1
|
Yaoita F, Tsuchiya M, Arai Y, Tadano T, Tan-No K. Involvement of catecholaminergic and GABAAergic mediations in the anxiety-related behavior in long-term powdered diet-fed mice. Neurochem Int 2018; 124:1-9. [PMID: 30529642 DOI: 10.1016/j.neuint.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/26/2022]
Abstract
Dietary habits are important factors which affect metabolic homeostasis and the development of emotion. We have previously shown that long-term powdered diet feeding in mice increases spontaneous locomotor activity and social interaction (SI) time. Moreover, that diet causes changes in the dopaminergic system, especially increased dopamine turnover and decreased dopamine D4 receptor signals in the frontal cortex. Although the increased SI time indicates low anxiety, the elevated plus maze (EPM) test shows anxiety-related behavior and impulsive behavior. In this study, we investigated whether the powdered diet feeding causes changes in anxiety-related behavior. Mice fed a powdered diet for 17 weeks from weaning were compared with mice fed a standard diet (control). The percentage (%) of open arm time and total number of arm entries were increased in powdered diet-fed mice in the EPM test. We also examined the effects of diazepam, benzodiazepine anti-anxiety drug, bicuculline, GABA-A receptor antagonist, methylphenidate, dopamine transporter (DAT) and noradrenaline transporter (NAT) inhibitor, atomoxetine, selective NAT inhibitor, GBR12909, selective DAT inhibitor, and PD168077, selective dopamine D4 receptor agonist, on the changes of the EPM in powdered diet-fed mice. Methylphenidate and atomoxetine are clinically used to treat attention deficit/hyperactivity disorder (ADHD) symptoms. The % of open arm time in powdered diet-fed mice was decreased by treatments of atomoxetine, methylphenidate and PD168077. Diazepam increased the % of open arm time in control diet-fed mice, but not in powdered diet-fed mice. The powdered diet feeding induced a decrease in GABA transaminase, GABA metabolic enzymes, in the frontal cortex. Moreover, the powdered diet feeding induced an increase in NAT expression, but not DAT expression, in the frontal cortex. These results suggest that the long-term powdered diet feeding may cause low anxiety or impulsivity, possibly via noradrenergic and/or dopaminergic, and GABAAergic mediations and increase the risk for onset of ADHD-like behaviors.
Collapse
Affiliation(s)
- Fukie Yaoita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.
| | - Masahiro Tsuchiya
- Department of Nursing, Tohoku Fukushi University, 1-8-1 Kunimi, Aoba-ku, Sendai, 981-8522, Japan
| | - Yuichiro Arai
- Tokyo Ariake University of Medical and Health Science, 2-9-1 Ariake, Koto-Ku, Tokyo, 135-0063, Japan
| | - Takeshi Tadano
- Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medicine Sciences, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| |
Collapse
|
2
|
Liao C, Han Q, Ma Y, Su B. Age-related gene expression change of GABAergic system in visual cortex of rhesus macaque. Gene 2016; 590:227-33. [PMID: 27196061 DOI: 10.1016/j.gene.2016.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 01/31/2023]
Abstract
Degradation of visual function is a common phenomenon during aging and likely mediated by change in the impaired central visual pathway. Treatment with GABA or its agonist could recover the ability of visual neurons in the primary visual cortex of senescent macaques. However, little is known about how GABAergic system change is related to the aged degradation of visual function in nonhuman primate. With the use of quantitative PCR method, we measured the expression change of 24 GABA related genes in the primary visual cortex (Brodmann's 17) of different age groups. In this study, both of mRNA and protein of glutamic acid decarboxylase (GAD65) were measured by real-time RT-PCR and Western blot, respectively. Results revealed that the level of GAD65 message was not significantly altered, but the proteins were significantly decreased in the aged monkey. As GAD65 plays an important role in GABA synthesis, the down-regulation of GAD65 protein was likely the key factor leading to the observed GABA reduction in the primary visual cortex of the aged macaques. In addition, 7 of 14 GABA receptor genes were up-regulated and one GABA receptor gene was significantly reduced during aging process even after Banjamini correction for multiple comparisons (P<0.05). These results suggested that the dysregulation of GAD65 protein might contribute to some age-related neural visual dysfunctions and most of GABA receptor genes induce a clear indication of compensatory effect for the reduced GABA release in the healthy aged monkey cortex.
