1
|
Schwerk C, Schroten H. In vitro models of the choroid plexus and the blood-cerebrospinal fluid barrier: advances, applications, and perspectives. Hum Cell 2024; 37:1235-1242. [PMID: 39103559 PMCID: PMC11341628 DOI: 10.1007/s13577-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The choroid plexus (CP), a highly vascularized endothelial-epithelial convolute, is placed in the ventricular system of the brain and produces a large part of the cerebrospinal fluid (CSF). Additionally, the CP is the location of a blood-CSF barrier (BCSFB) that separates the CSF from the blood stream in the CP endothelium. In vitro models of the CP and the BCSFB are of high importance to investigate the biological functions of the CP and the BCSFB. Since the CP is involved in several serious diseases, these in vitro models promise help in researching the processes contributing to the diseases and during the development of treatment options. In this review, we provide an overview on the available models and the advances that have been made toward more sophisticated and "in vivo near" systems as organoids and microfluidic lab-on-a-chip approaches. We go into the applications and research objectives for which the various modeling systems can be used and discuss the possible future prospects and perspectives.
Collapse
Affiliation(s)
- Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| |
Collapse
|
2
|
Dabbagh F, Schroten H, Schwerk C. In Vitro Models of the Blood–Cerebrospinal Fluid Barrier and Their Applications in the Development and Research of (Neuro)Pharmaceuticals. Pharmaceutics 2022; 14:pharmaceutics14081729. [PMID: 36015358 PMCID: PMC9412499 DOI: 10.3390/pharmaceutics14081729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
The pharmaceutical research sector has been facing the challenge of neurotherapeutics development and its inherited high-risk and high-failure-rate nature for decades. This hurdle is partly attributable to the presence of brain barriers, considered both as obstacles and opportunities for the entry of drug substances. The blood–cerebrospinal fluid (CSF) barrier (BCSFB), an under-studied brain barrier site compared to the blood–brain barrier (BBB), can be considered a potential therapeutic target to improve the delivery of CNS therapeutics and provide brain protection measures. Therefore, leveraging robust and authentic in vitro models of the BCSFB can diminish the time and effort spent on unproductive or redundant development activities by a preliminary assessment of the desired physiochemical behavior of an agent toward this barrier. To this end, the current review summarizes the efforts and progresses made to this research area with a notable focus on the attribution of these models and applied techniques to the pharmaceutical sector and the development of neuropharmacological therapeutics and diagnostics. A survey of available in vitro models, with their advantages and limitations and cell lines in hand will be provided, followed by highlighting the potential applications of such models in the (neuro)therapeutics discovery and development pipelines.
Collapse
|
3
|
Polymeric nanomicelles based on inulin D α-tocopherol succinate for the treatment of diabetic retinopathy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Basal Sodium-Dependent Vitamin C Transporter 2 polarization in choroid plexus explant cells in normal or scorbutic conditions. Sci Rep 2019; 9:14422. [PMID: 31594969 PMCID: PMC6783570 DOI: 10.1038/s41598-019-50772-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/15/2019] [Indexed: 01/10/2023] Open
Abstract
Vitamin C is incorporated into the cerebrospinal fluid (CSF) through choroid plexus cells. While the transfer of vitamin C from the blood to the brain has been studied functionally, the vitamin C transporter, SVCT2, has not been detected in the basolateral membrane of choroid plexus cells. Furthermore, it is unknown how its expression is induced in the developing brain and modulated in scurvy conditions. We concluded that SVCT2 is intensely expressed in the second half of embryonic brain development and postnatal stages. In postnatal and adult brain, SVCT2 is highly expressed in all choroidal plexus epithelial cells, shown by colocalization with GLUT1 in the basolateral membranes and without MCT1 colocalization, which is expressed in the apical membrane. We confirmed that choroid plexus explant cells (in vitro) form a sealed epithelial structure, which polarized basolaterally, endogenous or overexpressed SVCT2. These results are reproduced in vivo by injecting hSVCT2wt-EYFP lentivirus into the CSF. Overexpressed SVCT2 incorporates AA (intraperitoneally injected) from the blood to the CSF. Finally, we observed in Guinea pig brain under scorbutic condition, that normal distribution of SVCT2 in choroid plexus may be regulated by peripheral concentrations of vitamin C. Additionally, we observed that SVCT2 polarization also depends on the metabolic stage of the choroid plexus cells.
Collapse
|
5
|
Stone NL, England TJ, O'Sullivan SE. A Novel Transwell Blood Brain Barrier Model Using Primary Human Cells. Front Cell Neurosci 2019; 13:230. [PMID: 31244605 PMCID: PMC6563620 DOI: 10.3389/fncel.2019.00230] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/08/2019] [Indexed: 01/28/2023] Open
Abstract
Structural alterations and breakdown of the blood brain barrier (BBB) is often a primary or secondary consequence of disease, resulting in brain oedema and the transport of unwanted substances into the brain. It is critical that effective in vitro models are developed to model the in vivo environment to aid in clinically relevant research, especially regarding drug screening and permeability studies. Our novel model uses only primary human cells and includes four of the key cells of the BBB: astrocytes, pericytes, brain microvascular endothelial cells (HBMEC) and neurons. We show that using a larger membrane pore size (3.0 μM) there is an improved connection between the endothelial cells, astrocytes and pericytes. Compared to a two and three cell model, we show that when neurons are added to HBMECs, astrocytes and pericytes, BBB integrity was more sensitive to oxygen-glucose deprivation evidenced by increased permeability and markers of cell damage. Our data also show that a four cell model responds faster to the barrier tightening effects of glucocorticoid dexamethasone, when compared to a two cell and three cell model. These data highlight the important role that neurons play in response to ischaemia, particularly how they contribute to BBB maintenance and breakdown. We consider that this model is more representative of the interactions at the neurovascular unit than other transwell models and is a useful method to study BBB physiology.
