1
|
Qi Z, Yuan S, Zhou X, Ji X, Liu KJ. Isobaric Tags for Relative and Absolute Quantitation-Based Quantitative Serum Proteomics Analysis in Ischemic Stroke Patients With Hemorrhagic Transformation. Front Cell Neurosci 2021; 15:710129. [PMID: 34512266 PMCID: PMC8425324 DOI: 10.3389/fncel.2021.710129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
Hemorrhagic transformation (HT), which occurs with or without reperfusion treatments (thrombolysis and/or thrombectomy), deteriorates the outcomes of ischemic stroke patients. It is essential to find clinically reliable biomarkers that can predict HT. In this study, we screened for potential serum biomarkers from an existing blood bank and database with 243 suspected acute ischemic stroke (AIS) patients. A total of 37 patients were enrolled, who were diagnosed as AIS without receiving reperfusion treatment. They were divided into two groups based on whether they were accompanied with HT or not (five HT and 32 non-HT). Serum samples were labeled by isobaric tags for relative and absolute quantitation (iTRAQ) and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and compared under NCBInr database. A total of 647 proteins in sera samples were captured, and the levels of 17 proteins (12 upregulated and five downregulated) were significantly different. These differentially expressed proteins were further categorized with Gene Ontology functional classification annotation and Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis into biological processes. Further protein–protein interaction analysis using String database discovered that, among the differentially expressed proteins, 10 pairs of proteins were found to have crosstalk connections, which may have direct (physical) and indirect (functional) interactions for the development of HT. Our findings suggest that these differentially expressed proteins could serve as potential biomarkers for predicting HT after ischemic stroke.
Collapse
Affiliation(s)
- Zhifeng Qi
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shuhua Yuan
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Xunming Ji
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
2
|
Khushafa T, Jing L, Zhaojun Z, Jiameng S, Haixia Z. Insights into the biomarkers of viral encephalitis from clinical patients. Pathog Dis 2020; 79:6006267. [PMID: 33238302 DOI: 10.1093/femspd/ftaa073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND biomarkers can be helpful in identifying patients who may profit by explicit treatments or evaluating the reaction to the treatment of specific disease. Finding unique biomarkers in the process of disease could help clinicians in identifying serious disease in the early stage, so as to improve prognosis. OBJECTIVE these investigations, nonetheless, have made constrained progress. Numerous infections are known to cause intense viral encephalitis (VE) in people which can cause a variable level of meningeal just as parenchymal aggravation. Initial clinical manifestations in most encephalitis are nonspecific, resembling a viral-like illness. However, with disease progression, symptoms can become quite severe and fatal, including prominent cranial hypertension, cognitive problems, cerebral hernia and respiratory failure. Forwards: the clinical and research center discoveries in huge numbers of those viral issues are to a great extent comparable and in this way increasingly explicit biomarkers for indicative and prognostic intentions are justified. These biomarkers are progressively significant in the acknowledgment and treatment of the viral central nervous system (CNS) issue. CONCLUSION Clinical manifestations have been the indicative approaches for analysis of viral encephalitis. Lots of studies have been endeavored to distinguish progressively objective laboratory-based quantitative CSF biomarkers for VE.
