1
|
Guo Y, Verma B, Shrestha M, Marshak-Rothstein A, Gregory-Ksander M. Caspase-8-mediated inflammation but not apoptosis drives death of retinal ganglion cells and loss of visual function in glaucomaa. RESEARCH SQUARE 2024:rs.3.rs-4409426. [PMID: 38947028 PMCID: PMC11213175 DOI: 10.21203/rs.3.rs-4409426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background- Glaucoma is a complex multifactorial disease where apoptosis and inflammation represent two key pathogenic mechanisms. However, the relative contribution of apoptosis versus inflammation in axon degeneration and death of retinal ganglion cells (RGCs) is not well understood. In glaucoma, caspase-8 is linked to RGC apoptosis, as well as glial activation and neuroinflammation. To uncouple these two pathways and determine the extent to which caspase-8-mediated inflammation and/or apoptosis contributes to the death of RGCs, we used the caspase-8 D387A mutant mouse (Casp8 DA/DA ) in which a point mutation in the auto-cleavage site blocks caspase-8-mediated apoptosis but does not block caspase-8-mediated inflammation. Methods- Intracameral injection of magnetic microbeads was used to elevate the intraocular pressure (IOP) in wild-type, Fas deficient Faslpr, and Casp8 DA/DA mice. IOP was monitored by rebound tonometry. Two weeks post microbead injection, retinas were collected for microglia activation analysis. Five weeks post microbead injection, visual acuity and RGC function were assessed by optometer reflex (OMR) and pattern electroretinogram (pERG), respectively. Retina and optic nerves were processed for RGC and axon quantification. Two- and five-weeks post microbead injection, expression of the necrosis marker, RIPK3, was assessed by qPCR. Results- Wild-type, Faslpr, and Casp8 DA/DA mice showed similar IOP elevation as compared to saline controls. A significant reduction in both visual acuity and pERG that correlated with a significant loss of RGCs and axons was observed in wild-type but not in Faslpr mice. The Casp8 DA/DA mice displayed a significant reduction in visual acuity and pERG amplitude and loss of RGCs and axons similar to that in wild-type mice. Immunostaining revealed equal numbers of activated microglia, double positive for P2ry12 and IB4, in the retinas from microbead-injected wild-type and Casp8 DA/DA mutant mice. qPCR analysis revealed no induction of RIPK3 in wild-type or Casp8 DA/DA mice at two- or five-weeks post microbead injection. Conclusions- Our results demonstrate that caspase-8-mediated extrinsic apoptosis is not involved in the death of RGCs in the microbead-induced mouse model of glaucoma implicating caspase-8-mediated inflammation, but not apoptosis, as the driving force in glaucoma progression. Taken together, these results identify the caspase-8-mediated inflammatory pathway as a potential target for neuroprotection in glaucoma.
Collapse
Affiliation(s)
- Yinjie Guo
- Xiangya Hospital Central South University
| | - Bhupender Verma
- Schepens Eye Research Institute of Massachusetts Eye and Ear
| | - Maleeka Shrestha
- Harvard University HSPH: Harvard University T H Chan School of Public Health
| | | | | |
Collapse
|
2
|
Ray SK. TUNEL-n-DIFL Method for Detection and Estimation of Apoptosis Specifically in Neurons and Glial Cells in Mixed Culture and Animal Models of Central Nervous System Diseases and Injuries. Methods Mol Biol 2024; 2761:1-26. [PMID: 38427225 DOI: 10.1007/978-1-0716-3662-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Detection of merely apoptosis does not reveal the type of central nervous system (CNS) cells that are dying in the CNS diseases and injuries. In situ detection and estimation of amount of apoptosis specifically in neurons or glial cells (astrocytes, oligodendrocytes, and microglia) can unveil valuable information for designing therapeutics for protection of the CNS cells and functional recovery. A method was first developed and reported from our laboratory for in situ detection and estimation of amount of apoptosis precisely in neurons and glial cells using in vitro and in vivo models of CNS diseases and injuries. This is a combination of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and double immunofluorescent labeling (DIFL) or simply TUNEL-n-DIFL method for in situ detection and estimation of amount of apoptosis in a specific CNS cell type. An anti-digoxigenin (DIG) IgG antibody conjugated with 7-amino-4-methylcoumarin-3-acetic acid (AMCA) for blue fluorescence, fluorescein isothiocyanate (FITC) for green fluorescence, or Texas Red (TR) for red fluorescence can be used for in situ detection of apoptotic cell DNA, which is earlier labeled with TUNEL using alkali-stable DIG-11-dUTP. A primary anti-NeuN (neurons), anti-GFAP (astrocytes), anti-MBP (oligodendrocytes), or anti-OX-42 (microglia) IgG antibody and a secondary IgG antibody conjugated with one of the above fluorophores (other than that of ani-DIG antibody) are used for in situ detection of apoptosis in a specific CNS cell type in the mixed culture and animal models of the CNS diseases and injuries.