Collapse
Affiliation(s)
- Nicole L Stone
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Timothy J England
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Saoirse E O'Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Naumann JA, Gordon PM. In vitro model of leukemia cell migration across the blood-cerebrospinal fluid barrier. Leuk Lymphoma 2016; 58:1747-1749. [PMID: 27830960 DOI: 10.1080/10428194.2016.1254778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jordan A Naumann
- a Department of Pediatrics, Division of Pediatric Hematology and Oncology , University of Minnesota , Minneapolis , MN , USA.,b Masonic Cancer Center, University of Minnesota , Minneapolis , MN , USA
| | - Peter M Gordon
- a Department of Pediatrics, Division of Pediatric Hematology and Oncology , University of Minnesota , Minneapolis , MN , USA.,b Masonic Cancer Center, University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
7
|
Bergmann S, Steinert M. From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:1-44. [PMID: 26404465 DOI: 10.1016/bs.ircmb.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell culture techniques are essential for studying host-pathogen interactions. In addition to the broad range of single cell type-based two-dimensional cell culture models, an enormous amount of coculture systems, combining two or more different cell types, has been developed. These systems enable microscopic visualization and molecular analyses of bacterial adherence and internalization mechanisms and also provide a suitable setup for various biochemical, immunological, and pharmacological applications. The implementation of natural or synthetical scaffolds elevated the model complexity to the level of three-dimensional cell culture. Additionally, several transwell-based cell culture techniques are applied to study bacterial interaction with physiological tissue barriers. For keeping highly differentiated phenotype of eukaryotic cells in ex vivo culture conditions, different kinds of microgravity-simulating rotary-wall vessel systems are employed. Furthermore, the implementation of microfluidic pumps enables constant nutrient and gas exchange during cell cultivation and allows the investigation of long-term infection processes. The highest level of cell culture complexity is reached by engineered and explanted tissues which currently pave the way for a more comprehensive view on microbial pathogenicity mechanisms.
Collapse
Affiliation(s)
- Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
8
|
Bates CA, Fu S, Ysselstein D, Rochet JC, Zheng W. Expression and Transport of α-Synuclein at the Blood-Cerebrospinal Fluid Barrier and Effects of Manganese Exposure. ADMET AND DMPK 2015; 3:15-33. [PMID: 26640596 PMCID: PMC4669215 DOI: 10.5599/admet.3.1.159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus maintains the homeostasis of critical molecules in the brain by regulating their transport between the blood and cerebrospinal fluid (CSF). The current study was designed to investigate the potential role of the blood-CSF barrier (BCSFB) in α-synuclein (a-Syn) transport in the brain as affected by exposure to manganese (Mn), the toxic metal implicated in Parkinsonian disorders. Immunohistochemistry was used to identify intracellular a-Syn expression at the BCSFB. Quantitative real-time PCR was used to quantify the change in a-Syn mRNA expression following Mn treatments at the BCSFB in vitro. ELISA was used to quantify a-Syn levels following in vivo and in vitro treatments of Mn, copper (Cu), and/or external a-Syn. Thioflavin-T assay was used to investigate a-Syn aggregation after incubating with Mn and/or Cu in vitro. A two-chamber Transwell system was used to study a-Syn transport by BCSFB monolayer. Data revealed the expression of endogenous a-Syn in rat choroid plexus tissue and immortalized choroidal epithelial Z310 cells. The cultured primary choroidal epithelia from rats showed the ability to take up a-Syn from extracellular medium and transport a-Syn across the cellular monolayer from the donor to receiver chamber. Exposure of cells with Mn induced intracellular a-Syn accumulation without causing any significant changes in a-Syn mRNA expression. A significant increase in a-Syn aggregation in a cell-free system was observed with the presence of Mn. Moreover, Mn exposure resulted in a significant uptake of a-Syn by primary cells. These data indicate that the BCSFB expresses a-Syn endogenously and is capable of transporting a-Syn across the BCSFB monolayer; Mn exposure apparently increases a-Syn accumulation in the BCSFB by facilitating its uptake and intracellular aggregation.
Collapse
Affiliation(s)
| | - Sherleen Fu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
| | - Daniel Ysselstein
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Jean-Christophe Rochet
- Department of Molecular Pharmacology and Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
9
|
Gu H, Zhong Z, Jiang W, Du E, Dodel R, Farlow MR, Zheng W, Du Y. The role of choroid plexus in IVIG-induced beta-amyloid clearance. Neuroscience 2014; 270:168-176. [PMID: 24747018 DOI: 10.1016/j.neuroscience.2014.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/26/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
We have shown that intravenous immunoglobulin (IVIG) contains anti-Aβ autoantibodies and IVIG could induce beta amyloid (Aβ) efflux from cerebrospinal fluid (CSF) to blood in both Multiple Sclerosis (MS) and Alzheimer disease (AD) patients. However, the molecular mechanism underlying IVIG-induced Aβ efflux remains unclear. In this study, we used amyloid precursor protein (AβPP) transgenic mice to investigate if the IVIG could induce efflux of Aβ from the brain and whether low-density lipoprotein receptor-related protein-1 (LRP1), a hypothetic Aβ transporter in blood-CSF barrier (BCB); could mediate this clearance process. We currently provide strong evidence to demonstrate that IVIG could reduce brain Aβ levels by pulling Aβ into the blood system in AβPP transgenic mice. In the mechanistic study, IVIG could induce Aβ efflux through the in vitro BCB membrane formed by cultured BCB epithelial cells. Both receptor-associated protein (RAP; a functional inhibitor of LRP1), and LRP1 siRNA were able to significantly inhibit the Aβ efflux. Should Aβ prove to be the underlying cause of AD, our results strongly suggest that IVIG could be beneficial in the therapy for AD by inducing efflux of Aβ from the brain through the LRP1 in the BCB.
