines we observed a HD genotype-dependent reduction in the protein levels of transcription factor 4 (TCF4), a member of the basic helix-loop-helix (bHLH) family with critical roles in brain development and function. We characterized mouse Tcf4 gene structure and expression of alternative mRNAs and protein isoforms in cell-based models of HD, and in four different brain regions of male transgenic HD mice (R6/1) from young to mature adulthood. The largest decrease in the levels of TCF4 at mRNA and specific protein isoforms were detected in the R6/1 mouse hippocampus. Translating this finding to human disease, we found reduced expression of long TCF4 isoforms in the postmortem hippocampal CA1 area and in the cerebral cortex of HD patients. Additionally, TCF4 protein isoforms showed differential synergism with the proneural transcription factor ASCL1 in activating reporter gene transcription in hippocampal and cortical cultured neurons. Induction of neuronal activity increased these synergistic effects in hippocampal but not in cortical neurons, suggesting brain region-dependent differences in TCF4 functions. Collectively, this study demonstrates isoform-specific changes in TCF4 expression in HD that could contribute to the progressive impairment of transcriptional regulation and neuronal function in this disease.
Collapse
|
9
|
Human glia can both induce and rescue aspects of disease phenotype in Huntington disease. Nat Commun 2016; 7:11758. [PMID: 27273432 PMCID: PMC4899632 DOI: 10.1038/ncomms11758] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/27/2016] [Indexed: 01/19/2023] Open
Abstract
The causal contribution of glial pathology to Huntington disease (HD) has not been heavily explored. To define the contribution of glia to HD, we established human HD glial chimeras by neonatally engrafting immunodeficient mice with mutant huntingtin (mHTT)-expressing human glial progenitor cells (hGPCs), derived from either human embryonic stem cells or mHTT-transduced fetal hGPCs. Here we show that mHTT glia can impart disease phenotype to normal mice, since mice engrafted intrastriatally with mHTT hGPCs exhibit worse motor performance than controls, and striatal neurons in mHTT glial chimeras are hyperexcitable. Conversely, normal glia can ameliorate disease phenotype in transgenic HD mice, as striatal transplantation of normal glia rescues aspects of electrophysiological and behavioural phenotype, restores interstitial potassium homeostasis, slows disease progression and extends survival in R6/2 HD mice. These observations suggest a causal role for glia in HD, and further suggest a cell-based strategy for disease amelioration in this disorder. The contribution of glia to Huntington's disease is unclear. The authors show that human glial progenitor cells (GPCs) expressing mutant huntingtin impair motor performance when engrafted into wild type mice, and wild type human GPCs ameliorate disease phenotypes when engrafted into an HD mouse model.
Collapse
|
10
|
Corey-Bloom J, Jia H, Aikin AM, Thomas EA. Disease Modifying Potential of Glatiramer Acetate in Huntington's Disease. J Huntingtons Dis 2016; 3:311-6. [PMID: 25300334 DOI: 10.3233/jhd-140110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Deficiencies in brain-derived-neurotrophic-factor have been implicated in the pathogenesis of Huntington's disease (HD). OBJECTIVE Glatiramer acetate, an FDA- approved drug used for the treatment of multiple sclerosis, has been shown to increase brain-derived-neurotrophic-factor levels in immune cells; hence, we investigated whether it could have similar effects in striatal cells. METHODS Wild-type and HD striatal cells were treated with glatiramer acetate for 48 hrs. HD transgenic and wild-type mice were injected with glatiramer acetate (1.5 to 1.7 mg/mouse) for five days. These treatments were followed by protein measurements for brain-derived-neurotrophic-factor. RESULTS Glatiramer acetate elicited concentration-dependent increases in brain-derived-neurotrophic-factor protein levels in wild-type and HD striatal cells and in striatal tissue from N171-82Q transgenic mice. Glatiramer acetate also improved metabolic activity of HD striatal cells, and significantly reduced the early hyperactivity phenotype exhibited by N171-82Q transgenic mice. CONCLUSIONS These findings suggest that glatiramer acetate may represent a useful therapeutic approach for HD. The excellent safety and tolerability record of this compound makes it an ideal candidate for drug repurposing efforts.
Collapse
Affiliation(s)
- Jody Corey-Bloom
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Haiqun Jia
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Alaina M Aikin
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Elizabeth A Thomas
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
11
|
Dallérac GM, Cummings DM, Hirst MC, Milnerwood AJ, Murphy KPSJ. Changes in Dopamine Signalling Do Not Underlie Aberrant Hippocampal Plasticity in a Mouse Model of Huntington's Disease. Neuromolecular Med 2016; 18:146-53. [PMID: 26782175 DOI: 10.1007/s12017-016-8384-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Altered dopamine receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington's disease (HD) gene carriers, indicating that alterations in dopaminergic signalling are an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington's disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrate that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD.
Collapse
Affiliation(s)
- Glenn M Dallérac
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK.
- CIRB, CNRS UMR 7241, INSERM U1050, Collège de France, 75005, Paris, France.
| | - Damian M Cummings
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK
- University College London, Neuroscience, Physiology and Pharmacology, Gower Street, London, WC1E 6BT, UK
| | - Mark C Hirst
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK
| | - Austen J Milnerwood
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK
- Department of Neurology & Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2255, Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Kerry P S J Murphy
- Huntington's Disease Research Forum, Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK76AA, UK.
