1
|
Antipova V, Heimes D, Seidel K, Schulz J, Schmitt O, Holzmann C, Rolfs A, Bidmon HJ, González de San Román Martín E, Huesgen PF, Amunts K, Keiler J, Hammer N, Witt M, Wree A. Differently increased volumes of multiple brain areas in Npc1 mutant mice following various drug treatments. Front Neuroanat 2024; 18:1430790. [PMID: 39081805 PMCID: PMC11286580 DOI: 10.3389/fnana.2024.1430790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Niemann-Pick disease type C1 (NPC1, MIM 257220) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of Npc1-/- displays a rapidly progressing form of Npc1 disease, which is characterized by weight loss, ataxia, and increased cholesterol storage. Npc1-/- mice receiving a combined therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) showed prevention of Purkinje cell loss, improved motor function and reduced intracellular lipid storage. Although therapy of Npc1-/- mice with COMBI, MIGLU or HPßCD resulted in the prevention of body weight loss, reduced total brain weight was not positively influenced. Methods In order to evaluate alterations of different brain areas caused by pharmacotherapy, fresh volumes (volumes calculated from the volumes determined from paraffin embedded brain slices) of various brain structures in sham- and drug-treated wild type and mutant mice were measured using stereological methods. Results In the wild type mice, the volumes of investigated brain areas were not significantly altered by either therapy. Compared with the respective wild types, fresh volumes of specific brain areas, which were significantly reduced in sham-treated Npc1-/- mice, partly increased after the pharmacotherapies in all treatment strategies; most pronounced differences were found in the CA1 area of the hippocampus and in olfactory structures. Discussion Volumes of brain areas of Npc1-/- mice were not specifically changed in terms of functionality after administering COMBI, MIGLU, or HPßCD. Measurements of fresh volumes of brain areas in Npc1-/- mice could monitor region-specific changes and response to drug treatment that correlated, in part, with behavioral improvements in this mouse model.
Collapse
Affiliation(s)
- Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Diana Heimes
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Katharina Seidel
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Klinik für Frauenheilkunde und Geburtshilfe, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Jennifer Schulz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| | - Arndt Rolfs
- Medical Faculty, University of Rostock, Rostock, Germany
| | - Hans-Jürgen Bidmon
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | | | - Pitter F. Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Institut für Biologie II, AG Funktional Proteomics, Freiburg, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, University Düsseldorf, Düsseldorf, Germany
| | - Jonas Keiler
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
- Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Technische Universität Dresden, Dresden, Germany
- Department of Anatomy, Institute of Biostructural Basics of Medical Sciences, Poznan Medical University, Poznan, Poland
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| |
Collapse
|
2
|
Organ Weights in NPC1 Mutant Mice Partly Normalized by Various Pharmacological Treatment Approaches. Int J Mol Sci 2022; 24:ijms24010573. [PMID: 36614015 PMCID: PMC9820376 DOI: 10.3390/ijms24010573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick Type C1 (NPC1, MIM 257220) is a rare, progressive, lethal, inherited autosomal-recessive endolysosomal storage disease caused by mutations in the NPC1 leading to intracellular lipid storage. We analyzed mostly not jet known alterations of the weights of 14 different organs in the BALB/cNctr-Npc1m1N/-J Jackson Npc1 mice in female and male Npc1+/+ and Npc1-/- mice under various treatment strategies. Mice were treated with (i) no therapy, (ii) vehicle injection, (iii) a combination of miglustat, allopregnanolone, and 2-hydroxypropyl-ß-cyclodextrin (HPßCD), (iv) miglustat, and (v) HPßCD alone starting at P7 and repeated weekly throughout life. The 12 respective male and female wild-type mice groups were evaluated in parallel. In total, 351 mice (176 Npc1+/+, 175 Npc1-/-) were dissected at P65. In both sexes, the body weights of None and Sham Npc1-/- mice were lower than those of respective Npc1+/+ mice. The influence of the Npc1 mutation and/or sex on the weights of various organs, however, differed considerably. In males, Npc1+/+ and Npc1-/- mice had comparable absolute weights of lungs, spleen, and adrenal glands. In Npc1-/- mice, smaller weights of hearts, livers, kidneys, testes, vesicular, and scent glands were found. In female Npc1-/- mice, ovaries, and uteri were significantly smaller. In Npc1-/- mice, relative organ weights, i.e., normalized with body weights, were sex-specifically altered to different extents by the different therapies. The combination of miglustat, allopregnanolone, and the sterol chelator HPßCD partly normalized the weights of more organs than miglustat or HPßCD mono-therapies.