Collapse
Affiliation(s)
- Huiying Gu
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Zhaohui Zhong
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202
- Department of General Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Wendy Jiang
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907
| | - Eileen Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Richard Dodel
- Department of Neurology, Philipps University Marburg, Marburg, Germary
| | - Martin R Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907
| | - Yansheng Du
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907
| |
Collapse
|
10
|
Ye Y, Li Y, Fang F. Opening of brain blood barrier induced by red light and central analgesic improvement of cobra neurotoxin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 134:16-22. [PMID: 24792470 DOI: 10.1016/j.jphotobiol.2014.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 01/18/2023]
Abstract
Cobra neurotoxin (NT) has central analgesic effects, but it is difficult to pass through brain blood barrier (BBB). A novel method of red light induction is designed to help NT across BBB, which is based on photosensitizer activation by red light to generate reactive oxygen species (ROS) to open BBB. The effects were evaluated on cell models and animals in vivo with illumination by semiconductor laser at 670nm on photosensitizer pheophorbide isolated from silkworm excrement. Brain microvascular endothelial cells and astrocytes were co-cultured to build up BBB cell model. The radioactivity of (125)I-NT was measured in cells and tissues for NT permeation. Three ways of cranial irradiation, nasal cavity and intravascular irradiation were tested with combined injection of (125)I-NT 20μg/kg and pheophorbide 100μg/kg to rats, and organs of rats were separated and determined the radioactivity. Paw pressure test in rats, hot plate and writhing test in mice were applied to appraise the analgesic effects. NT across BBB cell model increased with time of illumination, and reached stable level after 60min. So did ROS in cells. NT mainly distributed in liver and kidney of rats, significantly increased in brain after illumination, and improved analgesic effects. Excitation of pheophorbide at red light produces ROS to open BBB, help NT enter brain, and enhance its central action. This research provides a new method for drug across BBB to improve its central role.
Collapse
Affiliation(s)
- Yong Ye
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Yue Li
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Fei Fang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
11
|
Fu X, Zhang Y, Jiang W, Monnot AD, Bates CA, Zheng W. Regulation of copper transport crossing brain barrier systems by Cu-ATPases: effect of manganese exposure. Toxicol Sci 2014; 139:432-51. [PMID: 24614235 DOI: 10.1093/toxsci/kfu048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered the function of Cu-ATPases, thereby contributing to the etiology of Mn-induced parkinsonian disorder. Studies by quantitative real-time RT-PCR (qPCR), Western blot, and immunocytochemistry revealed that both Cu-ATPases expressed abundantly in BBB and BCB. Transport kinetic studies by in situ brain infusion and ventriculo-cisternal (VC) perfusion in Sprague Dawley rat suggested that the BBB was a major site for Cu entry into brain, whereas the BCB was a predominant route for Cu efflux from the CSF to blood. Confocal evidence showed that the presence of excess Cu or Mn in the choroid plexus cells led to ATP7A relocating toward the apical microvilli facing the CSF, but ATP7B toward the basolateral membrane facing blood. Mn exposure inhibited the production of both Cu-ATPases. Collectively, these data suggest that Cu is transported by the BBB from the blood to brain, which is mediated by ATP7A in brain capillary. By diffusion, Cu ions move from the interstitial fluid into the CSF, where they are taken up by the BCB. Within the choroidal epithelial cells, Cu ions are transported by ATP7B back to the blood. Mn exposure alters these processes, leading to Cu dyshomeostasis-associated neuronal injury.
Collapse
Affiliation(s)
- Xue Fu
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | | | |
Collapse
|
12
|
Fu X, Zeng A, Zheng W, Du Y. Upregulation of zinc transporter 2 in the blood-CSF barrier following lead exposure. Exp Biol Med (Maywood) 2014; 239:202-12. [PMID: 24311739 PMCID: PMC3928640 DOI: 10.1177/1535370213509213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zinc (Zn) is an essential element for normal brain function; an abnormal Zn homeostasis in brain and the cerebrospinal fluid (CSF) has been implied in the etiology of Alzheimer's disease (AD). However, the mechanisms that regulate Zn transport in the blood-brain interface remain unknown. This study was designed to investigate Zn transport by the blood-CSF barrier (BCB) in the choroid plexus, with a particular focus on Zn transporter-2 (ZnT2), and to understand if lead (Pb) accumulation in the choroid plexus disturbed the Zn regulatory function in the BCB. Confocal microscopy, quantitative PCR and western blot demonstrated the presence of ZnT2 in the choroidal epithelia; ZnT2 was primarily in cytosol in freshly isolated plexus tissues but more toward the peripheral membrane in established choroidal Z310 cells. Exposure of rats to Pb (single ip injection of 50 mg Pb acetate/kg) for 24 h increased ZnT2 fluorescent signals in plexus tissues by confocal imaging and protein expression by western blot. Similar results were obtained by in vitro experiments using Z310 cells. Further studies using cultured cells and a two-chamber Transwell device showed that Pb treatment significantly reduced the cellular Zn concentration and led to an increased transport of Zn across the BCB, the effect that may be due to the increased ZnT2 by Pb exposure. Taken together, these results indicate that ZnT2 is present in the BCB; Pb exposure increases the ZnT2 expression in choroidal epithelial cells by a yet unknown mechanism and as a result, more Zn ions may be deposited into the intracellular Zn pool, leading to a relative Zn deficiency state in the cytoplasm at the BCB.
Collapse
Affiliation(s)
- Xue Fu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew Zeng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yansheng Du
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Hu HH, Bian YC, Liu Y, Sheng R, Jiang HD, Yu LS, Hu YZ, Zeng S. Evaluation of blood–brain barrier and blood–cerebrospinal fluid barrier permeability of 2-phenoxy-indan-1-one derivatives using in vitro cell models. Int J Pharm 2014; 460:101-7. [DOI: 10.1016/j.ijpharm.2013.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/29/2013] [Accepted: 11/08/2013] [Indexed: 01/13/2023]
|
14
|
Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 2013; 10:33. [PMID: 24262108 PMCID: PMC4176484 DOI: 10.1186/2045-8118-10-33] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background Reliable human in vitro blood–brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. Methods Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time. Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. Results The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level in hBMEC cells. Highest TEER values and lowest paracellular permeability for Na-F and LY were obtained with mono-cultures of hBMEC cell line when cultivated on 24-well tissue culture inserts from Greiner Bio-one® (transparent PET membrane, 3.0 μm pore size). In co-culture models with SVG-A and HBPCT cells, no increase of TEER could be observed, suggesting that none of the investigated endothelial cell lines responded positively to stimuli from immortalized astrocytic or pericytic cells. Conclusions Under the conditions examined in our experiments, hBMEC proved to be the most suitable human cell line for an in vitro BBB model concerning barrier tightness in a 24-well mono-culture system intended for higher throughput. This BBB model is being validated with several compounds (known to cross or not to cross the BBB), and will potentially be selected for the assessment of BBB permeation of bioactive natural products.