| |
Collapse
|
12
|
Pietropaolo S, Bellocchio L, Ruiz-Calvo A, Cabanas M, Du Z, Guzmán M, Garret M, Cho YH. Chronic cannabinoid receptor stimulation selectively prevents motor impairments in a mouse model of Huntington's disease. Neuropharmacology 2015; 89:368-74. [DOI: 10.1016/j.neuropharm.2014.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/28/2014] [Accepted: 07/31/2014] [Indexed: 12/25/2022]
|
13
|
Rattray I, Smith EJ, Crum WR, Walker TA, Gale R, Bates GP, Modo M. Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/1 mouse model of Huntington's disease. PLoS One 2013; 8:e84726. [PMID: 24367693 PMCID: PMC3868608 DOI: 10.1371/journal.pone.0084726] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/18/2013] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6 mouse models of HD express a mutant version of exon 1 HTT and typically develop motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Unlike the more commonly used R6/2 mouse line, R6/1 mice have fewer CAG repeats and, subsequently, a less rapid pathological decline. Compared to the R6/2 line, fewer descriptions of the progressive pathologies exhibited by R6/1 mice exist. The association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood in many models of HD. In attempt to link these factors in the R6/1 mouse line, we have performed detailed assessments of behavior and of regional brain abnormalities determined through longitudinal, in vivo magnetic resonance imaging (MRI), as well as an end-stage, ex vivo MRI study and histological assessment. We found progressive decline in both motor and non-motor related behavioral tasks in R6/1 mice, first evident at 11 weeks of age. Regional brain volumes were generally unaffected at 9 weeks, but by 17 weeks there was significant grey matter atrophy. This age-related brain volume loss was validated using a more precise, semi-automated Tensor Based morphometry assessment. As well as these clear progressive phenotypes, mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the R6/1 brain and was accompanied by neuronal loss. Despite these seemingly concomitant, robust pathological phenotypes, there appeared to be little correlation between the three main outcome measures: behavioral performance, MRI-detected brain atrophy and histopathology. In conclusion, R6/1 mice exhibit many features of HD, but the underlying mechanisms driving these clear behavioral disturbances and the brain volume loss, still remain unclear.
Collapse
Affiliation(s)
- Ivan Rattray
- King’s College London, Institute of Psychiatry, Department of Neuroscience, London, United Kingdom
- King’s College London, Department of Medical and Molecular Genetics, London, United Kingdom
| | - Edward J. Smith
- King’s College London, Institute of Psychiatry, Department of Neuroscience, London, United Kingdom
- King’s College London, Department of Medical and Molecular Genetics, London, United Kingdom
| | - William R. Crum
- King’s College London, Department of Neuroimaging, Institute of Psychiatry, London, United Kingdom
| | - Thomas A. Walker
- King’s College London, Department of Medical and Molecular Genetics, London, United Kingdom
| | - Richard Gale
- King’s College London, Department of Medical and Molecular Genetics, London, United Kingdom
| | - Gillian P. Bates
- King’s College London, Department of Medical and Molecular Genetics, London, United Kingdom
| | - Michel Modo
- King’s College London, Institute of Psychiatry, Department of Neuroscience, London, United Kingdom
- University of Pittsburgh, Department of Radiology, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Perucho J, Casarejos MJ, Gómez A, Ruíz C, Fernández-Estevez MÁ, Muñoz MP, de Yébenes JG, Mena MÁ. Striatal infusion of glial conditioned medium diminishes huntingtin pathology in r6/1 mice. PLoS One 2013; 8:e73120. [PMID: 24069174 PMCID: PMC3771920 DOI: 10.1371/journal.pone.0073120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by an expansion of CAG repeats in the huntingtin gene which produces widespread neuronal and glial pathology. We here investigated the possible therapeutic role of glia or glial products in Huntington's disease using striatal glial conditioned medium (GCM) from fetus mice (E16) continuously infused for 15 and 30 days with osmotic minipumps into the left striatum of R6/1 mice. Animals infused with GCM had significantly less huntingtin inclusions in the ipsilateral cerebral cortex and in the ipsilateral and contralateral striata than mice infused with cerebrospinal fluid. The numbers of DARPP-32 and TH positive neurons were also greater in the ipsilateral but not contralateral striata and substantia nigra, respectively, suggesting a neuroprotective effect of GCM on efferent striatal and nigro-striatal dopamine neurons. GCM increases activity of the autophagic pathway, as shown by the reduction of autophagic substrate, p-62, and the augmentation of LC3 II, Beclin-1 and LAMP-2 protein levels, direct markers of autophagy, in GCM infused mice. GCM also increases BDNF levels. These results suggest that CGM should be further explored as a putative neuroprotective agent in Huntington's disease.
Collapse
Affiliation(s)
- Juan Perucho
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Maria José Casarejos
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Ana Gómez
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Carolina Ruíz
- Department of Neurology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | | | - Maria Paz Muñoz
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
| | | | - Maria Ángeles Mena
- Department of Neurobiology, Hospital “Ramón y Cajal”, Madrid, Spain
- CIBERNED, Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Soibam B, Shah S, Gunaratne GH, Roman GW. Modeling novelty habituation during exploratory activity in Drosophila. Behav Processes 2013; 97:63-75. [PMID: 23597866 DOI: 10.1016/j.beproc.2013.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 11/28/2022]
Abstract
Habituation is a common form of non-associative learning in which the organism gradually decreases its response to repeated stimuli. The decrease in exploratory activity of many animal species during exposure to a novel open field arena is a widely studied habituation paradigm. However, a theoretical framework to quantify how the novelty of the arena is learned during habituation is currently missing. Drosophila melanogaster display a high mean absolute activity and a high probability for directional persistence when first introduced to a novel arena. Both measures decrease during habituation to the arena. Here, we propose a phenomenological model of habituation for Drosophila exploration based on two principles: Drosophila form a spatial representation of the arena edge as a set of connected local patches, and repeated exposure to these patches is essential for the habituation of the novelty. The level of exposure depends on the number of visitations and is quantified by a variable referred to as "coverage". This model was tested by comparing predictions against the experimentally measured behavior of wild type Drosophila. The novelty habituation of wild type Canton-S depends on coverage and is specifically independent of the arena radius. Our model describes the time dependent locomotor activity, ΔD, of Canton-S using an experimentally established stochastic process Pn(ΔD), which depends on the coverage. The quantitative measures of exploration and habituation were further applied to three mutant genotypes. Consistent with a requirement for vision in novelty habituation, blind no receptor potential A(7) mutants display a failure in the decay of probability for directional persistence and mean absolute activity. The rutabaga(2080) habituation mutant also shows defects in these measures. The kurtz(1) non-visual arrestin mutant demonstrates a rapid decay in these measures, implying reduced motivation. The model and the habituation measures offer a powerful framework for understanding mechanisms associated with open field habituation.