Collapse
Affiliation(s)
- Thekra Khushafa
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Xiangya Road No. 110, Changsha 410078, Hunan, China
| | - Liu Jing
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Xiangya Road No. 110, Changsha 410078, Hunan, China
| | - Zeng Zhaojun
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Xiangya Road No. 110, Changsha 410078, Hunan, China
| | - Sun Jiameng
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Xiangya Road No. 110, Changsha 410078, Hunan, China
| | - Zhu Haixia
- The Third Xiangya Hospital, Central South University, Tongzipo Road No. 138, Changsha 410013, Hunan, China
| |
Collapse
|
3
|
Ayaydın H, Kirmit A, Çelik H, Akaltun İ, Koyuncu İ, Bilgen Ulgar Ş. High Serum Levels of Serum 100 Beta Protein, Neuron-specific Enolase, Tau, Active Caspase-3, M30 and M65 in Children with Autism Spectrum Disorders. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:270-278. [PMID: 32329316 PMCID: PMC7242104 DOI: 10.9758/cpn.2020.18.2.270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 12/27/2022]
Abstract
Objective The purpose of this study was therefore to investigate whether neuronal, axonal, and glial cell markers (Neuron-specific enolase [NSE], tau, serum 100 beta protein [S100B], respectively) and apoptosis markers (active caspase 3, M30, M65) and whether these parameters can be used as diagnostic biomarkers in autism spectrum disorders (ASD). Methods This study measured the serum S100B, NSE, tau, active caspase 3, M30, and M65 levels in 43 patients with ASD (aged 3−12 years) and in 41 age- and sex-matched healthy controls. ASD severity was rated using the Childhood Autism Rating Scale. The serum levels were determined in the biochemistry laboratory using the ELISA technique. The receiver operator characteristics curve method was employed to evaluate the accuracy of the parameters in diagnosing ASD. Results Serum S100B, tau, NSE, active caspase-3, M30, and M65 levels were significantly higher in the patient group than in the control group (p < 0.001, p = 0.002, p = 0.002, p = 0.005, p < 0.001, and p = 0.004, respectively). The cut-off value of S100B was 48.085 pg/ml (sensitivity: 74.4%, specificity: 80.5%, areas under the curve: 0.879, p < 0.001). Conclusion Apoptosis increased in children with ASD, and neuronal, axonal, and glial cell injury was observed. In addition, S100B may be an important diagnostic biomarker in patients with ASD. Apoptosis, and neuronal, axonal and astrocyte pathologies may play a significant role in the pathogenesis of ASD, and further studies are now required to confirm this.
Collapse
Affiliation(s)
- Hamza Ayaydın
- Departments of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Adnan Kirmit
- Departments of Biochemistry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Hakim Çelik
- Departments of Physiology, Faculty of Medicine, Harran University, Şanlıurfa, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - İsmail Akaltun
- Department of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - İsmail Koyuncu
- Departments of Biochemistry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| | - Şermin Bilgen Ulgar
- Departments of Child and Adolescent Psychiatry, Gaziantep Dr. Ersin Arslan Training and Research Hospital, Gaziantep, Turkey
| |
Collapse
|
4
|
Yi NX, Zhou LY, Wang XY, Song YJ, Han HH, Zhang TS, Wang YJ, Shi Q, Xu H, Liang QQ, Zhang T. MK-801 attenuates lesion expansion following acute brain injury in rats: a meta-analysis. Neural Regen Res 2019; 14:1919-1931. [PMID: 31290450 PMCID: PMC6676887 DOI: 10.4103/1673-5374.259619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE: To evaluate the efficacy and safety of MK-801 and its effect on lesion volume in rat models of acute brain injury. DATA SOURCES: Key terms were “stroke”, “brain diseases”, “brain injuries”, “brain hemorrhage, traumatic”, “acute brain injury”, “dizocilpine maleate”, “dizocilpine”, “MK-801”, “MK801”, “rat”, “rats”, “rattus” and “murine”. PubMed, Cochrane library, EMBASE, the China National Knowledge Infrastructure, WanFang database, the VIP Journal Integration Platform (VJIP) and SinoMed databases were searched from their inception dates to March 2018. DATA SELECTION: Studies were selected if they reported the effects of MK-801 in experimental acute brain injury. Two investigators independently conducted literature screening, data extraction, and methodological quality assessments. OUTCOME MEASURES: The primary outcomes included lesion volume and brain edema. The secondary outcomes included behavioral assessments with the Bederson neurological grading system and the water maze test 24 hours after brain injury. RESULTS: A total of 52 studies with 2530 samples were included in the systematic review. Seventeen of these studies had a high methodological quality. Overall, the lesion volume (34 studies, n = 966, MD = −58.31, 95% CI: −66.55 to −50.07; P < 0.00001) and degree of cerebral edema (5 studies, n = 75, MD = −1.21, 95% CI: −1.50 to −0.91; P < 0.00001) were significantly decreased in the MK-801 group compared with the control group. MK-801 improved spatial cognition assessed with the water maze test (2 studies, n = 60, MD = −10.88, 95% CI: −20.75 to −1.00; P = 0.03) and neurological function 24 hours after brain injury (11 studies, n = 335, MD = −1.04, 95% CI: −1.47 to −0.60; P < 0.00001). Subgroup analysis suggested an association of reduction in lesion volume with various injury models (34 studies, n = 966, MD = −58.31, 95% CI: −66.55 to −50.07; P = 0.004). Further network analysis showed that 0–1 mg/kg MK-801 may be the optimal dose for treatment in the middle cerebral artery occlusion animal model. CONCLUSION: MK-801 effectively reduces brain lesion volume and the degree of cerebral edema in rat models of experimental acute brain injury, providing a good neuroprotective effect. Additionally, MK-801 has a good safety profile, and its mechanism of action is well known. Thus, MK-801 may be suitable for future clinical trials and applications.
