1
|
Fernandez CJ, Hanna FW, Pacak K, Nazari MA. Catecholamines and blood pressure regulation. ENDOCRINE HYPERTENSION 2023:19-34. [DOI: 10.1016/b978-0-323-96120-2.00010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Shoji H, Ohashi M, Hirano T, Watanabe K, Endo N, Baba H, Kohno T. Mechanisms of noradrenergic modulation of synaptic transmission and neuronal excitability in ventral horn neurons of the rat spinal cord. Neuroscience 2019; 408:161-176. [PMID: 30986437 DOI: 10.1016/j.neuroscience.2019.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/17/2019] [Accepted: 03/12/2019] [Indexed: 12/25/2022]
Abstract
Noradrenaline (NA) modulates the spinal motor networks for locomotion and facilitates neuroplasticity, possibly assisting neuronal network activation and neuroplasticity in the recovery phase of spinal cord injuries. However, neither the effects nor the mechanisms of NA on synaptic transmission and neuronal excitability in spinal ventral horn (VH) neurons are well characterized, especially in rats aged 7 postnatal days or older. To gain insight into NA regulation of VH neuronal activity, we used a whole-cell patch-clamp approach in late neonatal rats (postnatal day 7-15). In voltage-clamp recordings at -70 mV, NA increased the frequency and amplitude of excitatory postsynaptic currents via the activation of somatic α1- and β-adrenoceptors of presynaptic neurons. Moreover, NA induced an inward current through the activation of postsynapticα1- and β-adrenoceptors. At a holding potential of 0 mV, NA also increased frequency and amplitude of both GABAergic and glycinergic inhibitory postsynaptic currents via the activation of somatic adrenoceptors in presynaptic neurons. In current-clamp recordings, NA depolarized resting membrane potentials and increased the firing frequency of action potentials in VH neurons, indicating that it enhances the excitability of these neurons. Our findings provide new insights that establish NA-based pharmacological therapy as an effective method to activate neuronal networks of the spinal VH in the recovery phase of spinal cord injuries.
Collapse
Affiliation(s)
- Hirokazu Shoji
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Masayuki Ohashi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Toru Hirano
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Kei Watanabe
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Naoto Endo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Hiroshi Baba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan
| | - Tatsuro Kohno
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachidori 1-757, Chuo-ku, Niigata-city, 951-8510, Japan; Department of Anesthesiology, Tohoku Medical and Pharmaceutical University, Fukumuro 1-12-1, Miyagino-ku, Sendai-city, 983-8512, Japan.
| |
Collapse
|
3
|
Butt AM, Fern RF, Matute C. Neurotransmitter signaling in white matter. Glia 2014; 62:1762-79. [PMID: 24753049 DOI: 10.1002/glia.22674] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/04/2014] [Accepted: 03/31/2014] [Indexed: 12/16/2022]
Abstract
White matter (WM) tracts are bundles of myelinated axons that provide for rapid communication throughout the CNS and integration in grey matter (GM). The main cells in myelinated tracts are oligodendrocytes and astrocytes, with small populations of microglia and oligodendrocyte precursor cells. The prominence of neurotransmitter signaling in WM, which largely exclude neuronal cell bodies, indicates it must have physiological functions other than neuron-to-neuron communication. A surprising aspect is the diversity of neurotransmitter signaling in WM, with evidence for glutamatergic, purinergic (ATP and adenosine), GABAergic, glycinergic, adrenergic, cholinergic, dopaminergic and serotonergic signaling, acting via a wide range of ionotropic and metabotropic receptors. Both axons and glia are potential sources of neurotransmitters and may express the respective receptors. The physiological functions of neurotransmitter signaling in WM are subject to debate, but glutamate and ATP-mediated signaling have been shown to evoke Ca(2+) signals in glia and modulate axonal conduction. Experimental findings support a model of neurotransmitters being released from axons during action potential propagation acting on glial receptors to regulate the homeostatic functions of astrocytes and myelination by oligodendrocytes. Astrocytes also release neurotransmitters, which act on axonal receptors to strengthen action potential propagation, maintaining signaling along potentially long axon tracts. The co-existence of multiple neurotransmitters in WM tracts suggests they may have diverse functions that are important for information processing. Furthermore, the neurotransmitter signaling phenomena described in WM most likely apply to myelinated axons of the cerebral cortex and GM areas, where they are doubtless important for higher cognitive function.
Collapse
Affiliation(s)
- Arthur M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, United Kingdom
| | | | | |
Collapse
|
4
|
Domingues AMDJ, Taylor M, Fern R. Glia as transmitter sources and sensors in health and disease. Neurochem Int 2010; 57:359-66. [PMID: 20380859 DOI: 10.1016/j.neuint.2010.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/19/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Glial cells express a bewildering array of neurotransmitter receptors. To illustrate the complexity of expression, we have assayed non-glutamatergic neurotransmitter receptor mRNA in isolated rat optic nerve, a preparation devoid of neurons and neuronal synapses and from which relatively pure "glial" RNA can be isolated. Of the 44 receptor subunits examined which span the GABA-A, nicotinic, adreno- and glycine receptor families, over three quarters were robustly expressed in this mixed population of white matter glial cells, with several expressed at higher levels than found in control whole brain RNA. In addition to the complexity of glial receptor expression, numerous neurotransmitter release mechanisms have been identified. We have focused on glutamate release from astrocytes, which can occur via at least seven distinct pathways and which is implicated in excitotoxic injury and are neurons and glia. Recent findings suggest that non-glutamatergic receptors can also mediate acute glial injury are also discussed.