Collapse
|
3
|
Holzmann C, Witt M, Rolfs A, Antipova V, Wree A. Gender-Specific Effects of Two Treatment Strategies in a Mouse Model of Niemann-Pick Disease Type C1. Int J Mol Sci 2021; 22:ijms22052539. [PMID: 33802605 PMCID: PMC7962008 DOI: 10.3390/ijms22052539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
In a mouse model of Niemann-Pick disease type C1 (NPC1), a combination therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) has previously resulted in, among other things, significantly improved motor function. The present study was designed to compare the therapeutic effects of the COMBI therapy with that of MIGLU or HPßCD alone on body and brain weight and the behavior of NPC1−/− mice in a larger cohort, with special reference to gender differences. A total of 117 NPC1−/− and 123 NPC1+/+ mice underwent either COMBI, MIGLU only, HPßCD only, or vehicle treatment (Sham), or received no treatment at all (None). In male and female NPC1−/− mice, all treatments led to decreased loss of body weight and, partly, brain weight. Concerning motor coordination, as revealed by the accelerod test, male NPC1−/− mice benefited from COMBI treatment, whereas female mice benefited from COMBI, MIGLU, and HPßCD treatment. As seen in the open field test, the reduced locomotor activity of male and female NPC1−/− mice was not significantly ameliorated in either treatment group. Our results suggest that in NPC1−/− mice, each drug treatment scheme had a beneficial effect on at least some of the parameters evaluated compared with Sham-treated mice. Only in COMBI-treated male and female NPC+/+ mice were drug effects seen in reduced body and brain weights. Upon COMBI treatment, the increased dosage of drugs necessary for anesthesia in Sham-treated male and female NPC1−/− mice was almost completely reduced only in the female groups.
Collapse
Affiliation(s)
- Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany;
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
| | - Martin Witt
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
| | - Arndt Rolfs
- Centogene AG, Rostock, Am Strande 7, 18055 Rostock, Germany;
- University of Rostock, 18055 Rostock, Germany
| | - Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Andreas Wree
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-381-494-8429
| |
Collapse
|
4
|
Maegawa GH. Lysosomal Leukodystrophies Lysosomal Storage Diseases Associated With White Matter Abnormalities. J Child Neurol 2019; 34:339-358. [PMID: 30757954 PMCID: PMC6459700 DOI: 10.1177/0883073819828587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The leukodystrophies are a group of genetic metabolic diseases characterized by an abnormal development or progressive degeneration of the myelin sheath. The myelin is a complex sheath composed of several macromolecules covering axons as an insulator. Each of the leukodystrophies is caused by mutations in genes encoding enzymes that are involved in myelin production and maintenance. The lysosomal storage diseases are inborn disorders of compartmentalized cellular organelles with broad clinical manifestations secondary to the progressive accumulation of undegraded macromolecules within lysosomes and related organelles. The more than 60 different lysosomal storage diseases are rare diseases; however, collectively, the incidence of lysosomal storage diseases ranges just over 1 in 2500 live births. The majority of lysosomal storage diseases are associated with neurologic manifestations including developmental delay, seizures, acroparesthesia, motor weakness, and extrapyramidal signs. These inborn organelle disorders show wide clinical variability affecting individuals from all age groups. In addition, several of neurologic, also known as neuronopathic, lysosomal storage diseases are associated with some level of white matter disease, which often triggers the diagnostic investigation. Most lysosomal storage diseases are autosomal recessively inherited and few are X-linked, with females being at risk of presenting with mild, but clinically relevant neurologic manifestations. Biochemical assays are the basis of the diagnosis and are usually confirmed by molecular genetic testing. Novel therapies have emerged. However, most affected patients with lysosomal storage diseases have only supportive management to rely on. A better understanding of the mechanisms resulting in the leukodystrophy will certainly result in innovative and efficacious disease-modifying therapies.