Collapse
Affiliation(s)
- Nan-Xing Yi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Long-Yun Zhou
- Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education; School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Yun Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Hai-Hui Han
- Institute of Spine; Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-Song Zhang
- Jing'an District Center Hospital, Fudan University, Shanghai, China
| | - Yong-Jun Wang
- Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qi Shi
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education; Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qian-Qian Liang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Ting Zhang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Affiliation(s)
- Yongli He
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Heidari K, Vafaee A, Rastekenari AM, Taghizadeh M, Shad EG, Eley R, Sinnott M, Asadollahi S. S100B protein as a screening tool for computed tomography findings after mild traumatic brain injury: Systematic review and meta-analysis. Brain Inj 2015; 29:1146-1157. [PMID: 26067622 DOI: 10.3109/02699052.2015.1037349] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PRIMARY OBJECTIVE To determine whether S100B protein in serum can predict intracranial lesions on computed tomography (CT) scan after mild traumatic brain injury (MTBI). RESEARCH DESIGN Systematic review and meta-analysis Methods and procedures: A literature search was conducted using Medline, Embase, Cochrane, Google Scholar, CINAHL, SUMSearch, Bandolier, Trip databases, bibliographies from identified articles and review article references. Eligible articles were defined as observational studies including patients with MTBI who underwent post-traumatic head CT scan and assessing the screening role of S100B protein. MAIN OUTCOMES AND RESULTS There was a significant positive association between S100B protein concentration and positive CT scan (22 studies, SMD = 1.92, 95% CI = 1.29-2.45, I2 = 100%; p < 0.001). The pooled sensitivity and specificity values for a cut-point range = 0.16-0.20 µg L-1 were 98.65 (95% CI = 95.53-101.77; I2 = 0.0%) and 50.69 (95% CI = 40.69-60.69; I2 = 76.3%), respectively. The threshold for serum S100B protein with 99.63 (95% CI = 96.00-103.25; I2 = 0.0%) sensitivity and 46.94 (95% CI = 39.01-54.87; I2 = 95.5%) specificity was > 0.20 µg L-1. CONCLUSIONS After MTBI, serum S100B protein levels are significantly associated with the presence of intracranial lesions on CT scan. Measuring the protein could be useful in screening high risk MTBI patients and decreasing unnecessary CT examinations.