Collapse
Affiliation(s)
- Daniela E Eigenmann
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
15
|
Maeda T, Sano Y, Abe M, Shimizu F, Kashiwamura Y, Ohtsuki S, Terasaki T, Obinata M, Ueda M, Kanda T. Establishment and characterization of spinal cord microvascular endothelial cell lines. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cen3.12045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Toshihiko Maeda
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Masaaki Abe
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Yoko Kashiwamura
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Tetsuya Terasaki
- Department of Molecular Biopharmacy and Genetics; Graduate School of Pharmaceutical Sciences; Tohoku University; Sendai Japan
| | - Masuo Obinata
- Department of Cell Biology; Institute of Development, Aging and Cancer; Tohoku University; Sendai Japan
| | | | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience; Graduate School of Medicine; Yamaguchi University; Ube Japan
| |
Collapse
|
16
|
Tenenbaum T, Steinmann U, Friedrich C, Berger J, Schwerk C, Schroten H. Culture models to study leukocyte trafficking across the choroid plexus. Fluids Barriers CNS 2013; 10:1. [PMID: 23305147 PMCID: PMC3560101 DOI: 10.1186/2045-8118-10-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/12/2012] [Indexed: 01/26/2023] Open
Abstract
Background A critical point during the course of central nervous system infection is the influx of leukocytes from the blood into the brain across the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). However, experimental in vitro models to investigate leukocyte transmigration across cultured choroid plexus epithelial cells have been lacking so far. Methods We have developed a porcine and human “inverted” culture insert system that enables leukocyte transmigration specifically from the physiologically relevant basolateral side. The models use primary porcine choroid plexus epithelial cells (PCPEC) and human choroid plexus papilloma cells (HIBCPP). As a prerequisite for a functional barrier, we optimized culture conditions in which cells are maintained in serum-containing medium until high barrier function is reached. Leukocyte transmigration through the plexus epithelial cells is analysed by three-dimensional Apotome®-imaging and electron microscopy, and the route of transmigration through the plexus epithelial cells, i.e. transcellular as well as paracellular, can be determined. Discussion As a functionally relevant porcine and human BCSFB model, PCPEC and HIBCPP respectively, offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens. Moreover, our in vitro models facilitate the investigation of leukocyte entry into the CNS via the blood-CSF barrier.
Collapse
Affiliation(s)
- Tobias Tenenbaum
- Paediatric Infectious Diseases, Department of Pediatric and Adolescent Medicine, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Chemical homeostasis in the extracellular fluid of the central nervous system (CNS) is maintained by two brain barrier systems, i.e., the blood-brain barrier (BBB) that separates the blood circulation from brain interstitial fluid and the blood-cerebrospinal fluid barrier (BCB) that separates the blood from the cerebrospinal fluid (CSF). The choroid plexus, where the BCB is located, is a polarized tissue, with the basolateral side of the choroidal epithelium facing the blood and the apical microvilli in direct contact with the CSF. The tissue plays a wide range of roles in brain development, aging, nutrient transport, endocrine regulation, and pathogenesis of certain neurodegenerative disorders. This chapter describes two in vitro cultures that have been well established to allow for study of the BCB structure and function. The primary choroidal epithelial cell culture can be established from rat choroid plexus tissue, and a similar immortalized murine choroidal epithelial cell culture known as Z310 cells has also been established. Both cultures display a dominant polygonal morphology, and immunochemical studies demonstrate the presence of transthyretin, a thyroxine transport protein known to be exclusively produced by the choroidal epithelia in the CNS. These cultures have been adapted for use on freely permeable Transwell(®) membranes sandwiched between two culture chambers, facilitating transport studies of various compounds across this barrier in vitro. These choroidal epithelia cultures with the Transwell system will perceivably assist blood-CSF barrier research.
Collapse
Affiliation(s)
- Andrew D Monnot
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
18
|
Lam CH, Hansen EA, Janson C, Bryan A, Hubel A. The characterization of arachnoid cell transport II: paracellular transport and blood-cerebrospinal fluid barrier formation. Neuroscience 2012; 222:228-38. [PMID: 22814001 DOI: 10.1016/j.neuroscience.2012.06.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/01/2023]
Abstract
We used an immortalized arachnoid cell line to test the arachnoid barrier properties and paracellular transport. The permeabilities of urea, mannitol, and inulin through monolayers were 2.9 ± 1.1 × 10(-6), 0.8 ± .18 × 10(-6), 1.0 ± .29 × 10(-6)cm/s. Size differential permeability testing with dextran clarified the arachnoidal blood-cerebrospinal fluid (CSF) barrier limit and established a rate of transcellular transport to be about two orders of magnitude slower than paracellular transport in a polyester membrane diffusion chamber. The theoretical pore size for paracellular space is 11Å and the occupancy to length ratio is 0.8 and 0.72 cm(-1) for urea and mannitol respectively. The permeability of the monolayer was not significantly different from apical to basal and vice versa. Gap junctions may have a role in contributing to barrier formation. Although the upregulation of claudin by dexamethasone did not significantly alter paracellular transport, increasing intracellular cAMP decreased mannitol permeability. Calcium modulated paracellular transport, but only selectively with the ion chelator, EDTA, and with disruption of intracellular stores. The blood-CSF barrier at the arachnoid is anatomically and physiologically different from the vascular-based blood-brain barrier, but is similarly subject to modulation. We describe the basic paracellular transport characteristics of this CSF "sink" of the brain which will allow for a better description of mass and constitutive balance within the intracranial compartment.