Collapse
Affiliation(s)
- Benjamin Soibam
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | | | | | | |
Collapse
|
17
|
Abstract
The dorsal striatum, with its functional microcircuits galore, serves as the primary gateway of the basal ganglia and is known to play a key role in implicit learning. Initially, excitatory inputs from the cortex and thalamus arrive on the direct and indirect pathways, where the precise flow of information is then regulated by local GABAergic interneurons. The balance of excitatory and inhibitory transmission in the dorsal striatum is modulated by neuromodulators such as dopamine and acetylcholine. Under pathophysiological states in the dorsal striatum, an alteration in excitatory and inhibitory transmission may underlie dysfunctional motor control. Here, we review the cellular connections and modulation of striatal microcircuits and propose that modulating the excitatory and inhibitory balance in synaptic transmission of the dorsal striatum is important for regulating locomotion.
Collapse
|
18
|
Figiel M, Szlachcic WJ, Switonski PM, Gabka A, Krzyzosiak WJ. Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol 2012; 46:393-429. [PMID: 22956270 PMCID: PMC3461215 DOI: 10.1007/s12035-012-8315-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/23/2022]
Abstract
Polyglutamine (polyQ) disorders share many similarities, such as a common mutation type in unrelated human causative genes, neurological character, and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. The similarities in pathogenesis have been confirmed by findings that some experimental in vivo therapy approaches are effective in multiple models of polyQ disorders. Additionally, mouse models of polyQ diseases are often highly similar between diseases with respect to behavior and the features of the disease. The common features shared by polyQ mouse models may facilitate the investigation of polyQ disorders and may help researchers explore the mechanisms of these diseases in a broader context. To provide this context and to promote the understanding of polyQ disorders, we have collected and analyzed research data about the characterization and treatment of mouse models of polyQ diseases and organized them into two complementary Excel data tables. The data table that is presented in this review (Part I) covers the behavioral, molecular, cellular, and anatomic characteristics of polyQ mice and contains the most current knowledge about polyQ mouse models. The structure of this data table is designed in such a way that it can be filtered to allow for the immediate retrieval of the data corresponding to a single mouse model or to compare the shared and unique aspects of many polyQ models. The second data table, which is presented in another publication (Part II), covers therapeutic research in mouse models by summarizing all of the therapeutic strategies employed in the treatment of polyQ disorders, phenotypes that are used to examine the effects of the therapy, and therapeutic outcomes.
Collapse
Affiliation(s)
- Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | | | | | |
Collapse
|
19
|
Brooks SP, Janghra N, Workman VL, Bayram-Weston Z, Jones L, Dunnett SB. Longitudinal analysis of the behavioural phenotype in R6/1 (C57BL/6J) Huntington's disease transgenic mice. Brain Res Bull 2012; 88:94-103. [DOI: 10.1016/j.brainresbull.2011.01.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 11/16/2022]
|
20
|
Bayram-Weston Z, Jones L, Dunnett SB, Brooks SP. Light and electron microscopic characterization of the evolution of cellular pathology in the R6/1 Huntington's disease transgenic mice. Brain Res Bull 2012; 88:104-12. [DOI: 10.1016/j.brainresbull.2011.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/19/2011] [Accepted: 07/12/2011] [Indexed: 12/20/2022]
|
21
|
Ghiglieri V, Bagetta V, Calabresi P, Picconi B. Functional interactions within striatal microcircuit in animal models of Huntington's disease. Neuroscience 2012; 211:165-84. [DOI: 10.1016/j.neuroscience.2011.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 11/17/2022]
|
22
|
Ortiz AN, Osterhaus GL, Lauderdale K, Mahoney L, Fowler SC, von Hörsten S, Riess O, Johnson MA. Motor function and dopamine release measurements in transgenic Huntington's disease model rats. Brain Res 2012; 1450:148-56. [PMID: 22418060 DOI: 10.1016/j.brainres.2012.02.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 11/30/2022]
Abstract
Huntington's disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats.