Collapse
Affiliation(s)
- Kamran Heidari
- a Department of Emergency Medicine , Loghmane-Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ali Vafaee
- a Department of Emergency Medicine , Loghmane-Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | | | - Mehrdad Taghizadeh
- a Department of Emergency Medicine , Loghmane-Hakim Hospital, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ensieh Ghaffari Shad
- c School of Medicine, Alborz University of Medical Sciences , Karaj , Tehran , Iran
| | - Rob Eley
- d Department of Emergency Medicine , Princess Alexandra Hospital , Queensland , Australia.,e School of Medicine, The University of Queensland , Brisbane , Australia , and
| | - Michael Sinnott
- d Department of Emergency Medicine , Princess Alexandra Hospital , Queensland , Australia
| | - Shadi Asadollahi
- f School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
7
|
The character of haemostatic disorders and level of protein S-100 in acute ischaemic stroke can affect survival in the first week of follow-up. Blood Coagul Fibrinolysis 2011; 22:388-95. [DOI: 10.1097/mbc.0b013e328345c081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Abstract
BACKGROUND Studies show S100 as a possible acute ischemic stroke (AIS) marker. OBJECTIVES Determine (1) whether S100 serum concentrations correlate with stroke symptom onset, infarction volume, stroke severity, functional outcome, or length of hospital stay; (2) whether S100 serial measurements are useful markers for ongoing brain ischemia, and (3) whether S100 levels at various time intervals are higher in AIS patients than controls. METHODS Literature was searched using OVID and MEDLINE from January 1950 to February 2007, and all relevant reports were included. RESULTS Eighteen studies (1,643 patients) satisfied entry criteria. S100 peaks from symptom onset between 24 and 120 h with significantly raised values measured from 0 to 120 h. Higher S100 values indicated significantly larger infarction volumes, more severe strokes, and worse functional outcome. There was a significant difference in S100 levels between AIS patients and controls. CONCLUSION Peak values after stroke onset varied. S100 was significantly increased after stroke onset, and correlates with infarct volume, stroke severity, and functional outcome, and was a possible marker for ongoing ischemia. Its serum concentration during acute stroke is a useful marker of infarct size and long-term clinical outcome.
Collapse
Affiliation(s)
- David L Nash
- Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | |
Collapse
|
9
|
Kanazawa Y, Makino M, Morishima Y, Yamada K, Nabeshima T, Shirasaki Y. Degradation of PEP-19, a calmodulin-binding protein, by calpain is implicated in neuronal cell death induced by intracellular Ca2+ overload. Neuroscience 2008; 154:473-81. [PMID: 18502590 DOI: 10.1016/j.neuroscience.2008.03.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
Abstract
Excessive elevation of intracellular Ca2+ levels and, subsequently, hyperactivation of Ca2+/calmodulin-dependent processes might play an important role in the pathologic events following cerebral ischemia. PEP-19 is a neuronally expressed polypeptide that acts as an endogenous negative regulator of calmodulin by inhibiting the association of calmodulin with enzymes and other proteins. The aims of the present study were to investigate the effect of PEP-19 overexpression on cell death triggered by Ca2+ overload and how the polypeptide levels are affected by glutamate-induced excitotoxicity and cerebral ischemia. Expression of PEP-19 in HEK293T cells suppressed calmodulin-dependent signaling and protected against cell death elicited by Ca2+ ionophore. Likewise, primary cortical neurons overexpressing PEP-19 became resistant to glutamate-induced cell death. In immunoprecipitation assay, wild type PEP-19 associated with calmodulin, whereas mutated PEP-19, which contains mutations within the calmodulin binding site of PEP-19, failed to associate with calmodulin. We found that the mutation abrogates both the ability to suppress calmodulin-dependent signaling and to protect cells from death. Additionally, the endogenous PEP-19 levels in neurons were significantly reduced following glutamate exposure, this reduction precedes neuronal cell death and can be blocked by treatment with calpain inhibitors. These data suggest that PEP-19 is a substrate for calpain, and that the decreased PEP-19 levels result from its degradation by calpain. A similar reduction of PEP-19 also occurred in the hippocampus of gerbils subjected to transient global ischemia. In contrast to the reduction in PEP-19, no changes in calmodulin occurred following excitotoxicity, suggesting the loss of negative regulation of calmodulin by PEP-19. Taken together, these results provide evidence that PEP-19 overexpression enhances resistance to Ca2+-mediated cytotoxicity, which might be mediated through calmodulin inhibition, and also raises the possibility that PEP-19 degradation by calpain might produce an aberrant activation of calmodulin functions, which in turn causes neuronal cell death.