Collapse
Affiliation(s)
- Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
3
|
Guo J, Wang J, Guo R, Shao H, Guo L. Pterostilbene protects the optic nerves and retina in a murine model of experimental autoimmune encephalomyelitis via activation of SIRT1 signaling. Neuroscience 2022; 487:35-46. [DOI: 10.1016/j.neuroscience.2022.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
|
4
|
Podbielska M, O'Keeffe J, Hogan EL. Autoimmunity in multiple sclerosis: role of sphingolipids, invariant NKT cells and other immune elements in control of inflammation and neurodegeneration. J Neurol Sci 2017; 385:198-214. [PMID: 29406905 DOI: 10.1016/j.jns.2017.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is classified as being an autoimmune response in the genetically susceptible individual to a persistent but unidentified antigen(s). Both the adaptive and the innate immune systems are likely to contribute significantly to MS pathogenesis. This review summarizes current understanding of the characteristics of MS autoimmunity in the initiation and progression of the disease. In particular we find it timely to classify the autoimmune responses by focusing on the immunogenic features of myelin-derived lipids in MS including molecular mimicry; on alterations of bioactive sphingolipids mediators in MS; and on functional roles for regulatory effector cells, including innate lymphocyte populations, like the invariant NKT (iNKT) cells which bridge adaptive and innate immune systems. Recent progress in identifying the nature of sphingolipids recognition for iNKT cells in immunity and the functional consequences of the lipid-CD1d interaction opens new avenues of access to the pathogenesis of demyelination in MS as well as design of lipid antigen-specific therapeutics.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA; Laboratory of Signal Transduction Molecules, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Joan O'Keeffe
- Department of Biopharmaceutical & Medical Science, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Edward L Hogan
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
5
|
McCarty DJ, Huang W, Kane MA, Purushottamachar P, Gediya LK, Njar VC. Novel galeterone analogs act independently of AR and AR-V7 for the activation of the unfolded protein response and induction of apoptosis in the CWR22Rv1 prostate cancer cell model. Oncotarget 2017; 8:88501-88516. [PMID: 29179452 PMCID: PMC5687622 DOI: 10.18632/oncotarget.19762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022] Open
Abstract
The androgen receptor (AR) has long been the primary target for the treatment of prostate cancer (PC). Despite continuous efforts to block AR activity through ligand depletion, AR antagonism, AR depletion and combinations thereof, advanced PC tumors remain resilient. Herein, we evaluate two galeterone analogs, VNPT-178 and VNLG-74A, in PC cell models of diverse androgen and AR dependence attempting to delineate their mechanisms of action and potential clinical utility. Employing basic biochemical techniques, we determined that both analogs have improved antiproliferative and anti-AR activities compared to FDA-approved abiraterone and enzalutamide. However, induction of apoptosis in these models is independent of the AR and its truncated variant, AR-V7, and instead likely results from sustained endoplasmic reticulum stress and deregulated calcium homeostasis. Using in silico molecular docking, we predict VNPT-178 and VNLG-74A bind the ATPase domain of BiP/Grp78 and Hsp70-1A with greater affinity than the AR. Disruption of 70 kDa heat shock protein function may be the underlying mechanism of action for these galeterone analogs. Therefore, despite simultaneously antagonizing AR activity, AR and/or AR-V7 expression alone may inadequately predict a patient's response to treatment with VNPT-178 or VNLG-74A. Future studies evaluating the context-specific limitations of these compounds may provide clarity for their clinical application.
Collapse
Affiliation(s)
- David J. McCarty
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lalji K. Gediya
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vincent C.O. Njar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Li J, Yang S, Zhu G. Postnatal calpain inhibition elicits cerebellar cell death and motor dysfunction. Oncotarget 2017; 8:87997-88007. [PMID: 29152136 PMCID: PMC5675688 DOI: 10.18632/oncotarget.21324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/29/2017] [Indexed: 12/21/2022] Open
Abstract
Calpain-1 deletion elicits neurodevelopmental disorders, such as ataxia. However, the function of calpain in postnatal neurodevelopment and its mechanisms remain unknown. In this study, we revealed that postnatal intraperitoneal injection of various calpain inhibitors attenuated cerebellar cytosolic calpain activity. Moreover, postnatal application of calpeptin (2 mg/kg) apparently reduced spectrin breakdown, promoted suprachiasmatic nucleus circadian oscillatory protein (SCOP) accumulation in cerebellar tissue. In addition, application of calpeptin decreased phosphorylated protein kinase B (p-AKT) level (p<0.05), as well as total AKT level (p<0.05). We also evidenced that administration of calpeptin obviously increased phosphorylation of mammalian target of rapamycin (p-mTor) (p<0.01). Apoptosis of granular cells and activation of caspase-3 (p<0.01) were facilitated after calpain inhibition. Importantly, cell numbers of granular cells were reduced and motor function was remarkably impaired in 4-month-old rats receiving postnatal calpain inhibition. Taken together, our data implicated that calpain activity in the postnatal period was critical for the cerebellar development. Postnatal calpain inhibition causes cerebellar granular cell apoptosis and motor dysfunction, likely through SCOP/AKT and p-mTor signaling pathways.