Collapse
Affiliation(s)
- Chenghong Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China; Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, 570228, China
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China; Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Agriculture, Hainan University, Haikou, 570228, China
| | - Yuanye Ma
- Laboratory of the Primate Model for Brain Diseases and Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
3
|
Li Y, Wang S, Ran K, Hu Z, Liu Z, Duan K. Differential hippocampal protein expression between normal aged rats and aged rats with postoperative cognitive dysfunction: A proteomic analysis. Mol Med Rep 2015; 12:2953-60. [PMID: 25936412 DOI: 10.3892/mmr.2015.3697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/15/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the differences in the expression of hippocampal proteins between normal control aged rats and aged rats with postoperative cognitive dysfunction (POCD). A total of 24 aged rats were randomly divided into a surgery group (n=12) and a control group (n=12). The rats in the surgery group were treated with 2 h isoflurane anesthesia and splenectomy, while the rats in the control group received 40% oxygen for 2 h without surgery. The cognitive functions of the two groups were examined using a Y-maze test. The protein expression profiles of the hippocampus of six aged rats (three rats with POCD and three from the normal control group) were assessed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. A total of three differential proteins were further confirmed between the POCD rats and normal rats using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression levels of 21 proteins in the rats with POCD were significantly different compared with the normal control rats. These proteins were functionally clustered to synaptic plasticity (three proteins), oxidative stress (four proteins), energy production (six proteins), neuroinflammation (three proteins) and glutamate metabolism (two proteins). In addition, three proteins (fatty acid binding protein 7, brain, glutamate dehydrogenase 1 and glutamine synthetase), associated with astrocytic function, were significantly different in the rats with POCD compared with those in the normal control (P<0.05). Similar changes in the mRNA expression levels of the three proteins in the hippocampi of POCD rats were also detected using RT-qPCR. Neuroinflammation, glutamate toxicity and oxidative stress were possibly involved in the pathological mechanism underlying POCD in aged rats. In addition, astrocytes may also be important in POCD in aged rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Saiying Wang
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ke Ran
- Department of Anesthesiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhonghua Hu
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhaoqian Liu
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410008, P.R. China
| | - Kaiming Duan
- Department of Anesthesiology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
4
|
Park JH, Lee CH, Yoo KY, Choi JH, Hwang IK, Lee JY, Kang IJ, Won MH. FoxO3a immunoreactivity is markedly decreased in the dentate gyrus, not the hippocampus proper, of the aged gerbil. Exp Gerontol 2011; 46:836-40. [PMID: 21718780 DOI: 10.1016/j.exger.2011.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/23/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
Forkhead box O 3a (FoxO3a) has been known to link with aging process and senescence. In this study, we investigated the age-related changes of FoxO3a in the gerbil hippocampus using immunohistochemistry and western blot analysis. In the postnatal month 3 (PM 3) group, FoxO3a immunoreactivity was well detected in pyramidal cells of the hippocampus proper, and granule cells of the dentate gyrus. FoxO3a immunoreactivity in the pyramidal cells of the hippocampus proper was not changed until PM 24. However, in the dentate granule cells, FoxO3a immunoreactivity was much decreased in the dorsal blade, not the ventral blade, of the granule cell layer in the PM 6 and 12 groups compared to the PM 3 group. At PM 24, FoxO3a immunoreactivity in the granule cells was hardly detected. Western blot analysis showed that FoxO3a level was significantly decreased in the PM 24 group. These results indicate that FoxO3a immunoreactivity and levels are markedly decreased in the dentate gyrus of the aged gerbil hippocampus.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2011; 407:185-90. [PMID: 21371425 DOI: 10.1016/j.bbrc.2011.02.136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 02/26/2011] [Indexed: 11/22/2022]
Abstract
Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomyces cerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of (1)H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest reduced activity of the GABA-metabolizing enzymes extends lifespan by shifting carbon metabolism toward respiration, as calorie restriction does.