Collapse
Affiliation(s)
- Andrea N Ortiz
- Department of Chemistry and R. N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ransome MI, Hannan AJ. Behavioural state differentially engages septohippocampal cholinergic and GABAergic neurons in R6/1 Huntington’s disease mice. Neurobiol Learn Mem 2012; 97:261-70. [DOI: 10.1016/j.nlm.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/18/2011] [Accepted: 01/04/2012] [Indexed: 12/15/2022]
|
24
|
Assessing Habituation Phenotypes in Adult Zebrafish: Intra- and Inter-Trial Habituation in the Novel Tank Test. NEUROMETHODS 2012. [DOI: 10.1007/978-1-61779-597-8_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
25
|
Gil-Mohapel J, Simpson JM, Ghilan M, Christie BR. Neurogenesis in Huntington's disease: Can studying adult neurogenesis lead to the development of new therapeutic strategies? Brain Res 2011; 1406:84-105. [DOI: 10.1016/j.brainres.2011.06.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 01/01/2023]
|
26
|
André VM, Fisher YE, Levine MS. Altered Balance of Activity in the Striatal Direct and Indirect Pathways in Mouse Models of Huntington's Disease. Front Syst Neurosci 2011; 5:46. [PMID: 21720523 PMCID: PMC3118454 DOI: 10.3389/fnsys.2011.00046] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/03/2011] [Indexed: 11/13/2022] Open
Abstract
Imbalance in the activity of striatal direct and indirect pathway neurons contributes to motor disturbances in several neurodegenerative diseases. In Huntington's disease (HD), indirect pathway [dopamine (DA) D2 receptor-expressing] medium-sized spiny neurons (MSNs) are believed to show earlier vulnerability than direct pathway MSNs. We examined synaptic activity and DA modulation in MSNs forming the direct and indirect pathways in YAC128 and BACHD mouse models of HD. To visualize the two types of MSNs, we used mice expressing enhanced green fluorescent protein under the control of the promoter for the DA D1 or D2 receptor. Experiments were performed in early symptomatic (1.5 months) and symptomatic (12 months) mice. Behaviorally, early symptomatic mice showed increased stereotypies while symptomatic mice showed decreased motor activity. Electrophysiologically, at the early stage, excitatory and inhibitory transmission onto D1-YAC128 and D1-BACHD MSNs were increased, while there was no change in D2 MSNs. DA modulation of spontaneous excitatory postsynaptic currents (sEPSCs) in slices was absent in YAC128 cells at the early stage, but was restored by treating the slices with the DA depleter tetrabenazine (TBZ). In BACHD mice TBZ restored paired-pulse ratios and a D1 receptor antagonist induced a larger decrease of sEPSCs than in D1-WT cells, suggesting increased DA tone. Finally, TBZ decreased stereotypies in BACHD mice. These results indicate that by reducing DA or antagonizing D1 receptors, increases in inhibitory and excitatory transmission in early phenotypic direct pathway neurons can be normalized. In symptomatic YAC128 mice, excitatory synaptic transmission onto D1 MSNs was decreased, while inhibitory transmission was increased in D2 MSNs. These studies provide evidence for differential and complex imbalances in glutamate and GABA transmission, as well as in DA modulation, in direct and indirect pathway MSNs during HD progression.
Collapse
Affiliation(s)
- Véronique M André
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute, University of California at Los Angeles Los Angeles, CA, USA
| | | | | |
Collapse
|
27
|
Pietropaolo S, Delage P, Cayzac S, Crusio WE, Cho YH. Sex-dependent changes in social behaviors in motor pre-symptomatic R6/1 mice. PLoS One 2011; 6:e19965. [PMID: 21603578 PMCID: PMC3095644 DOI: 10.1371/journal.pone.0019965] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/15/2011] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The R6/1 mouse line is one of the most widely employed models of Huntington Disease (HD), a complex syndrome characterized by motor and non-motor deficits. Surprisingly, its behavioral phenotype during the early phases of the pathology when the motor impairments are not manifest yet has been poorly investigated. It is also not clear whether the expression of HD-like symptoms at the pre-motor stage in this mouse model differs between the two sexes. METHODS Male and female 12 weeks-old R6/1 mice and their wild-type littermates were tested on a battery of tests modeling some of the major neuropsychiatric non-motor symptoms of HD: alterations in social interest, social interaction and communication, as well as disturbances in prepulse inhibition of the acoustic startle response (PPI) and circadian patterns of activity. The lack of motor symptoms was confirmed during the entire experimental period by means of the tail test for clasping. RESULTS R6/1 mice displayed marked alterations in all social behaviors which were mainly observed in males. Male R6/1 animals were also the only ones showing reduced body weight. Both male and female transgenic mice displayed mild alterations in the circadian activity patterns, but no deficits in PPI. CONCLUSIONS These results demonstrate the validity of the R6/1 mouse in mimicking selected neuropsychiatric symptoms of HD, the social deficits being the clearest markers of the pre-motor phase of the pathology. Furthermore, our data suggest that male R6/1 mice are more suitable for future studies on the early stages of HD.
Collapse
Affiliation(s)
- Susanna Pietropaolo
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux and CNRS UMR 5287, Talence, France
| | - Pauline Delage
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux and CNRS UMR 5287, Talence, France
| | - Sebastien Cayzac
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux and CNRS UMR 5287, Talence, France
| | - Wim E. Crusio
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux and CNRS UMR 5287, Talence, France
| | - Yoon H. Cho
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux and CNRS UMR 5287, Talence, France
| |
Collapse
|
28
|
Differential electrophysiological changes in striatal output neurons in Huntington's disease. J Neurosci 2011; 31:1170-82. [PMID: 21273402 DOI: 10.1523/jneurosci.3539-10.2011] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is considerable evidence that alterations in striatal medium-sized spiny neurons (MSSNs) giving rise to the direct (D1 receptor-expressing) and indirect (D2 receptor-expressing) pathways differentially contribute to the phenotype of Huntington's disease (HD). To determine how each subpopulation of MSSN is functionally affected, we examined spontaneous excitatory postsynaptic currents (sEPSCs) and dopamine (DA) modulation in two HD mouse models, the YAC128 and the BACHD (a bacterial-artificial chromosome). These mice also expressed enhanced green fluorescent protein (EGFP) under the control of the promoter for either DA D1 or D2 receptors to identify neurons. In early symptomatic YAC128 and BACHD mice, glutamate transmission was increased in both D1 and D2 MSSNs, but in different ways. D1 cells displayed increased sEPSC frequencies and decreased paired-pulse ratios (PPRs) while D2 cells displayed larger evoked glutamate currents but no change in sEPSC frequencies or PPRs. D1 receptor modulation of sEPSCs was absent in D1-YAC128 cells at the early symptomatic stage but was restored by treating the slices with tetrabenazine. In contrast, in fully symptomatic YAC128 mice, glutamate transmission was decreased specifically in D1 cells, and D1 receptor modulation was normal in D1-YAC128 cells. Behaviorally, early symptomatic mice showed increased stereotypies that were decreased by tetrabenazine treatment. Together, these studies support differential imbalances in glutamate and DA transmission in direct and indirect pathway MSSNs. Stereotypic behavior at an early stage could be explained by increased glutamate activity and DA tone in direct pathway neurons, whereas hypokinesia at later stages could result from reduced input onto these neurons.