Collapse
Affiliation(s)
- Junyao Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Sanjuan Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| |
Collapse
|
7
|
W. Smith A, K. Ray S, Das A, Nozaki K, Rohrer B, L. Banik N. Calpain inhibition as a possible new therapeutic target in multiple sclerosis. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Podbielska M, Das A, Smith AW, Chauhan A, Ray SK, Inoue J, Azuma M, Nozaki K, Hogan EL, Banik NL. Neuron-microglia interaction induced bi-directional cytotoxicity associated with calpain activation. J Neurochem 2016; 139:440-455. [PMID: 27529445 DOI: 10.1111/jnc.13774] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/30/2016] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
Activated microglia release pro-inflammatory factors and calpain into the extracellular milieu, damaging surrounding neurons. However, mechanistic links to progressive neurodegeneration in disease such as multiple sclerosis (MS) remain obscure. We hypothesize that persistent damaged/dying neurons may also release cytotoxic factors and calpain into the media, which then activate microglia again. Thus, inflammation, neuronal damage, and microglia activation, i.e., bi-directional interaction between neurons and microglia, may be involved in the progressive neurodegeneration. We tested this hypothesis using two in vitro models: (i) the effects of soluble factors from damaged primary cortical neurons upon primary rat neurons and microglia and (ii) soluble factors released from CD3/CD28 activated peripheral blood mononuclear cells of MS patients on primary human neurons and microglia. The first model indicated that neurons due to injury with pro-inflammatory agents (IFN-γ) release soluble neurotoxic factors, including COX-2, reactive oxygen species, and calpain, thus activating microglia, which in turn released neurotoxic factors as well. This repeated microglial activation leads to persistent inflammation and neurodegeneration. The released calpain from neurons and microglia was confirmed by the use of calpain inhibitor calpeptin or SNJ-1945 as well as μ- and m-calpain knock down using the small interfering RNA (siRNA) technology. Our second model using activated peripheral blood mononuclear cells, a source of pro-inflammatory Th1/Th17 cytokines and calpain released from auto-reactive T cells, corroborated similar results in human primary cell cultures and confirmed calpain to be involved in progressive MS. These insights into reciprocal paracrine regulation of cell injury and calpain activation in the progressive phase of MS, Parkinson's disease, and other neurodegenerative diseases suggest potentially beneficial preventive and therapeutic strategies, including calpain inhibition.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.,Laboratory of Signaling Proteins, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Arabinda Das
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amena W Smith
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ashok Chauhan
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jun Inoue
- Senju Pharmaceutical, Co LTD, Kobe, Japan
| | | | - Kenkichi Nozaki
- Department of Neurology, University of Alabama School of Medicine, Birmingham, Alabama, USA
| | - Edward L Hogan
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Naren L Banik
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA. .,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.
| |
Collapse
|
9
|
Zhang G, Han M, Wang X, Xiao A. GRP75 Involves in Retinal Ganglion Cell Apoptosis After Rat Optic Nerve Crush. J Mol Neurosci 2015; 56:422-30. [PMID: 25600835 DOI: 10.1007/s12031-015-0493-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/06/2015] [Indexed: 01/09/2023]
Abstract
Glucose-regulated protein 75 (GRP75), a member of the heat-shock protein 70 family, is known to protect cells from stress-induced injury. However, information regarding its distribution and possible function in the retina is limited. In this study, we performed an optic nerve crush (ONC) model in adult rats and found that GRP75 was significantly upregulated in the retina after ONC. Double immunofluorescent staining revealed that GRP75 was localized in the retinal ganglion cells (RGCs). We also examined the expression profile of active caspase3, whose change was correlated with the expression profile of GRP75. In addition, we utilized co-staining of GRP75 and active caspase3 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to study their correlation in the retina following ONC. Furthermore, the expressions of Bax, cytochrome c (Cytc), p-extracellular-signal-regulated kinases (ERK)1/2, and p-AKT were enhanced in the retina after ONC, and they were parallel with the expression profile of GRP75. Based on our data, we speculated that GRP75 might play an important role in RGCs apoptosis following ONC.
Collapse
Affiliation(s)
- Gaoming Zhang
- Department of Ophthalmology, Jiangyin Hospital of Traditional Chinese Medicine, Nanjing Traditional Chinese Medicine University, No. 130 Renming zhong Road, Jiangyin, 214400, Jiangsu, China,
| | | | | | | |
Collapse
|
10
|
Role of Protease-Inhibitors in Ocular Diseases. Molecules 2014; 19:20557-20569. [PMID: 25493637 PMCID: PMC6271012 DOI: 10.3390/molecules191220557] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022] Open
Abstract
It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI), metalloproteinase inhibitor (TIMP), maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI), and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models.
Collapse
|
11
|
Chinskey ND, Zheng QD, Zacks DN. Control of photoreceptor autophagy after retinal detachment: the switch from survival to death. Invest Ophthalmol Vis Sci 2014; 55:688-95. [PMID: 24408986 DOI: 10.1167/iovs.13-12951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To examine whether calpain inhibition following retinal detachment would prolong autophagy and result in reduced photoreceptor apoptosis. METHODS Retinal detachments were created in Brown-Norway rats by subretinal injection of 1% hyaluronic acid and simulated in vitro by Fas-receptor activation of 661W cells, a cone cell line. Protein levels of LC3 and autophagy-related gene 5 (Atg5), both of which are involved in the creation of the autophagosome, were assayed by Western blot. Calpain 1, the protease responsible for Atg5 cleavage and transitioning photoreceptors from autophagy to apoptosis, activity was monitored by α-spectrin cleavage. Various calpain inhibitors were added either to the subretinal space or cell culture media. Apoptosis was assessed in vitro by caspase-8 activity assays and in vivo via TUNEL assays. Cell counts were assessed in vivo at 2 months following detachment. RESULTS Following retinal detachment or Fas-receptor activation of 661W cells, there was an increase in Atg5 and LC3-II that peaked at 3 days and decreased by 7-days postdetachment. Calpain 1 activity level peaked at 7 days and was associated with decreased autophagy. Calpain inhibition led to increased autophagy, a decrease in caspase-8 activation, reduced TUNEL-positive photoreceptors, and increased photoreceptor cell survival. CONCLUSIONS Our data suggest that calpain activation, which peaks at 7-days postdetachment, is a key step in triggering photoreceptors to shift from cell survival to death. Prolonging autophagy through calpain inhibition leads to significantly reduced photoreceptor apoptosis and increased cell survival.