Collapse
|
5
|
Facheris MF, Hicks AA, Pramstaller PP, Pichler I. Update on the management of restless legs syndrome: existing and emerging treatment options. Nat Sci Sleep 2010; 2:199-212. [PMID: 23616710 PMCID: PMC3630948 DOI: 10.2147/nss.s6946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Restless legs syndrome (RLS) is a sensorimotor disorder, characterized by a circadian variation of symptoms involving an urge to move the limbs (usually the legs) as well as paresthesias. There is a primary (familial) and a secondary (acquired) form, which affects a wide variety of individuals, such as pregnant women, patients with end-stage renal disease, iron deficiency, rheumatic disease, and persons taking medications. The symptoms reflect a circadian fluctuation of dopamine in the substantia nigra. RLS patients have lower dopamine and iron levels in the substantia nigra and respond to both dopaminergic therapy and iron administration. Iron, as a cofactor of dopamine production and a regulator of the expression of dopamine type 2-receptor, has an important role in the RLS etiology. In the management of the disease, the first step is to investigate possible secondary causes and their treatment. Dopaminergic agents are considered as the first-line therapy for moderate to severe RLS. If dopaminergic drugs are contraindicated or not efficacious, or if symptoms are resistant and unremitting, gabapentin or other antiepileptic agents, benzodiazepines, or opioids can be used for RLS therapy. Undiagnosed, wrongly diagnosed, and untreated RLS is associated with a significant impairment of the quality of life.
Collapse
Affiliation(s)
- Maurizio F Facheris
- Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (Affiliated institute of the University of Lübeck, Lübeck, Germany) ; Department of Neurology, Central Hospital, Bolzano, Italy
| | | | | | | |
Collapse
|
6
|
Effects of the noradrenergic system in rat white matter exposed to oxygen-glucose deprivation in vitro. J Neurosci 2009; 29:1796-804. [PMID: 19211886 DOI: 10.1523/jneurosci.5729-08.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Norepinephrine (NE) is released in excess into the extracellular space during oxygen-glucose deprivation (OGD) in brain, increasing neuronal metabolism and aggravating glutamate excitoxicity. We used isolated rat optic nerve and spinal cord dorsal columns to determine whether the noradrenergic system influences axonal damage in white matter. Tissue was studied electrophysiologically by recording the compound action potential (CAP) before and after exposure to 60 min of OGD at 36 degrees C. Depleting catecholamine stores with reserpine was protective and improved CAP recovery after 1 h of reperfusion from 17% (control) to 35%. Adding NE during OGD decreased CAP recovery to 8%, and adding NE to reserpine during OGD eliminated the protective effect of the latter. Selective inhibitors of Na(+)-dependent norepinephrine transport desipramine and nisoxetine improved recovery to 58% and 44%, respectively. alpha2 adrenergic receptor agonists UK14,304 and medetomidine improved CAP recovery to 41% and 46% after 1 h of OGD. Curiously, alpha2 antagonists alone were also highly protective (e.g., atipamezole: 86% CAP recovery), at concentrations that did not affect baseline excitability. The protective effect of alpha2 receptor modulation was corroborated by imaging fluorescent Ca(2+) and Na(+) indicators within axons during OGD. Both agonists and antagonists significantly reduced axonal Ca(2+) and Na(+) accumulation in injured axons. These data suggest that the noradrenergic system plays an active role in the pathophysiology of axonal ischemia and that alpha2 receptor modulation may be useful against white matter injury.
Collapse
|
7
|
Bordelon-Glausier JR, Khan ZU, Muly EC. Quantification of D1 and D5 dopamine receptor localization in layers I, III, and V of Macaca mulatta prefrontal cortical area 9: coexpression in dendritic spines and axon terminals. J Comp Neurol 2008; 508:893-905. [PMID: 18399540 DOI: 10.1002/cne.21710] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
D1 family receptors (D1R) in prefrontal cortex (PFC) are critical for normal cognition and are implicated in pathological states such as schizophrenia. The two D1R subtypes, D1 and D5, cannot be pharmacologically distinguished but have important functional differences. To understand their contributions to cortical function, we quantified their localization in the neuropil of primate PFC. We identified different patterns of distribution for the two receptors that showed variation across cortical laminae. Although D1 was enriched in spines and D5 in dendrites, there was considerable overlap in their distribution within neuronal compartments. To determine whether the D1 and D5 receptors are localized to separate populations of synapses, we employed double-labeling methods. We found the two receptors colocalized and quantified the overlap of their distribution in spines and axon terminals of prefrontal cortical area 9 in the Macaca mulatta monkey. The two receptors are found in partially overlapping populations, such that the D5 receptor is found in a subpopulation of those spines and terminals that contain D1. These results indicate that dopamine activation of the two D1R subtypes does not modulate disparate populations of synapses onto dendritic spines in prefrontal cortical area 9; rather, dopamine can activate D1 and D5 receptors on the same spines, plus an additional group of spines that contains only D1. The implications of these results for the dose-dependent relationship between D1R activation and PFC function are discussed.