Collapse
Affiliation(s)
- C H Lam
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
| | | | | | | | | |
Collapse
|
19
|
A novel porcine in vitro model of the blood-cerebrospinal fluid barrier with strong barrier function. PLoS One 2012; 7:e39835. [PMID: 22745832 PMCID: PMC3382175 DOI: 10.1371/journal.pone.0039835] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 05/27/2012] [Indexed: 01/10/2023] Open
Abstract
Epithelial cells of the plexus choroideus form the structural basis of the blood-cerebrospinal fluid barrier (BCSFB). In vitro models of the BCSFB presenting characteristics of a functional barrier are of significant scientific interest as tools for examination of BCSFB function. Due to a lack of suitable cell lines as in vitro models, primary porcine plexus epithelial cells were subjected to a series of selective cultivation steps until a stable continuous subcultivatable epithelial cell line (PCP-R) was established. PCP-R cells grow in a regular polygonal pattern with a doubling time of 28–36 h. At a cell number of 1.5×105 in a 24-well plate confluence is reached in 56–72 h. Cells are cytokeratin positive and chromosomal analysis revealed 56 chromosomes at peak (84th subculture). Employing reverse transcription PCR mRNA expression of several transporters and components of cell junctions could be detected. The latter includes tight junction components like Claudin-1 and -3, ZO-1, and Occludin, and the adherens junction protein E-cadherin. Cellular localization studies of ZO-1, Occludin and Claudin-1 by immunofluorescence and morphological analysis by electron microscopy demonstrated formation of a dense tight junction structure. Importantly, when grown on cell culture inserts PCP-R developed typical characteristics of a functional BCSFB including high transepithelial electrical resistance above 600 Ω×cm2 as well as low permeability for macromolecules. In summary, our data suggest the PCP-R cell line as a suitable in vitro model of the porcine BCSFB.
Collapse
|
20
|
Dalpiaz A, Paganetto G, Pavan B, Fogagnolo M, Medici A, Beggiato S, Perrone D. Zidovudine and Ursodeoxycholic Acid Conjugation: Design of a New Prodrug Potentially Able To Bypass the Active Efflux Transport Systems of the Central Nervous System. Mol Pharm 2012; 9:957-68. [DOI: 10.1021/mp200565g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alessandro Dalpiaz
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Guglielmo Paganetto
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Barbara Pavan
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Marco Fogagnolo
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Alessandro Medici
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Daniela Perrone
- Department
of Pharmaceutical Sciences, ‡Department of Biology, §Department of Chemistry, and ∥Department of
Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| |
Collapse
|
21
|
Schwerk C, Papandreou T, Schuhmann D, Nickol L, Borkowski J, Steinmann U, Quednau N, Stump C, Weiss C, Berger J, Wolburg H, Claus H, Vogel U, Ishikawa H, Tenenbaum T, Schroten H. Polar invasion and translocation of Neisseria meningitidis and Streptococcus suis in a novel human model of the blood-cerebrospinal fluid barrier. PLoS One 2012; 7:e30069. [PMID: 22253884 PMCID: PMC3256222 DOI: 10.1371/journal.pone.0030069] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/09/2011] [Indexed: 11/18/2022] Open
Abstract
Acute bacterial meningitis is a life-threatening disease in humans. Discussed as entry sites for pathogens into the brain are the blood-brain and the blood-cerebrospinal fluid barrier (BCSFB). Although human brain microvascular endothelial cells (HBMEC) constitute a well established human in vitro model for the blood-brain barrier, until now no reliable human system presenting the BCSFB has been developed. Here, we describe for the first time a functional human BCSFB model based on human choroid plexus papilloma cells (HIBCPP), which display typical hallmarks of a BCSFB as the expression of junctional proteins and formation of tight junctions, a high electrical resistance and minimal levels of macromolecular flux when grown on transwell filters. Importantly, when challenged with the zoonotic pathogen Streptococcus suis or the human pathogenic bacterium Neisseria meningitidis the HIBCPP show polar bacterial invasion only from the physiologically relevant basolateral side. Meningococcal invasion is attenuated by the presence of a capsule and translocated N. meningitidis form microcolonies on the apical side of HIBCPP opposite of sites of entry. As a functionally relevant human model of the BCSFB the HIBCPP offer a wide range of options for analysis of disease-related mechanisms at the choroid plexus epithelium, especially involving human pathogens.
Collapse
Affiliation(s)
- Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Halwachs S, Lakoma C, Schäfer I, Seibel P, Honscha W. The antiepileptic drugs phenobarbital and carbamazepine reduce transport of methotrexate in rat choroid plexus by down-regulation of the reduced folate carrier. Mol Pharmacol 2011; 80:621-9. [PMID: 21737571 DOI: 10.1124/mol.111.072421] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intrathecal methotrexate (MTX) has been associated with severe neurotoxicity. Because carrier-associated removal of MTX from the cerebrospinal fluid (CSF) into blood remains undefined, we determined the expression and function of MTX transporters in rat choroid plexus (CP). MTX neurotoxicity usually manifests as seizures requiring therapy with antiepileptic drugs (AEDs) such as phenobarbital (PB). Because we have demonstrated that PB reduces activity of MTX influx carrier reduced folate carrier (Rfc1) in liver, we investigated the influence of the AEDs PB, carbamazepine (CBZ), or gabapentin on Rfc1-mediated MTX transport in CP. Reverse transcriptase-polymerase chain reaction and Western blot analysis showed similar expression of the MTX influx carrier Rfc1 and organic anion transporter 3 or efflux transporter multidrug resistance-associated protein 1 (Mrp1) and breast cancer resistance protein (Bcrp) in rat CP tissue and choroidal epithelial Z310 cells. Confocal microscopy revealed subcellular localization of Rfc1 and Bcrp at the apical and of Mrp1 at the basolateral CP membrane. Uptake, efflux, and inhibition studies indicated MTX transport activity of Rfc1, Mrp1, and Bcrp. PB and CBZ but not gabapentin significantly inhibited Rfc1-mediated uptake of MTX in CP cells. Studies on the regulatory mechanism showed that PB significantly inhibited Rfc1 translation but did not alter carrier gene expression. Altogether, removal of intrathecal MTX across the blood-CSF barrier may be achieved through Rfc1-mediated uptake from the CSF followed by MTX extrusion into blood, particularly via Mrp1. Antiepileptic treatment with PB or CBZ causes post-transcriptional down-regulation of Rfc1 activity in CP. This mechanism may result in enhanced MTX toxicity in patients with cancer who are receiving intrathecal MTX chemotherapy by reduced CSF clearance of the drug.