Collapse
Affiliation(s)
- Gustavo H.B. Maegawa
- University of Florida, Department of Pediatrics/Genetics
& Metabolism, Gainesville, FL 32608, USA
| |
Collapse
|
5
|
Kodachi T, Matsumoto S, Mizuguchi M, Osaka H, Kanai N, Nanba E, Ohno K, Yamagata T. Severe demyelination in a patient with a late infantile form of Niemann-Pick disease type C. Neuropathology 2017; 37:426-430. [PMID: 28387450 DOI: 10.1111/neup.12380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Niemann-Pick disease type C (NPC) is a cholesterol storage disease caused by defective cellular cholesterol transportation. The onset and progression of NPC are variable, and autopsy findings have mainly been reported for the adult and juvenile forms of this disease. Here we report the clinical and pathological findings from a 9-year-old female patient with the late infantile form of NPC due to NPC1 gene mutation. She had notable splenomegaly at 4 months of age. She lost the ability to speak at 18 months of age. She learned to walk, but often fell and could no longer walk after 30 months. At 3 years of age, she was diagnosed with NPC. Sequence analysis of the NPC1 gene revealed compound heterozygous mutation of T2108C (F703S) and C2348G (S813X) (both novel). Thereafter, the patient suffered repeated respiratory infections and died of respiratory failure at 9 years of age. Pathological findings included cerebral atrophy (particularly of white matter), severe demyelination, and the loss of neurons from the cerebrum and from the nuclei of the brain stem. Remnant neuronal cells and microglia in the cerebrum, cerebellum, and brain stem had become swollen and foamy. Neurons of the hippocampal CA1 and Purkinje cells were relatively spared, and senile plaques and axonal spheroids were not present. Foamy cells were also observed in other organs, especially the spleen and bone marrow. The F703S mutation in this patient was localized in a sterol-sensing domain (SSD). Severe neurological phenotypes have been previously reported in patients with missense mutations in an SSD. It is considered that the combination of a nonsense mutation and missense mutation in an SSD was responsible for the severe neurological phenotype of our present patient. While pathological findings of adult/juvenile forms of NPC have included swollen neurons and glia, neuronal cell loss, and NFTs, demyelination may be a predominant finding in the infantile form of NPC.