Collapse
Affiliation(s)
- Y Kanazawa
- Biological Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Tanaka Y, Marumo T, Omura T, Yoshida S. Serum S100B indicates successful combination treatment with recombinant tissue plasminogen activator and MK-801 in a rat model of embolic stroke. Brain Res 2007; 1154:194-9. [PMID: 17475227 DOI: 10.1016/j.brainres.2007.03.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 03/30/2007] [Accepted: 03/31/2007] [Indexed: 10/23/2022]
Abstract
In recent years, serum S100B has been used as a secondary endpoint in some clinical trials in which serum S100B has successfully indicated the benefits or harm done by tested agents. However, few reports describe serum S100B as an indicator of the efficiency of neuroprotective treatment in experimental stroke models, although serum S100B may be as useful for histological and functional evaluations of neuroprotective treatments as in clinical trials. The present study seeks to investigate the possibility that serum S100B reflects successful combined treatment with rt-PA and MK-801 in an embolic stroke rat model. An embolic stroke model of rats was produced via intra-arterial autologous clot injection, after which serum S100B levels were measured 24 h after embolism and the association of serum S100B levels with brain edema volume and infarct volume investigated. Combination treatment with rt-PA and MK-801 significantly attenuated the elevation of serum S100B, which correlated significantly with reductions in brain edema resulting from combination treatment. These findings suggest that serum S100B is a simple and objective indicator for successful neuroprotective therapy and would help seeking partners for combination treatments with rt-PA in an embolic stroke rat model. Assessments of the efficacy of combination treatments with rt-PA and neuroprotectants using serum S100B would facilitate translational research bridging laboratory and bedsides because serum S100B functions as a common marker in both rats and human patients suffering from ischemic stroke.
Collapse
Affiliation(s)
- Yu Tanaka
- Medical Research Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan.
| | | | | | | |
Collapse
|
11
|
Tanaka Y, Koizumi C, Marumo T, Omura T, Yoshida S. Serum S100B indicates brain edema formation and predicts long-term neurological outcomes in rat transient middle cerebral artery occlusion model. Brain Res 2007; 1137:140-5. [PMID: 17204253 DOI: 10.1016/j.brainres.2006.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
To assess the usefulness of serum S100B as a biomarker, the present study proceeded by observing serum S100B kinetics in a rat transient middle cerebral artery occlusion (MCAO) model, then assessed the correlation between serum S100B and both brain edema formation and neurological outcomes. Study results showed increases in serum S100B concentrations, peaking 48 h after MCAO. Brain water content in the ipsilateral hemisphere significantly increased from 24 h after MCAO, and reached peak value 72 h after MCAO. A single measurement of serum S100B 48 h after MCAO showed significant correlations with maximal extent of brain edema 72 h after MCAO. Furthermore, S100B concentrations 48 h after MCAO significantly correlated with infarct volumes. Neurological outcomes were estimated in a long-term study, where a gradual recovery was observed up to 168 h after MCAO. Serum S100B 48 h after MCAO was found to show higher correlation with neurological score 168 h after MCAO than those 48 h after MCAO. These findings suggest that serum S100B is an effective biomarker in predicting both extent of brain edema and long-term neurological outcomes in a rat transient MCAO model.
Collapse
Affiliation(s)
- Yu Tanaka
- Medical Research Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan.