Collapse
Affiliation(s)
- Sandra Halwachs
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, An den Tierkliniken 15, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
23
|
Monnot AD, Behl M, Ho S, Zheng W. Regulation of brain copper homeostasis by the brain barrier systems: effects of Fe-overload and Fe-deficiency. Toxicol Appl Pharmacol 2011; 256:249-57. [PMID: 21315754 DOI: 10.1016/j.taap.2011.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/29/2011] [Accepted: 02/02/2011] [Indexed: 02/02/2023]
Abstract
Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+55%) and decrease (-56%) in CSF Cu levels (p<0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+92%) and significantly slower (-53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p<0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.
Collapse
Affiliation(s)
- Andrew D Monnot
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
24
|
Mutlu NB, Değim Z, Yilmaz Ş, Eşsiz D, Nacar A. New perspective for the treatment of Alzheimer diseases: liposomal rivastigmine formulations. Drug Dev Ind Pharm 2011; 37:775-89. [PMID: 21231901 DOI: 10.3109/03639045.2010.541262] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The aim of this study was to determine the transportations of rivastigmine containing from various liposome formulations through Madin Darby Canine Kidney (MDCK) cells monolayer and to compare the in vitro test results with in vivo. There is no other liposome formulation of rivastigmine and the transportations of rivastigmine through MDCK cell monolayers or related study available in the literature. Cytotoxicity (MTT) test was used to determine cell viabilities. The effect of sodium-taurocholate or dimethyl-beta-cyclodextrine as penetration enhancer was also investigated. Characterization and stability studies for liposome formulations were performed. Permeation experiments of rivastigmine were performed through MDCK cells and dialysis membrane. The kinetic of release from liposomes was also investigated. The highest apparent permeability coefficient (log. values) was obtained with sodium-taurocholate liposomes for -1.15 ± 0.16 for MDCK cell. Rivastigmine liposomes and solutions were also administered to mice orally and intraperitonally. Acetylcholinesterase (AChE) activity was determined by Ellman method. AChE% inhibition values were calculated for both blood and brain after administration of rivastigmine solution and liposomes. The highest AChE inhibition was observed for rivastigmine-sodium-taurocholate liposomes. Histological observations of the mice' brains were performed under transmission electron microscope (TEM). The histological results were also indicated and supported all these findings.
Collapse
Affiliation(s)
- N Başaran Mutlu
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara
| | | | | | | | | |
Collapse
|
25
|
Kläs J, Wolburg H, Terasaki T, Fricker G, Reichel V. Characterization of immortalized choroid plexus epithelial cell lines for studies of transport processes across the blood-cerebrospinal fluid barrier. Cerebrospinal Fluid Res 2010; 7:11. [PMID: 20704740 PMCID: PMC2927495 DOI: 10.1186/1743-8454-7-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/12/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Two rodent choroid plexus (CP) epithelial cell lines, Z310 and TR-CSFB, were compared with primary rat CP epithelial cells and intact CP tissue with respect to transport protein expression, function and tight junction (TJ) formation. METHODS For expression profiles of transporters and TJ proteins, qPCR and western blot analysis were used. Uptake assays were performed to study the functional activity of transporters and TJ formation was measured by trans-epithelial electrical resistance (TEER) and visualized by electron microscopy. RESULTS The expression of known ATP-binding cassette (Abc) transporter and solute carrier (Slc) genes in CP was confirmed by qPCR. Primary cells and cell lines showed similar, but overall lower expression of Abc transporters and absent Slc expression when compared to intact tissue. Consistent with this Mrp1, Mrp4 and P-gp protein levels were higher in intact CP compared to cell lines. Functionality of P-gp and Mrp1 was confirmed by Calcein-AM and CMFDA uptake assays and studies using [3H]bis-POM-PMEA as a substrate indicated Mrp4 function. Cell lines showed low or absent TJ protein expression. After treatment of cell lines with corticosteroids, RNA expression of claudin1, 2 and 11 and occludin was elevated, as well as claudin1 and occludin protein expression. TJ formation was further investigated by freeze-fracture electron microscopy and only rarely observed. Increases in TJ particles with steroid treatment were not accompanied by an increase in transepithelial electrical resistance (TEER). CONCLUSION Taken together, immortalized cell lines may be a tool to study transport processes mediated by P-gp, Mrp1 or Mrp4, but overall expression of transport proteins and TJ formation do not reflect the situation in intact CP tissue.