Collapse
Affiliation(s)
- Nicholas D Chinskey
- Department of Ophthalmology and Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | | | | |
Collapse
|
12
|
Mayama C. Calcium channels and their blockers in intraocular pressure and glaucoma. Eur J Pharmacol 2013; 739:96-105. [PMID: 24291107 DOI: 10.1016/j.ejphar.2013.10.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 10/25/2022]
Abstract
Several factors besides high intraocular pressure assumed to be associated with the development and progression of glaucoma, and calcium channel blockers (CCBs) have been an anticipated option for glaucoma treatment by improving ocular perfusion and/or exerting neuroprotective effects on retinal ganglion cells with safety established in wide and long-term usage. Decrease in IOP has been reported after topical application of CCBs, however, the effect is much smaller and almost negligible after systemic application. Various CCBs have been reported to increase posterior ocular blood flow in vivo and to exert direct neuroprotection in neurons in vitro. Distribution of the drug at a pharmacologically active concentration in the posterior ocular tissues across the blood-brain barrier or blood-retina barrier, especially in the optic nerve head and retina where the ganglion cells mainly suffer from glaucomatous damage, is essential for clinical treatment of glaucoma. Improved visual functions such as sensitivity in the visual field test have been reported after administration of CCBs, but evidences from the randomized studies have been limited and effects of CCBs on blood flow and direct neuroprotection are hardly distinguished from each other.
Collapse
Affiliation(s)
- Chihiro Mayama
- Department of Ophthalmology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
13
|
Upregulation of CREM-1 relates to retinal ganglion cells apoptosis after light-induced damage in vivo. J Mol Neurosci 2013; 52:331-8. [PMID: 24166353 DOI: 10.1007/s12031-013-0153-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Previous studies have shown activation of cyclic AMP response element-binding protein (CREB) family is involved in the retinal ganglion cells (RGCs) protection. However, the function of cyclic AMP response element modulator-1 (CREM-1), one member of the CREB family, is still with limited acquaintance. To investigate whether CREM-1 is involved in RGCs death, we performed a light-induced retinal damage model in adult rats. Upregulation of CREM-1 was observed in retina after light-induced damage by performing western blot. Immunofluorescent labeling indicated that upregulated CREM-1 was localized mainly in the RGCs. We also investigated co-localization of CREM-1 with active-caspase-3 and TUNEL (apoptotic markers) in the retina after light-induced damage. In addition, the expression patterns of B cell lymphoma/leukemia-2 and Bcl-2 associated X protein were parallel with that of CREM-1. Collectively, we hypothesized upregulation of CREM-1 in the retina was associated with RGCs death after light-induced damage.
Collapse
|
14
|
Hoffmann DB, Williams SK, Bojcevski J, Müller A, Stadelmann C, Naidoo V, Bahr BA, Diem R, Fairless R. Calcium influx and calpain activation mediate preclinical retinal neurodegeneration in autoimmune optic neuritis. J Neuropathol Exp Neurol 2013; 72:745-57. [PMID: 23860028 DOI: 10.1097/nen.0b013e31829c7370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Optic neuritis is a common manifestation of multiple sclerosis, an inflammatory demyelinating disease of the CNS. Recently, the neurodegenerative component of multiple sclerosis has come under focus particularly because permanent disability in patients correlates well with neurodegeneration; and observations in both humans and multiple sclerosis animal models highlight neurodegeneration of retinal ganglion cells as an early event. After myelin oligodendrocyte glycoprotein immunization of Brown Norway rats, significant retinal ganglion cell loss precedes the onset of pathologically defined autoimmune optic neuritis. To study the role calcium and calpain activation may play in mediating early degeneration, manganese-enhanced magnetic resonance imaging was used to monitor preclinical calcium elevations in the retina and optic nerve of myelin oligodendrocyte glycoprotein-immunized Brown Norway rats. Calcium elevation correlated with an increase in calpain activation during the induction phase of optic neuritis, as revealed by increased calpain-specific cleavage of spectrin. The relevance of early calpain activation to neurodegeneration during disease induction was addressed by performing treatment studies with the calpain inhibitor calpeptin. Treatment not only reduced calpain activity but also protected retinal ganglion cells from preclinical degeneration. These data indicate that elevation of retinal calcium levels and calpain activation are early events in autoimmune optic neuritis, providing a potential therapeutic target for neuroprotection.