Collapse
|
29
|
Eisener-Dorman AF, Lawrence DA, Bolivar VJ. Behavioral and genetic investigations of low exploratory behavior in Il18r1(-/-) mice: we can't always blame it on the targeted gene. Brain Behav Immun 2010; 24:1116-25. [PMID: 20580925 PMCID: PMC2939265 DOI: 10.1016/j.bbi.2010.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 04/27/2010] [Accepted: 05/18/2010] [Indexed: 11/30/2022] Open
Abstract
The development of gene-targeting technologies has enabled research with immune system-related knockout mouse strains to advance our understanding of how cytokines and their receptors interact and influence a number of body systems, including the central nervous system (CNS). A critical issue when we are interpreting phenotypic data from these knockout strains is the potential role of genes other than the targeted one. Although many of the knockout strains have been made congenic on a C57BL/6 (B6) genetic background, there remains a certain amount of genetic material from the129 substrain that was used in the development of these strains. This genetic material could result in phenotypes incorrectly attributed to the targeted gene. We recently reported low-activity behavior in Il10(-/-) mice that was linked to this genetic material rather than the targeted gene itself. In the current study we confirm the generalizability of those earlier findings, by assessing behavior in Il18(-/-) and Il18r1(-/-) knockout mice. We identified low activity and high anxiety-like behaviors in Il18r1(-/-) mice, whereas Il18(-/-) mice displayed little anxiety-like behavior. Although Il18r1(-/-) mice are considered a congenic strain, we have identified substantial regions of 129P2-derived genetic material not only flanking the ablated Il18r1 on Chromosome 1, but also on Chromosomes 4, 5, 8, 10, and 14. Our studies suggest that residual 129-derived gene(s), rather than the targeted Il18r1 gene, is/are responsible for the low level of activity seen in the Il18r1(-/-) mice. Mapping studies are necessary to identify the gene or genes contributing to the low-activity phenotype.
Collapse
Affiliation(s)
- Amy F. Eisener-Dorman
- Wadsworth Center, New York State Department of Health, Albany, NY, USA,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - David A. Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY, USA,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | - Valerie J. Bolivar
- Wadsworth Center, New York State Department of Health, Albany, NY, USA,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA,Corresponding author: V.J. Bolivar, Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, New York 12208, USA,
| |
Collapse
|
30
|
Denny CA, Desplats PA, Thomas EA, Seyfried TN. Cerebellar lipid differences between R6/1 transgenic mice and humans with Huntington’s disease. J Neurochem 2010; 115:748-58. [DOI: 10.1111/j.1471-4159.2010.06964.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Dowie M, Howard M, Nicholson L, Faull R, Hannan A, Glass M. Behavioural and molecular consequences of chronic cannabinoid treatment in Huntington's disease transgenic mice. Neuroscience 2010; 170:324-36. [DOI: 10.1016/j.neuroscience.2010.06.056] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/26/2022]
|
32
|
Braunstein KE, Eschbach J, Ròna-Vörös K, Soylu R, Mikrouli E, Larmet Y, René F, Gonzalez De Aguilar JL, Loeffler JP, Müller HP, Bucher S, Kaulisch T, Niessen HG, Tillmanns J, Fischer K, Schwalenstöcker B, Kassubek J, Pichler B, Stiller D, Petersen A, Ludolph AC, Dupuis L. A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowth of striatal neurons. Hum Mol Genet 2010; 19:4385-98. [PMID: 20807776 DOI: 10.1093/hmg/ddq361] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The molecular motor dynein and its associated regulatory subunit dynactin have been implicated in several neurodegenerative conditions of the basal ganglia, such as Huntington's disease (HD) and Perry syndrome, an atypical Parkinson-like disease. This pathogenic role has been largely postulated from the existence of mutations in the dynactin subunit p150(Glued). However, dynactin is also able to act independently of dynein, and there is currently no direct evidence linking dynein to basal ganglia degeneration. To provide such evidence, we used here a mouse strain carrying a point mutation in the dynein heavy chain gene that impairs retrograde axonal transport. These mice exhibited motor and behavioural abnormalities including hindlimb clasping, early muscle weakness, incoordination and hyperactivity. In vivo brain imaging using magnetic resonance imaging showed striatal atrophy and lateral ventricle enlargement. In the striatum, altered dopamine signalling, decreased dopamine D1 and D2 receptor binding in positron emission tomography SCAN and prominent astrocytosis were observed, although there was no neuronal loss either in the striatum or substantia nigra. In vitro, dynein mutant striatal neurons displayed strongly impaired neuritic morphology. Altogether, these findings provide a direct genetic evidence for the requirement of dynein for the morphology and function of striatal neurons. Our study supports a role for dynein dysfunction in the pathogenesis of neurodegenerative disorders of the basal ganglia, such as Perry syndrome and HD.
Collapse
|
33
|
Hathorn T, Snyder-Keller A, Messer A. Nicotinamide improves motor deficits and upregulates PGC-1α and BDNF gene expression in a mouse model of Huntington's disease. Neurobiol Dis 2010; 41:43-50. [PMID: 20736066 DOI: 10.1016/j.nbd.2010.08.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022] Open
Abstract
Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by an expansion of the polyglutamine (polyQ) repeat in exon-1 in the Huntingtin gene (HTT). This results in misfolding and accumulation of the huntingtin (htt) protein, forming nuclear and cytoplasmic inclusions. HD is associated with dysregulation of gene expression as well as mitochondrial dysfunction. We hypothesized that by improving transcriptional regulation of genes necessary for energy metabolism, the HD motor phenotype would also improve. We therefore examined the protective effects of nicotinamide (NAM), a well-characterized water-soluble B vitamin that is an inhibitor of sirtuin1/class III NAD(+)-dependent histone deacetylase (HDAC). In this study, both mini-osmotic pumps and drinking water deliveries were tested at 250 mg NAM/kg/day, using the B6.HDR6/1 transgenic mouse model. Results were similar for both modes of delivery, and there was no evidence of toxicity. We found that NAM treatment increased mRNA levels of brain-derived neurotrophic factor (BDNF), and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis. Protein levels of BDNF were also significantly increased. In addition, NAM treatment increased PGC-1α activation in HD mice, pointing to a possible mode of action as a therapeutic. Critically, NAM treatment was able to improve motor deficits associated with the HD phenotype, tested as time courses of open field, rotarod, and balance beam activities. These improvements were substantial, despite the fact that NAM did not appear to reduce htt aggregation, or to prevent late-stage weight loss. Our study therefore concludes that NAM or similar drugs may be beneficial in clinical treatment of the motor dysfunctions of HD, while additional therapeutic approaches must be added to combat the aggregation phenotype and overall physiological decline.