Collapse
Affiliation(s)
- Tsuyoshi Kodachi
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Shizuko Matsumoto
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Japan
| | - Nobuyuki Kanai
- Department of Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Eiji Nanba
- Research Center for Bioscience and Technology, Tottori University, Yonago, Japan
| | - Kousaku Ohno
- Department of Child Neurology, Tottori University, Yonago, Japan
| | - Takanori Yamagata
- Department of Developmental Medical Sciences, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Iodice R, Dubbioso R, Topa A, Ruggiero L, Pisciotta C, Esposito M, Tozza S, Santoro L, Manganelli F. Electrophysiological characterization of adult-onset Niemann–Pick type C disease. J Neurol Sci 2015; 348:262-5. [DOI: 10.1016/j.jns.2014.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/12/2014] [Accepted: 12/01/2014] [Indexed: 01/27/2023]
|
7
|
Maass F, Petersen J, Hovakimyan M, Schmitt O, Witt M, Hawlitschka A, Lukas J, Rolfs A, Wree A. Reduced cerebellar neurodegeneration after combined therapy with cyclodextrin/allopregnanolone and miglustat in NPC1: a mouse model of Niemann-Pick type C1 disease. J Neurosci Res 2014; 93:433-42. [PMID: 25400034 DOI: 10.1002/jnr.23509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/10/2014] [Accepted: 09/30/2014] [Indexed: 12/18/2022]
Abstract
Niemann-Pick type C1 (NPC1) disease is a lysosomal storage disease characterized by a deficiency of NPC1 gene function. The malfunction of protein results in a progressive accumulation of lipids in many organs. A combined approach with substrate-reduction therapy (SRT) and byproduct therapy (BPT) has been shown to ameliorate the disease course in a mutant mouse model (NPC1(-/-)). The present study examines the morphological parameters underlying these changes. For the combined SRT/BPT treatment, NPC1(-/-) mutant mice (NPC1(-/-SRT/BPT)) were injected with allopregnanolone/cyclodextrin weekly, starting at postnatal day (P) 7. Starting at P10, a miglustat injection was administered daily until P23. Thereafter, miglustat was added to the powdered chow. For the sham treatment, both mutant NPC1(-/-) (NPC1(-/-sham)) and wild-type (NPC1(+/+sham)) mice received an NaCl injection and were fed powdered chow without miglustat. Analysis was performed on cerebellar slices by histology and immunohistochemistry. The volumes and cell counts of cerebellar structures were quantified. Additionally, ultrastructural analysis was performed with transmission electron microscopy. In agreement with previous studies, the current study demonstrates Purkinje cell degeneration in the mutant mice, which was partially abrogated by SRT/BPT. The volumes of cerebellar white matter and molecular layer were reduced as well. Also, the number of neurons was reduced in granular and molecular layers. However, only the molecular layer benefited from the therapy, as shown by an increase in the volume and the amount of neurons. The volume and number of neurons of the deep cerebellar nuclei were significantly decreased in mutant mice; an appreciable therapeutic benefit could be demonstrated for the nucleus interpositus.
Collapse
Affiliation(s)
- Fabian Maass
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Anatomically defined neuron-based rescue of neurodegenerative Niemann-Pick type C disorder. J Neurosci 2011; 31:4367-78. [PMID: 21430138 DOI: 10.1523/jneurosci.5981-10.2011] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Niemann-Pick type C disease is a fatal lysosomal storage disorder caused by loss of NPC1 function. The disorder severely affects multiple body systems, particularly the nervous system. To test whether rescue of NPC1 activity in neurons, astrocytes, or other cell types can correct the neurological defects, a Tet-inducible Npc1-YFP transgene was introduced into Npc1(-/-) mice for the cell type-specific rescue of NPC1 loss. NPC1-YFP produced in neurons prevented neuron degeneration, slowed reactive glial activity, and ameliorated the disease. NPC1-YFP produced in astrocytes or in cells of visceral tissue did not. These results suggest that loss of NPC1 activity from neurons is the primary cause of the neuropathology and that rescue of NPC1 function in neurons is sufficient to mitigate the disease. The ability of neurons to survive and function in a cell-autonomous fashion allowed the use of this newly engineered rescue system to further define the brain regions or neuron populations required to ameliorate a neurological symptom. NPC1-YFP produced specifically in cerebellar Purkinje neurons reduced ataxia, increased weight, and prolonged life, but it did not prevent the eventual decline and premature death of Npc1(-/-) mice. Significant increase in lifespan correlated with sustained reduction of inflammation in the thalamus. Neuron rescue of other forebrain areas provided little benefit. Future work targeting increasingly discrete neuronal networks should reveal which CNS areas are critical for survival. This work may have broad implications for understanding the anatomical and cellular basis of neurological signs and symptoms of other neurodegenerative and lysosomal disorders.
Collapse
|