Collapse
|
6
|
Time Course of Changes in Immunoreactivities of GABA Degradation Enzymes in the Hippocampal CA1 Region after Adrenalectomy in Gerbils. Neurochem Res 2007; 33:938-44. [DOI: 10.1007/s11064-007-9537-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
|
7
|
Hwang IK, Moon SM, Yoo KY, Li H, Kwon HD, Hwang HS, Choi SK, Lee BH, Kim JD, Won MH. c-Myb immunoreactivity, protein and mRNA levels significantly increase in the aged hippocampus proper in gerbils. Neurochem Res 2007; 32:1091-7. [PMID: 17401667 DOI: 10.1007/s11064-006-9278-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 12/28/2006] [Indexed: 11/28/2022]
Abstract
Myb genes are a family of transcription factors and have been implicated in the control of the proliferation and differentiation of normal and transformed cells. c-Myb is the best characterized member of the myb family. In the present study, we investigated age-dependent changes of c-myb immunoreactivity, its protein and mRNA level in the hippocampus proper (CA1-3 regions) at various age stages in gerbils. In the postnatal month 1 (PM 1) group, c-myb immunoreactivity was detected in non-pyramidal neurons of the strata oriens and radiatum as well as in pyramidal neurons of the stratum pyramidale. At PM 3, c-myb immunoreactivity and its protein level were similar to those at PM 1. Thereafter, c-myb immunoreactivity and its protein level were increased with time. In the PM 24 group, c-myb immunoreactivity, its protein and mRNA levels were highest. These results suggest that the significant increase of c-myb immunoreactivity, protein and mRNA levels in the aged hippocampus may be associated with neuronal aging.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yoo KY, Hwang IK, Kang IJ, Kang TC, Lee HJ, Kang HY, Lee HY, Oh YS, Won MH. Age-Dependent Changes in Iron Deposition in the Gerbil Hippocampus. Exp Anim 2007; 56:21-8. [PMID: 17283887 DOI: 10.1538/expanim.56.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In this study, we focused on age-dependent changes in intracellular iron deposition in the gerbil hippocampus. At 1 month of age (PM 1), iron reactivity was weak in the gerbil hippocampus. At this time, cells in the polymorphic layer of the dentate gyrus showed weak iron reactivity. At PM 3, iron reactivity in cells had not changed significantly. Thereafter, iron reactivity in the CA1-3 regions and in the dentate gyrus increased with time until PM 18. At PM 24, iron reactivity in all the subfields was similar to that at PM 18. In animals aged PM 18-24, iron positive cells had various shapes, and had processes which contained iron. These results suggest that the increase of iron deposition may be associated with normal aging and that the iron deposition in the aged hippocampus is different according to hippocampal subfields.
Collapse
Affiliation(s)
- Ki-Yeon Yoo
- Department of Anatomy, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Patrylo PR, Williamson A. The effects of aging on dentate circuitry and function. PROGRESS IN BRAIN RESEARCH 2007; 163:679-96. [PMID: 17765745 DOI: 10.1016/s0079-6123(07)63037-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) undergoes a variety of anatomic, physiologic, and behavioral changes during aging. One region that has received a great deal of attention is the hippocampal formation due to the increased incidence of impaired spatial learning and memory with age. The hippocampal formation is also highly susceptible to Alzheimer's disease, ischemia/hypoxia, and seizure generation, the three most common aging-related neurological disorders. While data reveal that the dentate gyrus plays a key role in hippocampal function and dysfunction, the majority of electrophysiological studies that have examined the effects of age on the hippocampal formation have focused on CA3 and CA1. We perceive this to be an oversight and consequently will highlight data in this review which demonstrate an age-related disruption in dentate circuitry and function, and propose that these changes contribute to the decline in hippocampal-dependent behavior seen with "normal" aging.