Collapse
Affiliation(s)
- Tyisha Hathorn
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | | | | |
Collapse
|
34
|
How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. ADVANCES IN THE STUDY OF BEHAVIOR 2010. [DOI: 10.1016/s0065-3454(10)41007-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Bolivar VJ. Intrasession and intersession habituation in mice: from inbred strain variability to linkage analysis. Neurobiol Learn Mem 2009; 92:206-14. [PMID: 19496240 DOI: 10.1016/j.nlm.2009.02.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
When placed in a novel environment, mice tend to explore for a period of time, and then reduce the level of exploration. This reduction in locomotor or exploratory behavior is known as habituation and can occur within a single session or across sessions, respectively, termed intrasession and intersession habituation. Recent research indicates that there is a genetic component to habituation behavior and that some of the genes involved differ between the two types of habituation. The genetic evidence also suggests that intrasession habituation and intersession habituation are measuring somewhat different conceptual entities and with more such evidence may eventually help us understand the different pathways involved. Some of the genetic methods and tools used to unravel the roles of specific genes in both types of habituation are outlined here, with examples from the literature, as well as new data, to illustrate that this seemingly simple behavior is actually very complicated in terms of genetics. Evidence to date suggests that a number of genetic regions play roles in one or both types of habituation, and further research will be necessary to determine the specific genes involved.
Collapse
Affiliation(s)
- Valerie J Bolivar
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
36
|
Hayworth CR, Gonzalez-Lima F. Pre-symptomatic detection of chronic motor deficits and genotype prediction in congenic B6.SOD1(G93A) ALS mouse model. Neuroscience 2009; 164:975-85. [PMID: 19699279 DOI: 10.1016/j.neuroscience.2009.08.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 12/25/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable progressive paralytic motor neuron disease with limited therapeutic options. Since their creation by Gurney et al. (1994) [Science 264:1772-1775], transgenic superoxide dismutase-1 with glycine to alanine switch at codon 93 (SOD1(G93A)) mice have become the benchmark pre-clinical model for screening ALS therapies. Surprisingly, despite physiological, anatomical, ultrastructural and biochemical evidence of early motor system dysfunction, it has proven difficult to detect motor performance deficits in pre-symptomatic SOD1(G93A) mice. As an alternative to conventional forced motor tests, we investigated the progression of motor performance deficits in freely behaving pre-symptomatic congenic B6.SOD1(G93A) mice. We found that motor performance deficits began several weeks prior to the onset of overt clinical symptoms (postnatal day 45). More importantly, once motor performance deficits manifested, they persisted in parallel with disease progression. In addition, two physical measures of muscle girth revealed progressive hindlimb muscle atrophy that predicted genotype in individual pre-symptomatic mice with 80% accuracy. Together, these data suggest that muscle girth is a reliable and indirect measure of hindlimb muscle denervation and an early, objective marker for disease onset in congenic B6.SOD1(G93A) ALS mice. Moreover, we present regression equations based on hindlimb muscle girth for predicting genotype in future studies using B6.SOD1(G93A) mice. These findings support new objective criteria for clinical disease onset and provide objective measures that require little expertise. These studies demonstrate a cost-effective approach for more thorough evaluation of neuroprotective strategies that seek to disrupt disease mechanisms early in the disease process. To our knowledge, these findings are the first to report early chronic motor performance and physical deficits that are coincident with the earliest known motor dysfunction in any ALS mouse model.
Collapse
Affiliation(s)
- C R Hayworth
- Department of Psychology, Institute for Neuroscience, University of Texas at Austin, 2701 Speedway, Austin, TX 78712, USA.
| | | |
Collapse
|
37
|
Kraft JC, Osterhaus GL, Ortiz AN, Garris PA, Johnson MA. In vivo dopamine release and uptake impairments in rats treated with 3-nitropropionic acid. Neuroscience 2009; 161:940-9. [PMID: 19362126 DOI: 10.1016/j.neuroscience.2009.03.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/14/2009] [Accepted: 03/30/2009] [Indexed: 11/17/2022]
Abstract
Recent evidence has suggested that mitochondrial dysfunction may lead to impaired neurotransmitter exocytosis in transgenic Huntington's disease (HD) model mice. To gain insight into the impact of mitochondrial impairment on striatal dopamine release in vivo, we used fast-scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes to measure dopamine release and uptake kinetics in anesthetized Lewis rats continuously treated for 5 days with 3-nitropropionic acid (3NP). Our results indicate that, even though striatal dopamine content was unchanged, remotely stimulated dopamine release evoked per electrical stimulus pulse ([DA](p)) is decreased in 3NP-treated rats (33% of that observed in sham control rats) and that this decrease is uniform throughout all stereotaxic depths tested. Nevertheless, unlike data collected previously from transgenic HD model rodents, the maximum rate of dopamine uptake (V(max)) in 3NP-treated rats is diminished (30% of controls) while K(m) is unchanged. Treatment with 3NP also resulted in a corresponding decrease in locomotor activity, presumably due in part to the impaired dopamine release. These results indicate that dopamine release is degraded in this HD model, as is observed in transgenic HD model rodents; however, the results also imply that there are fundamental differences in dopamine uptake between 3NP-treated animals and transgenic animals.