Collapse
Affiliation(s)
- Dorit B Hoffmann
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Das A, Guyton MK, Smith A, Wallace G, McDowell ML, Matzelle DD, Ray SK, Banik NL. Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats. J Neurochem 2012; 124:133-46. [PMID: 23106593 DOI: 10.1111/jnc.12064] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/27/2012] [Accepted: 10/10/2012] [Indexed: 12/13/2022]
Abstract
Optic neuritis (ON), which is an acute inflammatory autoimmune demyelinating disease of the central nervous system (CNS), often occurs in multiple sclerosis (MS). ON is an early diagnostic sign in most MS patients caused by damage to the optic nerve leading to visual dysfunction. Various features of both MS and ON can be studied following induction of experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in Lewis rats. Inflammation and cell death in the optic nerve, with subsequent damage to the retinal ganglion cells in the retina, are thought to correlate with visual dysfunction. Thus, characterizing the pathophysiological changes that lead to visual dysfunction in EAE animals may help develop novel targets for therapeutic intervention. We treated EAE animals with and without the calpain inhibitor calpeptin (CP). Our studies demonstrated that the Ca(2+)-activated neutral protease calpain was upregulated in the optic nerve following induction of EAE at the onset of clinical signs (OCS) of the disease, and these changes were attenuated following treatment with CP. These reductions correlated with decreases in inflammation (cytokines, iNOS, COX-2, and NF-κB), and microgliosis (i.e. activated microglia). We observed that calpain inhibition reduced astrogliosis (reactive astroglia) and expression of aquaporin 4 (AQP4). The balance of Th1/Th2 cytokine production and also expression of the Th1-related CCR5 and CXCR3 chemokine receptors influence many pathological processes and play both causative and protective roles in neuron damage. Our data indicated that CP suppressed cytokine imbalances. Also, Bax:Bcl-2 ratio, production of tBid, PARP-1, expression and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated after treatment with CP. Our results demonstrated that CP decreased demyelination [loss of myelin basic protein (MBP)] and axonal damage [increase in dephosphorylated neurofilament protein (de-NFP)], and also promoted intracellular neuroprotective pathways in optic nerve in EAE rats. Thus, these data suggest that calpain is involved in inflammatory as well as in neurodegenerative aspects of the disease and may be a promising target for treating ON in EAE and MS.
Collapse
Affiliation(s)
- Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pinazo-Durán MD, Zanón-Moreno V, García-Medina JJ, Gallego-Pinazo R. Evaluation of presumptive biomarkers of oxidative stress, immune response and apoptosis in primary open-angle glaucoma. Curr Opin Pharmacol 2012; 13:98-107. [PMID: 23142105 DOI: 10.1016/j.coph.2012.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/13/2012] [Accepted: 10/16/2012] [Indexed: 12/18/2022]
Abstract
There is growing interest on the correlation among oxidative stress, inflammation, apoptosis and primary open-angle glaucoma initiation and progression. Reactive oxygen species are formed in the eyes following a wide variety of stressors, and are largely implicated in glaucoma pathogenesis. Immune-inflammatory response mediators have recently become a target of ophthalmologic concern, including glaucoma. Much attention has been derived to the role of specific pro and anti-apoptotic molecules in glaucoma. This article reviews the early evidence suggesting that reactive oxygen species, immune inflammatory response mediators, and apoptogenic molecules are engaged in glaucoma disease. Moreover, further research concerning the functions, effectors and signaling pathways of the above molecules and their interactions, may lead to specifically develop targeted screening tools based on presumptive biomarkers and surrogate endpoints against primary open-angle glaucoma progression and blindness.
Collapse
|
17
|
Classification of potassium and chlorine ionic currents in retinal ganglion cell line (RGC-5) by whole-cell patch clamp. Vis Neurosci 2012; 29:275-82. [DOI: 10.1017/s0952523812000272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractRetinal ganglion cell line (RGC-5) has been widely used as a valuable model for studying pathophysiology and physiology of retinal ganglion cells in vitro. However, the electrophysiological characteristics, especially a thorough classification of ionic currents in the cell line, remain to be elucidated in details. In the present study, we determined the resting membrane potential (RMP) in RGC-5 cell line and then identified different types of ionic currents by using the whole-cell patch-clamp technique. The RMP recorded in the cell line was between −30 and −6 mV (−17.6 ± 2.6 mV, n = 10). We observed the following voltage-gated ion channel currents: (1) inwardly rectifying Cl− current (ICl,ir), which could be blocked by Zn2+; (2) Ca2+-activated Cl− current (ICl,Ca), which was sensitive to extracellular Ca2+ and could be inhibited by disodium 4,4’-diisothiocyanatostilbene-2,2’-disulfonate; (3) inwardly rectifying K+ currents (IK1), which could be blocked by Ba2+; (4) a small amount of delayed rectifier K+ current (IK). On the other hand, the voltage-gated sodium channels current (INa) and transient outward potassium channels current (IA) were not observed in this cell line. These results further characterize the ionic currents in the RGC-5 cell line and are beneficial for future studies especially on ion channel (patho)physiology and pharmacology in the RGC-5 cell line.