Collapse
Affiliation(s)
- Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine Carbondale, IL 62901, USA.
| | | |
Collapse
|
10
|
Hwang IK, Yoo KY, Jung BK, Cho JH, Kim DH, Kang TC, Kwon YG, Kim YS, Won MH. Correlations between neuronal loss, decrease of memory, and decrease expression of brain-derived neurotrophic factor in the gerbil hippocampus during normal aging. Exp Neurol 2006; 201:75-83. [PMID: 16678162 DOI: 10.1016/j.expneurol.2006.02.129] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 02/19/2006] [Accepted: 02/21/2006] [Indexed: 11/28/2022]
Abstract
It is known that the hippocampus has vital functions in learning and memory, behavioral regulation, and activity-dependent synaptic plasticity, and that the hippocampus contains high levels of brain-derived neurotrophic factor (BDNF). In the present study, we followed age-dependent changes of BDNF immunoreactivity and protein level in the gerbil hippocampus to identify the correlation between BDNF and aging. BDNF immunoreactivity and its protein level significantly increased at postnatal month (PM) 12 in the hippocampus and thereafter reduced. At PM 24, BDNF immunoreactivity in the hippocampal CA1 region and dentate gyrus was similar to that in the PM 1 group, whereas BDNF immunoreactivity in the CA2/3 region at PM 24 was higher than that at PM 1. In the PM 24 group, an age-related neuronal loss and the decrease of reference and working memory were observed. In conclusion, our results suggest that observed reduction in BDNF and reference memory may be associated with age-dependent neuronal loss in the hippocampal CA1 region.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hwang IK, Yoo KY, Kim DS, Kang TC, Lee BH, Kim YS, Won MH. Chronological distribution of Rip immunoreactivity in the gerbil hippocampus during normal aging. Neurochem Res 2006; 31:1119-25. [PMID: 16927168 DOI: 10.1007/s11064-006-9129-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2006] [Indexed: 11/24/2022]
Abstract
Age-dependent studies on oligodendrocytes, which are the myelinating cells in the central nervous system, have been relatively less investigated. We examined age-dependent changes in Rip immunoreactivity and its protein level in the gerbil hippocampus during normal aging using immunohistochemistry and Western blot analysis with Rip antibody, an oligodendrocyte marker. Rip immunoreactivity and its protein level in the hippocampal CA1 region significantly increased at postnatal month 3 (PM 3). Thereafter, they decreased in the hippocampal CA1 region with age. At PM 24, Rip immunoreactive processes in the hippocampal CA1 region markedly decreased in the stratum radiatum. In the hippocampal CA2/3 region and dentate gyrus, the pattern of changes in Rip immunoreactivity and its protein level was similar to those in the hippocampal CA1 region; however, no significant changes were found in the CA2/3 region and dentate gyrus at various age stages. These results indicate that Rip immunoreactivity and protein level in the hippocampal CA1 region decreases significantly at PM 24 compared to the CA2/3 region and dentate gyrus.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chuncheon, 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Hwang IK, Kim DW, Jung JY, Yoo KY, Cho JH, Kwon OS, Kang TC, Choi SY, Kim YS, Won MH. Age-dependent changes of pyridoxal phosphate synthesizing enzymes immunoreactivities and activities in the gerbil hippocampal CA1 region. Mech Ageing Dev 2005; 126:1322-30. [PMID: 16207494 DOI: 10.1016/j.mad.2005.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
In the present study, age-related changes of pyridoxal 5'-phosphate (PLP) synthesizing enzymes, pyridoxal kinase (PLK) and pyridoxine 5'-phosphate oxidase (PNPO), their protein contents and activities were examined in the gerbil hippocampus proper. Significant age-dependent changes in PLK and PNPO immunoreactivities were found in the CA1 region, but not in the CA2/3 region. In the postnatal month 1 (PM 1) group, PLK and PNPO immunoreactivities were detected mainly in the stratum pyramidale of the CA1 region. PLK and PNPO immunoreactivities and their protein contents were highest in the PM 6 group, showing that many CA1 pyramidal cells had strong PLK and PNPO immunoreactivities. Thereafter, PLK and PNPO immunoreactivities started to decrease and were very low at PM 24. Alterations in the change patterns in protein contents and total activities of PLK and PNPO corresponded to the immunohistochemical data, but their specific activities were not altered in any experimental group. Based on double immunofluorescence study, PLK and PNPO immunoreactive cells in the strata oriens and radiatum were identified as GABAergic cells. Therefore, decreases of PLK and PNPO in the hippocampal CA1 region of aged brains may be involved in aging processes related with gamma-aminobutyric acid (GABA) function.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|