Collapse
Affiliation(s)
- J C Kraft
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045-7582, USA
| | | | | | | | | |
Collapse
|
38
|
Gil JM, Rego AC. The R6 lines of transgenic mice: a model for screening new therapies for Huntington's disease. ACTA ACUST UNITED AC 2008; 59:410-31. [PMID: 19118572 DOI: 10.1016/j.brainresrev.2008.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/07/2008] [Accepted: 12/09/2008] [Indexed: 02/05/2023]
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by an expanded CAG repeat in the HD gene that results in cortical and striatal degeneration, and mutant huntingtin aggregation. Current treatments are unsatisfactory. R6 transgenic mice replicate many features of the human condition, show early onset of symptoms and fast disease progression, being one of the most used models for therapy screening. Here we review the therapies that have been tested in these mice: environmental enrichment, inhibition of histone deacetylation and methylation, inhibition of misfolding and oligomerization, transglutaminase inhibition, rescue of metabolic impairment, amelioration of the diabetic phenotype, use of antioxidants, inhibition of excitotoxicity, caspase inhibition, transplantation, genetic manipulations, and restoration of neurogenesis. Although many of these treatments were beneficial in R6 mice, they may not be as effective in HD patients, and thus the search for a combination of therapies that will rescue the human condition continues.
Collapse
Affiliation(s)
- Joana M Gil
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, BC, V8W 2Y2, Canada.
| | | |
Collapse
|
39
|
McLear JA, Lebrecht D, Messer A, Wolfgang WJ. Combinational approach of intrabody with enhanced Hsp70 expression addresses multiple pathologies in a fly model of Huntington's disease. FASEB J 2008; 22:2003-11. [PMID: 18199697 DOI: 10.1096/fj.07-099689] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intracellular antibodies (intrabodies) and the chaperone, heat shock protein 70 (Hsp70), have each shown potential as therapeutics for neurodegenerative diseases in vitro and in vivo. Investigating combinational therapy in an established Drosophila model of Huntington's disease (HD), we show that Hsp70 and intrabody actually affect different aspects of the disease. Overexpression of human Hsp70 resulted in improved survival of HD flies to eclosion and prolonged adult life compared with intrabody treatment alone. An additive effect on adult survival was observed when the two therapies were combined. Intrabody was more successful at suppressing neurodegeneration in photoreceptors than was Hsp70. Furthermore, Hsp70 treatment alone did not block aggregation of mutant huntingtin, a process slowed by intrabody. Expression of each is restricted to the nervous system, which implies different neuronal populations respond distinctly to these treatments. Importantly, a role for endogenous Hsp70 in suppression of mutant huntingtin pathology was confirmed by a separate set of genetic studies in which HD flies deficient for Hsp70 showed significantly increased pathology. We conclude that a combinational approach of intrabody with enhanced Hsp70 expression is beneficial in addressing multiple pathologies associated with HD and has potential application for other neurodegenerative disorders.
Collapse
Affiliation(s)
- J A McLear
- Division of Genetic Disorders, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, NY 12208, USA
| | | | | | | |
Collapse
|
40
|
Gene-environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington's disease transgenic mice. Neurobiol Dis 2007; 29:490-504. [PMID: 18165017 DOI: 10.1016/j.nbd.2007.11.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 11/21/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder characterized by motor, cognitive and psychiatric symptoms. Here, we show that R6/1 (HD) mice have deficits in short-term hippocampal-dependent memory prior to onset of motor symptoms. HD mice also exhibit impaired performance on a test of long-term spatial memory, however, environmental enrichment enhanced spatial learning and significantly ameliorated this memory deficit in HD mice. Analysis of the presynaptic vesicle protein synaptophysin showed no differences between standard-housed wild-type and HD littermates, however, enrichment increased synaptophysin levels in the frontal cortex and hippocampus in both groups. In comparison, analysis of postsynaptic proteins revealed that HD animals show decreased levels of PSD-95 and GluR1, but no change in levels of gephyrin. Furthermore, at 12 weeks of age when we observe a beneficial effect of enrichment on spatial learning in HD mice, enrichment also delays the onset of a deficit in hippocampal PSD-95 levels. Our results show that cognitive deficits in HD mice can be ameliorated by environmental enrichment and suggest that changes in synaptic composition may contribute to the cognitive alterations observed.
Collapse
|
41
|
Hodges A, Hughes G, Brooks S, Elliston L, Holmans P, Dunnett SB, Jones L. Brain gene expression correlates with changes in behavior in the R6/1 mouse model of Huntington's disease. GENES BRAIN AND BEHAVIOR 2007; 7:288-99. [PMID: 17696994 DOI: 10.1111/j.1601-183x.2007.00350.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegeneration that causes a severe progressive illness and early death. Several animal models of the disease have been generated carrying the causative mutation and these have shown that one of the earliest molecular signs of the disease process is a substantial transcriptional deficit. We examined the alterations in brain gene expression in the R6/1 mouse line over the course of the development of phenotypic signs from 18 to 27 weeks. Changes in R6/1 mice were similar to those previously reported in R6/2 mice, and gene ontology analysis shows that pathways related to intracellular and electrical signaling are altered among downregulated genes and lipid biosynthesis and RNA processes among upregulated genes. The R6/1 mice showed deficits in rotarod performance, locomotor activity and exploratory behavior over the time-course. We have correlated the alterations in gene expression with changes in behavior seen in the mice and find that few alterations in gene expression correlate with all behavioral changes but rather that different subsets of the changes are uniquely correlated with one behavior only. This indicates that multiple behavioral tasks assessing different behavioral domains are likely to be necessary in therapeutic trials in mouse models of HD.