Collapse
|
18
|
Involvement of calpain/p35-p25/Cdk5/NMDAR signaling pathway in glutamate-induced neurotoxicity in cultured rat retinal neurons. PLoS One 2012; 7:e42318. [PMID: 22870316 PMCID: PMC3411656 DOI: 10.1371/journal.pone.0042318] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/03/2012] [Indexed: 11/19/2022] Open
Abstract
We investigated possible involvement of a calpain/p35-p25/cyclin-dependent kinase 5 (Cdk5) signaling pathway in modifying NMDA receptors (NMDARs) in glutamate-induced injury of cultured rat retinal neurons. Glutamate treatment decreased cell viability and induced cell apoptosis, which was accompanied by an increase in Cdk5 and p-Cdk5T15 protein levels. The Cdk5 inhibitor roscovitine rescued the cell viability and inhibited the cell apoptosis. In addition, the protein levels of both calpain 2 and calpain-specific alpha-spectrin breakdown products (SBDPs), which are both Ca2+-dependent, were elevated in glutamate-induced cell injury. The protein levels of Cdk5, p-Cdk5T15, calpain 2 and SBDPs tended to decline with glutamate treatments of more than 9 h. Furthermore, the elevation of SBDPs was attenuated by either D-APV, a NMDAR antagonist, or CNQX, a non-NMDAR antagonist, but was hardly changed by the inhibitors of intracellular calcium stores dantrolene and xestospongin. Moreover, the Cdk5 co-activator p35 was significantly up-regulated, whereas its cleaved product p25 expression showed a transient increase. Glutamate treatment for less than 9 h also considerably enhanced the ratio of the Cdk5-phosphorylated NMDAR subunit NR2A at Ser1232 site (p-NR2AS1232) and NR2A (p-NR2AS1232/NR2A), and caused a translocation of p-NR2AS1232 from the cytosol to the plasma membrane. The enhanced p-NR2AS1232 was inhibited by roscovitine, but augmented by over-expression of Cdk5. Calcium imaging experiments further showed that intracellular Ca2+ concentrations ([Ca2+]i) of retinal cells were steadily increased following glutamate treatments of 2 h, 6 h and 9 h. All these results suggest that the activation of the calpain/p35-p25/Cdk5 signaling pathway may contribute to glutamate neurotoxicity in the retina by up-regulating p-NR2AS1232 expression.
Collapse
|
19
|
The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012; 31:152-81. [DOI: 10.1016/j.preteyeres.2011.11.002] [Citation(s) in RCA: 565] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 12/14/2022]
|
20
|
Nakajima T, Shearer TR, Azuma M. Involvement of calpain 2 in ionomycin-induced cell death in cultured mouse lens epithelial cells. Curr Eye Res 2011; 36:930-6. [PMID: 21950698 DOI: 10.3109/02713683.2011.577264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Calpains are calcium-activated, intracellular, non-lysosomal, cysteine proteases that hydrolyze lens crystallins and cytoskeletal proteins. Elevated calcium is a frequent finding in both rodent and human cataracts, and calpain 2 is present in lenses of both species. Lens epithelium forms a critical barrier to influx of calcium, but the role of calpain 2 in lens epithelium is poorly characterized. Thus, the purpose of the present experiment was to determine the role of calpain 2 in lens epithelial cell death. METHODS Mouse lens epithelial cells (α-TN4) were cultured with the calcium ionophore ionomycin to promote calcium influx. Release of LDH into the culture medium was measured as a general marker of cell death, while necrosis and apoptosis were detected by staining with ethidium homodimer III (EtD-III) or FITC-annexin V. Calpain activity was determined by zymography and immunoblotting for activation-associated, fragments of calpain. Breakdown products of calpain substrate α-spectrin were also detected by immunoblotting as additional markers of calpain activation. RESULTS Calpain 2 was found to be the major calpain isozyme in α-TN4 cells. Ionomycin caused leakage of LDH into the medium, activation of calpain 2, proteolysis of α-spectrin, and changes in α-TN4 cell morphology and staining characteristic of necrotic cell death. Calpain inhibitor SNJ-1945 significantly inhibited these changes. CONCLUSIONS The ability of mouse lens epithelium to maintain lens transparency would be compromised by activation of calpain 2 and associated necrotic cell death. Since calpain 2 is ubiquitously present in all animal lenses so far observed, the current results may predict the pathological consequences of calpain 2 activation in animal lenses including those of man.
Collapse
Affiliation(s)
- Takeshi Nakajima
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co., Ltd., Kobe, Japan
| | | | | |
Collapse
|
21
|
Hardelauf H, Sisnaiske J, Taghipour-Anvari AA, Jacob P, Drabiniok E, Marggraf U, Frimat JP, Hengstler JG, Neyer A, van Thriel C, West J. High fidelity neuronal networks formed by plasma masking with a bilayer membrane: analysis of neurodegenerative and neuroprotective processes. LAB ON A CHIP 2011; 11:2763-71. [PMID: 21709920 DOI: 10.1039/c1lc20257j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Spatially defined neuronal networks have great potential to be used in a wide spectrum of neurobiology assays. We present an original technique for the precise and reproducible formation of neuronal networks. A PDMS membrane comprising through-holes aligned with interconnecting microchannels was used during oxygen plasma etching to dry mask a protein rejecting poly(ethylene glycol) (PEG) adlayer. Patterns were faithfully replicated to produce an oxidized interconnected array pattern which supported protein adsorption. Differentiated human SH-SY5Y neuron-like cells adhered to the array nodes with the micron-scale interconnecting tracks guiding neurite outgrowth to produce neuronal connections and establish a network. A 2.0 μm track width was optimal for high-level network formation and node compliance. These spatially standardized neuronal networks were used to analyse the dynamics of acrylamide-induced neurite degeneration and the protective effects of co-treatment with calpeptin or brain derived neurotrophic factor (BDNF).