Collapse
|
8
|
Zhao H, Zhu W, Pan T, Xie W, Zhang A, Ondo WG, Le W. Spinal cord dopamine receptor expression and function in mice with 6-OHDA lesion of the A11 nucleus and dietary iron deprivation. J Neurosci Res 2007; 85:1065-76. [PMID: 17342757 DOI: 10.1002/jnr.21207] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is suggested that dysfunction of the diencephalospinal dopaminergic (DAergic) pathway may cause restless legs syndrome. We examined the mRNA and protein levels as well as DA receptor subtypes function within the lumbar spinal cord of an RLS animal model. C57BL/6 male mice with or without iron deprivation were lesioned with 6-hydroxydopamine (6-OHDA) in the bilateral A11 nuclei. Locomotor behaviors were observed. DA concentration, mRNA, and protein levels of D1, D2, and D3 receptors in the lumbar spinal cords were analyzed, and the specific binding of D1, D2, and D3 receptors was determined using [(3)H]SCH23390, [(3)H]Spiperone, and [(3)H]PD128907 radioligands respectively. The behavioral tests showed that the locomotor activities were increased significantly in the mice treated with iron-deficiency (ID) diet and 6-OHDA lesions, which were reversed by the D2/D3 agonist ropinirole. DA in the spinal cord was decreased significantly by 6-OHDA lesioning in A11. D2/D3 mRNA and protein levels as well as their binding capacity in the spinal cord were decreased significantly by 6-OHDA lesions. ID with 6-OHDA lesions produced a synergistic greater decrease of D2 binding. Although ID increased D1 mRNA and protein expression in the spinal cord, it did not significantly change D1 receptor binding. The present study suggests that ID and 6-OHDA lesions in A11 nuclei differentially altered the D1, D2, and D3 receptors expression and binding capacity in the lumbar spinal cord of RLS animal model, which was accompanied by changes in locomotor activities.
Collapse
Affiliation(s)
- Hongru Zhao
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Högl B, Paulus W, Clarenbach P, Trenkwalder C. Restless legs syndrome: diagnostic assessment and the advantages and risks of dopaminergic treatment. J Neurol 2007; 253 Suppl 4:IV22-8. [PMID: 16944353 DOI: 10.1007/s00415-006-4005-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the past few years, major advances have been made in the field of restless legs syndrome (RLS). New tools have been developed to assess the presence and severity of RLS and its complications. Furthermore new concepts of the phenotype are emerging.With a high likelihood a slight dopaminergic hypofunction contributes essentially to the pathophysiology of most phenotypes of RLS. Dopaminergic substitution either with L-DOPA or with dopamine agonists ameliorates symptoms in the large majority of patients. Too high of doses of either type of drug may be involved in the development of augmentation caused by treatment-induced alterations in dopaminergic neurotransmission. Dopaminergic agents are currently the agents of first choice to treat RLS, and large multicenter trials support the evidence of efficacy. Very careful tailoring of the dose is required to avoid the development of treatment complications, specifically augmentation.
Collapse
Affiliation(s)
- Birgit Högl
- Dept. of Neurology, Medical University, 6020, Innsbruck, Austria.
| | | | | | | |
Collapse
|
10
|
Paulus W, Trenkwalder C. Less is more: pathophysiology of dopaminergic-therapy-related augmentation in restless legs syndrome. Lancet Neurol 2006; 5:878-86. [PMID: 16987735 DOI: 10.1016/s1474-4422(06)70576-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapy-related augmentation of the symptoms of restless legs syndrome (RLS) is an important clinical problem reported in up to 60% of patients treated with levodopa and, to a lesser extent, with dopamine agonists. The efficacy of low-dose dopaminergic drugs for RLS has been established, but the mode of action is unknown. Here, we review the existing data and conclude that augmentation is a syndrome characterised by a severely increased dopamine concentration in the CNS; overstimulation of the dopamine D1 receptors compared with D2 receptors in the spinal cord may lead to D1-related pain and generate periodic limb movements; iron deficiency may be a main predisposing factor of augmentation, probably caused by a reduced function of the dopamine transporter; therapy with levodopa or dopamine agonists should remain at low doses and; iron supplementation and opiates are the therapy of choice to counter augmentation.
Collapse
Affiliation(s)
- Walter Paulus
- Department of Clinical Neurophysiology, University of Göttingen, Göttingen, Germany.
| | | |
Collapse
|