Collapse
Affiliation(s)
- A Hodges
- Department of Psychological Medicine, Wales School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Pang TYC, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington's disease transgenic mice. Neuroscience 2006; 141:569-584. [PMID: 16716524 DOI: 10.1016/j.neuroscience.2006.04.013] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/15/2006] [Accepted: 04/06/2006] [Indexed: 12/27/2022]
Abstract
Huntington's disease is a fatal neurodegenerative disorder caused by a mutation of the huntingtin gene and involves progressive motor abnormalities (including chorea), cognitive deficits (dementia) as well as psychiatric symptoms. We have previously demonstrated that environmental enrichment slows the onset and progression of Huntington's disease in transgenic mice. Here, we investigated the effects of enhanced physical exercise on disease progression and brain-derived neurotrophic factor expression. Standard-housed Huntington's disease mice developed phenotypic rear-paw clasping by 16 weeks of age, displayed abnormal rearing behavior, deficits in motor co-ordination and of spatial working memory. Huntington's disease mice with access to running wheels exhibited delayed onset of rear-paw clasping, normalized levels of rearing behavior and amelioration of the cognitive deficits. However, in contrast to our previous environmental enrichment studies, there was no rescue of motor coordination deficits in wheel-running Huntington's disease mice. An abnormal accumulation of brain-derived neurotrophic factor protein in the frontal cortex of Huntington's disease mice was unaffected by running. Striatal and hippocampal brain-derived neurotrophic factor protein levels were unchanged. Brain-derived neurotrophic factor mRNA levels were reduced in the anterior cortex, striatum and hippocampus of Huntington's disease mice, and only striatal deficits were ameliorated by running. Overall, we show that voluntary physical exercise delays the onset of Huntington's disease and the decline in cognitive ability. In addition, our results reveal that some aspects of hippocampal dependent memory are not entirely reliant on sustained hippocampal brain-derived neurotrophic factor expression.
Collapse
Affiliation(s)
- T Y C Pang
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - N C Stam
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - J Nithianantharajah
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - M L Howard
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - A J Hannan
- Howard Florey Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
43
|
Milnerwood AJ, Cummings DM, Dallérac GM, Brown JY, Vatsavayai SC, Hirst MC, Rezaie P, Murphy KPSJ. Early development of aberrant synaptic plasticity in a mouse model of Huntington's disease. Hum Mol Genet 2006; 15:1690-703. [PMID: 16600988 DOI: 10.1093/hmg/ddl092] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder characterized by progressive motor, psychiatric and cognitive decline. Marked neuronal loss occurs in the cortex and striatum. HD is inherited in an autosomal dominant fashion and caused by a trinucleotide repeat expansion (CAG) in the gene encoding the protein huntingtin. Predictive genetic testing has revealed early cognitive deficits in asymptomatic gene carriers at a time when there is little evidence for cell death, suggesting that impaired cognition results from a cellular or synaptic deficit, such as aberrant synaptic plasticity. Altered hippocampal long-term potentiation has been reported in mouse models of HD; however, the relationship between synaptic dysfunction and phenotype progression has not previously been characterized. We examined the age-dependency of aberrant hippocampal synaptic plasticity in the R6/1 mouse model of HD. Long-term depression (LTD) is a developmentally regulated form of plasticity, which normally declines by early adulthood. Young R6/1 mice follow the same pattern of LTD expression as controls, in that they express LTD in the first weeks of life, and then lose the ability with age. Unlike controls, R6/1 synapses later regain the ability to support LTD. This is associated with nuclear localization of mutant huntingtin, but occurs months prior to the formation of nuclear aggregates. We present the first detailed description of a progressive derailment of a functional neural correlate of cognitive processing in HD.
Collapse
|
44
|
Johnson MA, Rajan V, Miller CE, Wightman RM. Dopamine release is severely compromised in the R6/2 mouse model of Huntington's disease. J Neurochem 2006; 97:737-46. [PMID: 16573654 DOI: 10.1111/j.1471-4159.2006.03762.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, alterations in dopamine signaling have been implicated in Huntington's disease. In this work, dopamine release and uptake was measured in striatal slices from the R6/2 transgenic mouse model of Huntington's disease using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. Dopamine release in brain slices from 6-week-old R6/2 mice is substantially reduced (53% of wild type), while dopamine uptake is unaffected. In agreement with this, R6/2 mice injected with the dopamine uptake inhibitor cocaine exhibited a blunted motor activity response (54% of wild type). At 10 weeks of age, an even more dramatic motor activity decrease in response to cocaine injection (21% of wild type) was observed. Moreover, the pre-drug activity of 10-week-old R6/2 mice was significantly reduced (by 37%) compared with 6-week-old R6/2 mice. Striatal dopamine release decreased with age, indicating that progressive alterations in dopaminergic pathways may affect motor activity. The inhibition constants of cocaine and methamphetamine (METH) determined in brain slices differed little between genotype or age group, suggesting that the decreased responses to cocaine and METH arise from compromised dopamine release rather than differences in uptake or drug action. Collectively, these data demonstrate (i) a reduction in the ability of dopamine terminals to release dopamine and (ii) the importance of this attenuation of release on the motor symptoms of Huntington's disease.
Collapse
Affiliation(s)
- Michael A Johnson
- Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
45
|
Levine MS, Cepeda C, Hickey MA, Fleming SM, Chesselet MF. Genetic mouse models of Huntington's and Parkinson's diseases: illuminating but imperfect. Trends Neurosci 2004; 27:691-7. [PMID: 15474170 DOI: 10.1016/j.tins.2004.08.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genetic mouse models based on identification of genes that cause Huntington's and Parkinson's diseases have revolutionized understanding of the mechanistic pathophysiological progression of these disorders. These models allow the earliest manifestations of the diseases to be identified, and they display behavioral, neuropathological and electrophysiological deficits that can be followed over time in mechanistic and drug studies. An intriguing feature is that they do not reproduce the relatively selective and massive cell loss characterizing the human diseases. There is more information on Huntington's disease models because the disorder involves a single gene that was identified over ten years ago; genetic mutations causing Parkinson's disease are rare and were discovered more recently, and models of the disease have been generated only within the past few years.
Collapse
Affiliation(s)
- Michael S Levine
- Mental Retardation Research Center, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|