Collapse
Affiliation(s)
- Heike Hardelauf
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nickells RW. WITHDRAWN: Reprint of: Variations in the rheostat model of apoptosis: What studies of retinal ganglion cell death tell us about the functions of the Bcl2 family proteins. Exp Eye Res 2011:S0014-4835(11)00226-0. [PMID: 21819979 DOI: 10.1016/j.exer.2011.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/06/2010] [Indexed: 11/17/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, doi:10.1016/j.exer.2010.03.004. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, 6640 MSC, 1300 University Ave, Madison, WI 53706, USA
| |
Collapse
|
23
|
Smith AW, Das A, Guyton MK, Ray SK, Rohrer B, Banik NL. Calpain inhibition attenuates apoptosis of retinal ganglion cells in acute optic neuritis. Invest Ophthalmol Vis Sci 2011; 52:4935-41. [PMID: 21613375 DOI: 10.1167/iovs.10-7027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Optic neuritis (ON), inflammation of the optic nerve, is strongly associated with the pathogenesis of multiple sclerosis (MS) and is initiated by the attack of autoreactive T cells against self-myelin antigens, resulting in demyelination, degeneration of retinal ganglion cells (RGCs), and cumulative visual impairment. METHODS Experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats on day 0, and animals received daily intraperitoneal injections of calpain inhibitor (calpeptin) or vehicle from day 1 until killed. Retinal cell death was analyzed by DNA fragmentation, and surviving ganglion cells were quantified after double labeling of retinal tissue with TUNEL and Brn3a. The expression of apoptotic and inflammatory proteins was determined by Western blotting. RESULTS It was demonstrated that calpain inhibition downregulates expression of proapoptotic proteins and the proinflammatory molecule nuclear factor-kappa B (NF-κB) in the retina of Lewis rats with acute EAE. Immunofluorescent labeling revealed that apoptotic cells in the RGC layer of vehicle-treated EAE animals were Brn3a positive, and a moderate dose of calpeptin dramatically reduced the frequency of apoptotic RGCs. CONCLUSIONS These results suggest that calpain inhibition might be a useful supplement to immunomodulatory therapies such as corticosteroids in ON, due to its neuroprotective effect on RGCs.
Collapse
Affiliation(s)
- Amena W Smith
- Departments of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
24
|
Calpain inhibition protected spinal cord motoneurons against 1-methyl-4-phenylpyridinium ion and rotenone. Neuroscience 2011; 192:263-74. [PMID: 21723922 DOI: 10.1016/j.neuroscience.2011.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD), characterized by selective midbrain nigrostriatal dopaminergic degeneration, is consistently associated with moderate systemic mitochondrial dysfunction. Downstream degeneration of spinal cord has also been suggested in PD, although the mechanisms have not been much investigated. In the present study, two mitochondrial toxicants, 1-methyl-4-phenylpyridinium ion (MPP(+)) and rotenone were tested in ventral spinal cord (VSC 4.1) motoneuronal cells. Cell death was assessed by morphological and biochemical means to discern a lower apoptosis-inducing concentration and lethal concentration of 50% cell death (LC(50)), which were subsequently compared in further cytoprotection experiments. Mitochondrial toxicants dose-dependently induced increase in intracellular free Ca(2+) level, which was conducive for increased expression and activities of Ca(2+)-activated neutral protease calpain and downstream caspase-3. Thus, mitochondrial damage triggered apoptotic mechanisms in spinal cord motoneurons. Inhibition of calpain by calpeptin significantly attenuated damaging effects of MPP(+) and rotenone on motoneurons, especially at low apoptosis-inducing concentrations of toxicants and partly at their LC(50), as demonstrated by absence of DNA ladder formation and decrease in terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Cytoprotection by calpeptin was observed with marked decreases in Bax: Bcl-2 ratio and activities of calpain and caspase-3, which affirmed the role of mitochondrial dysfunction and involvement of intrinsic pathway in mediation of apoptosis. These findings strongly suggested that parkinsonian toxicants MPP(+) and rotenone at low doses induced cascade of cell-damaging effects in spinal cord motoneurons, thus, highlighting the possibility of induction of apoptotic mechanisms in these cells, when subjected to mitochondrial stress. Cytoprotection rendered by calpeptin further validated the involvement of calpain in apoptosis and suggested calpain inhibition as a potential neuroprotective strategy.