Collapse
Affiliation(s)
- Juliane Kläs
- Ruprecht-Karls University, Department of Pharmaceutical Technology, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
26
|
Wang X, Li GJ, Zheng W. Efflux of iron from the cerebrospinal fluid to the blood at the blood-CSF barrier: effect of manganese exposure. Exp Biol Med (Maywood) 2008; 233:1561-71. [PMID: 18849539 PMCID: PMC3982226 DOI: 10.3181/0803-rm-104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The blood-cerebrospinal fluid (CSF) barrier (BCB) resides within the choroid plexus, with the apical side facing the CSF and the basolateral side towards the blood. Previous studies demonstrate that manganese (Mn) exposure in rats disrupts iron (Fe) homeostasis in the blood and CSF. The present study used a primary culture of rat choroidal epithelial cells grown in the two-chamber Transwell system to investigate the transepithelial transport of Fe across the BCB. Free, unbound Fe as [(59)Fe] was added to the donor chamber and the radioactivity in the acceptor chamber was quantified to determine the direction of Fe fluxes. Under the normal condition, the [(59)Fe] efflux (from the CSF to the blood) was 128% higher than that of the influx (P < 0.01). Mn exposure significantly increased the efflux rate of [(59)Fe] (P < 0.01) and the effect was inhibited when the cells were pre-incubated with the antibody against divalent metal transport 1 (DMT1). Moreover, when the siRNA knocked down the cellular DMT1 expression, the elevated Fe uptake caused by Mn exposure in the choroidal epithelial Z310 cells was completely abolished, indicating that Mn may facilitate Fe efflux via a DMT1-mediated transport mechanism. In vivo subchronic exposure to Mn in rats reduced Fe clearance from the CSF, as demonstrated by the ventriculo-cisternal brain perfusion, along with up-regulated mRNAs encoding DMT1 and transferrin receptor (TfR) in the same animals. Taken together, these data suggest that free Fe appears to be favorably transported from the CSF toward the blood by DMT1 and this process can be facilitated by Mn exposure. Enhanced TfR-mediated influx of Fe from the blood and ferroportin-mediated expelling Fe toward the CSF may compromise DMT1-mediated efflux, leading to an increased Fe concentration in the CSF as seen in Mn-exposed animals.
Collapse
Affiliation(s)
- Xueqian Wang
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - G. Jane Li
- Beijing Municipal Health Bureau, Beijing Municipal Centers for Disease Prevention and Control, Beijing, China 100080
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
27
|
Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi RI, Ueda M, Ohtsuki S, Terasaki T, Obinata M, Kanda T. Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol 2008; 217:388-99. [PMID: 18543246 DOI: 10.1002/jcp.21508] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The objective of this study was to establish pure blood-nerve barrier (BNB)-derived peripheral nerve pericyte cell lines and to investigate their unique properties as barrier-forming cells. We isolated peripheral nerve, brain, and lung pericytes from transgenic rats harboring the temperature-sensitive simian virus 40 large T-antigen gene. These cell lines expressed several pericyte markers such as alpha-smooth muscle actin, NG2, osteopontin, and desmin, whereas they did not express endothelial cell markers such as vWF and PECAM. In addition, these cell lines expressed several tight junction molecules such as occludin, claudin-12, ZO-1, and ZO-2. In particular, the expression of occludin was detected in peripheral nerve and brain pericytes, although it was not detected in lung pericytes by a Western blot analysis. An immunocytochemical analysis confirmed that occludin and ZO-1 were localized at the cell-cell boundaries among the pericytes. Brain and peripheral nerve pericytes also showed significantly higher trans-pericyte electrical resistance values and lower inulin clearances than lung pericytes. We considered that occludin localized at the cell-cell boundaries among the pericytes might mechanically stabilize the microvessels of the BNB and the blood-brain barrier. Furthermore, we also showed that these cell lines expressed many barrier-related transporters. ABCG2, p-gp, MRP-1, and Glut-1 were detected by a Western blot analysis and were observed in the cytoplasm and outer membrane by an immunocytochemical analysis. These transporters on pericytes might facilitate the peripheral nerve-to-blood efflux and blood-to-peripheral nerve influx transport of substrates in cooperation with those on endothelial cells in order to maintain peripheral nerve homeostasis.
Collapse
Affiliation(s)
- Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Szmydynger-Chodobska J, Pascale CL, Pfeffer AN, Coulter C, Chodobski A. Expression of junctional proteins in choroid plexus epithelial cell lines: a comparative study. Cerebrospinal Fluid Res 2007; 4:11. [PMID: 18162136 PMCID: PMC2241822 DOI: 10.1186/1743-8454-4-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 12/27/2007] [Indexed: 12/18/2022] Open
Abstract
Background There is an increasing interest in using choroid plexus (CP) epithelial cell lines to study the properties of the blood-cerebrospinal fluid barrier (BCSFB). Currently, there are three major CP-derived cell lines available. Z310 and TR-CSFB3, two immortalized cell lines carrying the simian virus 40 large T-antigen gene, were derived from rat CP epithelium, whereas the CPC-2 cell line was derived from human CP carcinoma. Although these cell lines have previously been used in various functional studies, the expression of adherens junction (AJ) and tight junction (TJ) proteins in these epithelial cells has not been systematically studied. Accordingly, in the present study, we sought to characterize the expression of these junctional proteins in these three cell lines. Methods The cells were grown in six-well cell culture plates. Reverse-transcriptase polymerase chain reaction, Western blotting, and immunocytochemistry were used to characterize the expression of AJ and TJ proteins in the CP cell lines. Results Z310 and TR-CSFB3 cells expressed a TJ protein, occludin, and its cytosolic binding partner, zonula occludens 1, as well as an AJ protein, E-cadherin, and β-catenin, a cytoplasmic protein that interacts with E-cadherin. However, the expression of occludin and E-cadherin in TR-CSFB3 cells at both the mRNA and protein level was weaker than that found in Z301 cells. The immunocytochemical analysis also demonstrated that the staining pattern for these junctional proteins in TR-CSFB3 cells was discontinuous and the staining intensity was weaker than that observed in Z310 cells. The message for claudin 1 and claudin 2 was expressed at low levels in TR-CSFB3 cells and these cells were weakly immunopositive for claudin 1. In comparison, the message for these TJ proteins could not be detected in Z310 cells. CPC-2 cells expressed occludin, which was localized to areas of cell-cell contact, but the staining pattern for this TJ protein was found to be variable and irregular. Although CPC-2 cells expressed mRNA for claudin 1, claudin 2, and claudin 11, only claudin 1 was expressed at the protein level and it was localized to the nuclei rather than to areas of cell-cell contact. An AJ protein, E-cadherin, was also found to be mislocalized in CPC-2 cells, even though its cytosolic binding partner, β-catenin, was restricted to areas of cell-cell contact, as in normal CP. Conclusion The three CP cell lines analyzed in this study vary considerably with regard to the expression of AJ and TJ proteins, which is likely reflected by different barrier properties of these in vitro models of BCSFB.