| | | | | | | | | |
Collapse
|
12
|
Miclescu A, Basu S, Wiklund L. Methylene blue added to a hypertonic–hyperoncotic solution increases short-term survival in experimental cardiac arrest*. Crit Care Med 2006; 34:2806-13. [PMID: 16957637 DOI: 10.1097/01.ccm.0000242517.23324.27] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Methylene blue (MB), a free-radical scavenger inhibiting the production and actions of nitric oxide, may counteract excessive vasodilatation induced by nitric oxide during cardiac arrest. Effects of MB in cardiac arrest and cardiopulmonary resuscitation were investigated. DESIGN Randomized, prospective, laboratory animal study. SETTING University animal research laboratory. SUBJECTS A total of 63 piglets of both sexes. INTERVENTIONS A pig model of extended cardiac arrest (12 mins of untreated cardiac arrest and 8 mins of cardiopulmonary resuscitation) was employed to assess the addition or no addition of MB to a hypertonic saline-dextran solution. These two groups (MB and hypertonic saline-dextran group [MB group] and hypertonic saline-dextran-only group) of 21 animals were each compared with a group receiving isotonic saline (n = 21). MEASUREMENTS AND MAIN RESULTS Although the groups were similar in baseline values, 4-hr survival in the MB group was increased (p = .02) in comparison with the isotonic saline group. Hemodynamic variables were somewhat improved at 15 mins after restoration of spontaneous circulation in the MB group compared with the other two groups. The jugular bulb levels of 8-isoprostane-prostaglandin F2alpha and 15-keto-dihydro-prostaglandin F2alpha (indicators of peroxidation and inflammation) were significantly decreased in the MB group compared with the isotonic saline group. Significant differences were recorded between the three groups in levels of protein S-100beta (indicator of neurologic injury), with lower levels in the MB group compared with the isotonic saline and hypertonic saline-dextran-only groups. Troponin I and myocardial muscle creatine kinase isoenzyme arterial concentrations (indicators of myocardial damage) were also significantly lower in the MB group. CONCLUSIONS MB co-administered with a hypertonic-hyperoncotic solution increased 4-hr survival vs. saline in an experimental porcine model of cardiac arrest and reduced oxidative, inflammatory, myocardial, and neurologic injury.
Collapse
Affiliation(s)
- Adriana Miclescu
- Department of Surgical Sciences/Anesthesiology and Intensive Care, Uppsala University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|
13
|
Shioda N, Moriguchi S, Shirasaki Y, Fukunaga K. Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia. J Neurochem 2006; 98:310-20. [PMID: 16805817 DOI: 10.1111/j.1471-4159.2006.03874.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Calpain, a Ca(2+)-dependent cysteine protease, in vitro converts calcineurin (CaN) to constitutively active forms of 45 kDa and 48 kDa by cleaving the autoinhibitory domain of the 60 kDa subunit. In a mouse middle cerebral artery occlusion (MCAO) model, calpain converted the CaN A subunit to the constitutively active form with 48 kDa in vivo. We also confirmed increased Ca(2+)/CaM-independent CaN activity in brain extracts. The generation of constitutively active and Ca(2+)/CaM-independent activity of CaN peaked 2 h after reperfusion in brain extracts. Increased constitutively active CaN activity was associated with dephosphorylation of dopamine-regulated phosphoprotein-32 in the brain. Generation of constitutively active CaN was accompanied by translocation of nuclear factor of activated T-cells (NFAT) into nuclei of hippocampal CA1 pyramidal neurons. In addition, a novel calmodulin antagonist, DY-9760e, blocked the generation of constitutively active CaN by calpain, thereby inhibiting NFAT nuclear translocation. Together with previous studies indicating that NFAT plays a critical role in apoptosis, we propose that calpain-induced CaN activation in part mediates delayed neuronal death in brain ischemia.
Collapse
Affiliation(s)
- Norifumi Shioda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
14
|
Siman R, Zhang C, Roberts VL, Pitts-Kiefer A, Neumar RW. Novel surrogate markers for acute brain damage: cerebrospinal fluid levels corrrelate with severity of ischemic neurodegeneration in the rat. J Cereb Blood Flow Metab 2005; 25:1433-44. [PMID: 15902199 DOI: 10.1038/sj.jcbfm.9600138] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously, we identified proteins released from degenerating cultured cortical neurons as novel cerebrospinal fluid (CSF) markers for acute brain injury in the rat. Here, we investigate relationships between CSF changes in these novel markers and the severity of acute ischemic brain injury. Rats underwent sham surgery or 3,6,8, or 10 mins of transient global forebrain ischemia. At 48 h after insult, CSF levels of 14-3-3beta, 14-3-3zeta, and calpain cleavage products of alpha-spectrin and tau were quantified. Regional acute neurodegeneration was assessed by Fluoro-Jade and silver impregnation staining, and confirmed by immunohistochemical detection of the activation of calpain and caspase, cysteine proteases involved in neurodegenerative signaling. Ischemic neurodegeneration and activation of at least one cysteine protease were observed in the hippocampal CA1 sector, dentate hilus, caudate nucleus, parietal cortex, thalamus, and inferior colliculus. As expected, the total number of degenerating cells increased as a function of ischemia duration. Cerebrospinal fluid levels of the four marker proteins increased markedly after ischemia, and rose in proportion with its duration. Irrespective of the length of ischemia, CSF levels of the neuron-enriched proteins 14-3-3beta and calpain-cleaved tau correlated significantly with the magnitude of acute ischemic neurodegeneration. Additionally, CSF levels of the two proteins correlated with one another. These results show that certain proteins released from degenerating neurons are CSF markers for brain injury in the rat whose levels reflect the severity of acute ischemic neurodegeneration. Measurement of 14-3-3beta and calpain-cleaved tau may be useful for the minimally invasive diagnosis, prognosis, and therapeutic evaluation of acute brain damage.
Collapse
Affiliation(s)
- Robert Siman
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA.
| | | | | | | | | |
Collapse
|
15
|
Shirakura T, Han F, Shiota N, Moriguchi S, Kasahara J, Sato T, Shirasaki Y, Fukunaga K. Inhibition of nitric oxide production and protein tyrosine nitration contribute to neuroprotection by a novel calmodulin antagonist, DY-9760e, in the rat microsphere embolism. Biol Pharm Bull 2005; 28:1658-61. [PMID: 16141535 DOI: 10.1248/bpb.28.1658] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsphere embolism (ME)-induced ischemia model in rat resembles to multiple brain embolism in human with several clinical features. We here tested whether nitric oxide (NO) production contributes to the neuronal injury in the ME model. A novel calmodulin antagonist, DY-9760e, having a potent inhibitory effect on neuronal nitric oxide synthase (nNOS), reduced brain infarct size in the ME-induced brain ischemia. Consistent with our previous observation with gerbil ischemia/reperfusion model, DY-9760e completely inhibited NO production immediately after and 24 or 48 h after ME. Unlike the gerbil ischemia/reperfusion model, protein tyrosine nitration markedly increased 6-48 h after ME. DY-9760e treatment completely inhibited the marked increase in the protein tyrosine nitration at 24 h after ME. These results suggest that the inhibition of NO production and protein tyrosine nitration by DY-9760e contribute to its neuroprotective action in the ME-induced brain damage.
Collapse
Affiliation(s)
- Takashi Shirakura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sugimura M, Takamori H, Fukushi H, Kitano Y, Kanazawa Y, Shirasaki Y. DY-9760e, a Calmodulin Antagonist, Reduces Brain Damage after Permanent Focal Cerebral Ischemia in Cats. Biol Pharm Bull 2005; 28:629-33. [PMID: 15802800 DOI: 10.1248/bpb.28.629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate), a calmodulin antagonist, provides protection against Ca(2+) overload-associated cytotoxicity and brain injury after cerebral ischemia in rats. In this study, we assessed the effect of DY-9760e on ischemic infarct volume in cats subjected to permanent focal cerebral ischemia. DY-9760e was infused for 6 h, beginning 5 min after occlusion of the middle cerebral artery. The infarct volume was measured at the end of drug infusion. DY-9760e, at the dose of 0.25 but not 0.1 mg/kg/h, significantly reduced cerebral infarct volume without affecting any physiological parameters, and its protective effect was mainly evident in the cerebral cortex, where the penumbra, a salvageable zone, exists. The present study demonstrates that DY-9760e protects against brain injury after focal ischemia in a gyrencephalic animal as well as in the rodents reported previously and suggests its therapeutic value for the treatment of acute stroke.
Collapse
Affiliation(s)
- Masunobu Sugimura
- New Product Research Laboratories II, Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|