Collapse
Affiliation(s)
- Joanna Szmydynger-Chodobska
- Department of Clinical Neurosciences, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA.
| | | | | | | | | |
Collapse
|
29
|
Sano Y, Shimizu F, Nakayama H, Abe M, Maeda T, Ohtsuki S, Terasaki T, Obinata M, Ueda M, Takahashi RI, Kanda T. Endothelial cells constituting blood-nerve barrier have highly specialized characteristics as barrier-forming cells. Cell Struct Funct 2007; 32:139-47. [PMID: 18057801 DOI: 10.1247/csf.07015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In autoimmune disorders of the peripheral nervous system (PNS) such as Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy, breakdown of the blood-nerve barrier (BNB) has been considered as a key step in the disease process. Hence, it is important to know the cellular property of peripheral nerve microvascular endothelial cells (PnMECs) constituting the bulk of BNB. Although many in vitro models of the blood-brain barrier (BBB) have been established, very few in vitro BNB models have been reported so far. We isolated PnMECs from transgenic rats harboring the temperature-sensitive SV40 large T-antigen gene (tsA58 rat) and investigated the properties of these "barrier-forming cells". Isolated PnMECs (TR-BNBs) showed high transendothelial electrical resistance and expressed tight junction components and various types of influx as well as efflux transporters that have been reported to function at BBB. Furthermore, we confirmed the in vivo expression of various BBB-forming endothelial cell markers in the endoneurium of a rat sciatic nerve. These results suggest that PnMECs constituting the bulk of BNB have a highly specialized characteristic resembling the endothelial cells forming BBB.
Collapse
Affiliation(s)
- Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shi LZ, Li GJ, Wang S, Zheng W. Use of Z310 cells as an in vitro blood-cerebrospinal fluid barrier model: tight junction proteins and transport properties. Toxicol In Vitro 2007; 22:190-9. [PMID: 17825520 PMCID: PMC2677988 DOI: 10.1016/j.tiv.2007.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 06/26/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
Immortalized rat choroidal epithelial Z310 cells have the potential to become an in vitro model for studying transport of materials at blood-cerebrospinal fluid barrier (BCB) (Shi and Zheng, 2005) [Shi, L.Z., Zheng, W., 2005. Establishment of an in vitro brain barrier epithelial transport system for pharmacological and toxicological study. Brain Research 1057, 37-48]. This study was designed to demonstrate the presence of tight junction properties in Z310 cells and the functionality of Z310 monolayer in transport of selected model compounds. Western blot analyses revealed the presence of claudin-1, ZO-1, and occludin in Z310 cells. Transmission electron microscopy showed a "tight junction" type of structure in the sub-apical lateral membranes between adjacent Z310 cells. Real-time RT-PCR revealed that Z310 cells expressed representative transporters such as DMT1, MTP1, TfR, p-glycoprotein, ATP7A, ZnT1, ABCC1, Oat3, OCT1 and OB-Ra. Moreover, Z310 cells cultured in a two-chamber Transwell device possessed the ability to transport zidovudine (anionic drug), thyroxine (hormone), thymidine (nucleoside), and leptin (large polypeptide) with kinetic properties similar to those obtained from the in vitro model based on primary culture of choroidal epithelial cells. Taken together, these data indicate that the Z310 BCB model expresses major tight junction proteins and forms a tight barrier in vitro. The model also exhibits the ability to transport substances of various categories across the barrier.
Collapse
Affiliation(s)
| | | | | | - Wei Zheng
- To address correspondence: Wei Zheng, Ph.D., Purdue University School of Health Sciences, 550 Stadium Mall Drive, Room 1163D, West Lafayette, IN 47907-2051, +1 765.496.6447 (office), +1 765.496.3555 (lab), +1 765.496.1377 (fax),
| |
Collapse
|
31
|
Shi LZ, Zheng W. Early lead exposure increases the leakage of the blood-cerebrospinal fluid barrier, in vitro. Hum Exp Toxicol 2007; 26:159-67. [PMID: 17439918 PMCID: PMC3980856 DOI: 10.1177/0960327107070560] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cell type constructing the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCB) is entirely different, ie, endothelia in BBB and epithelia in BCB. Nonetheless, both barriers share a common character--the tight junctions (TJ) between adjacent cells. This study investigated the consequence of lead (Pb) exposure on the tightness of BCB. In an in vitro BCB transwell model, using immortalized choroidal epithelial Z310 cells, we found that early exposure to Pb (prior to the formation of tight barrier) at 5 and 10 microM, significantly reduced the tightness of BCB, as evidenced by a 20% reduction in transepithelial electrical resistance (TEER) values (P <0.05), and >20% increase in the paracellular permeability of [(14)C]sucrose (P <0.05). Exposure to Pb after the formation of tight barrier, however, did not cause any detectable barrier dysfunction. RT-PCR and Western blot analyses on typical TJ proteins revealed that Pb exposure decreased both the mRNA and protein levels of claudin-1, with the membrane-bound claudin-1 more profoundly affected than cytosolic claudin-1. Pb exposure, however, had no significant effect on ZO1 and occludin. These data suggest that Pb exposure selectively alters the cellular level of claudin-1, which, in turn, reduces the tightness and augments the permeability of tight blood-CSF barrier. The immature barrier appears to be more vulnerable to Pb toxicity than the mature, well-developed, brain barrier, the fact possibly contributing to Pb-induced neurotoxicity among young children.
Collapse
Affiliation(s)
| | - Wei Zheng
- Correspondence: Wei Zheng, PhD, Professor of Health Sciences, Purdue University School of Health Sciences, 550 Stadium Mall Drive, CIVL-1163D, West Lafayette, IN 47907-2051, USA
| |
Collapse
|