Collapse
|
25
|
Walshe TE, Leach LL, D'Amore PA. TGF-β signaling is required for maintenance of retinal ganglion cell differentiation and survival. Neuroscience 2011; 189:123-31. [PMID: 21664439 DOI: 10.1016/j.neuroscience.2011.05.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE To determine the role of TGF-β1 in the maintenance of retinal ganglion cell line (RGC-5) differentiation and integrity. METHODS RGC-5 cells were differentiated in media conditioned by human non-pigmented ciliary epithelial cells (HNPE) for 4 days before treatment with TGF-β1 for 24 h. Cells were examined for morphological changes and harvested for western blot and real-time PCR analysis. For study of apoptosis, differentiated RGC-5 cells were grown in serum-free medium for 24 h in the presence or absence of TGF-β1 and collected for Annexin V/Propidium iodide FACs analysis. The role of MAPK pathways in TGF-β1-dependent signaling was determined by treatment with specific inhibitors of ERK, JNK and p38. RESULTS Differentiation of RGC-5 cells in HNPE-conditioned media (CM) increased the neural cell markers, Brn-3c, NF-160, Thy1.2, Tau and PGP9.5. Treatment with TGF-β1 significantly increased the length of neurites extended by differentiated RGC-5s, concomitant with increased expression of NF-160 and PGP9.5, but not Brn-3c, Thy1.2 or Tau. TGF-β1 also decreased RGC-5 cell apoptosis in serum-free medium. p38 phosphorylation, but not smad2/3, JNK or ERK phosphorylation, was increased in TGF-β1 treated cells. Specific inhibition of p38 signaling reversed TGF-β1 induced neurite growth. CONCLUSIONS These findings demonstrate the induction of RGC-5 cell differentiation by HNPE-derived CM and illustrate a role for TGF-β1 in maintaining RGC-5 cell survival and promoting neurite outgrowth through p38 MAPK.
Collapse
Affiliation(s)
- T E Walshe
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
26
|
Abstract
Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells and their axons. Recent evidence suggests that intraocular pressure (IOP) is only one of the many risk factors for this disease. Current treatment options for this disease have been limited to the reduction of IOP; however, it is clear now that the disease progression continues in many patients despite effective lowering of IOP. In the search for newer modalities in treating this disease, much data have emerged from experimental research the world over, suggesting various pathological processes involved in this disease and newer possible strategies to treat it. This review article looks into the current understanding of the pathophysiology of glaucoma, the importance of neuroprotection, the various possible pharmacological approaches for neuroprotection and evidence of current available medications.
Collapse
Affiliation(s)
- Sushil K Vasudevan
- Centre for Eye Research Australia, University of Melbourne and Glaucoma Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia.
| | | | | |
Collapse
|
27
|
Nozaki K, Das A, Ray SK, Banik NL. Calpeptin attenuated apoptosis and intracellular inflammatory changes in muscle cells. J Neurosci Res 2011; 89:536-43. [PMID: 21290412 DOI: 10.1002/jnr.22585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 12/24/2022]
Abstract
In idiopathic inflammatory myopathies (IIMs), extracellular inflammatory stimulation is considered to induce secondary intracellular inflammatory changes including expression of major histocompatibility complex class-I (MHC-I) and to produce a self-sustaining loop of inflammation. We hypothesize that activation of calpain, a Ca(2+) -sensitive protease, bridges between these extracellular inflammatory stress and intracellular secondary inflammatory changes in muscle cells. In this study, we demonstrated that treatment of rat L6 myoblast cells with interferon-γ (IFN-γ) caused expression of MHC-I and inflammation-related transcription factors (phosphorylated-extracellular signal-regulated kinase 1/2 and nuclear factor-κB). We also demonstrated that treatment with tumor necrosis factor-α (TNF-α) induced apoptotic changes and activation of calpain and cyclooxygenase-2. Furthermore, we found that posttreatment with calpeptin attenuated the intracellular changes induced by IFN-γ or TNF-α. Our results indicate that calpain inhibition attenuates apoptosis and secondary inflammatory changes induced by extracellular inflammatory stimulation in the muscle cells. These results suggest calpain as a potential therapeutic target for treatment of IIMs.
Collapse
Affiliation(s)
- Kenkichi Nozaki
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
28
|
|
29
|
Lee JK, Lu S, Madhukar A. Real-Time dynamics of Ca2+, caspase-3/7, and morphological changes in retinal ganglion cell apoptosis under elevated pressure. PLoS One 2010; 5:e13437. [PMID: 20976135 PMCID: PMC2956638 DOI: 10.1371/journal.pone.0013437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/19/2010] [Indexed: 01/12/2023] Open
Abstract
Quantitative information on the dynamics of multiple molecular processes in individual live cells under controlled stress is central to the understanding of the cell behavior of interest and the establishment of reliable models. Here, the dynamics of the apoptosis regulator intracellular Ca(2+), apoptosis effector caspase-3/7, and morphological changes, as well as temporal correlation between them at the single cell level, are examined in retinal gangling cell line (differentiated RGC-5 cells) undergoing apoptosis at elevated hydrostatic pressure using a custom-designed imaging platform that allows long-term real-time simultaneous imaging of morphological and molecular-level physiological changes in large numbers of live cells (beyond the field-of-view of typical microscopy) under controlled hydrostatic pressure. This examination revealed intracellular Ca(2+) elevation with transient single or multiple peaks of less than 0.5 hour duration appearing at the early stages (typically less than 5 hours after the onset of 100 mmHg pressure) followed by gradual caspase-3/7 activation at late stages (typically later than 5 hours). The data reveal a strong temporal correlation between the Ca(2+) peak occurrence and morphological changes of neurite retraction and cell body shrinkage. This suggests that Ca(2+) elevation, through its impact on ion channel activity and water efflux, is likely responsible for the onset of apoptotic morphological changes. Moreover, the data show a significant cell-to-cell variation in the onset of caspase-3/7 activation, an inevitable consequence of the stochastic nature of the underlying biochemical reactions not captured by conventional assays based on population-averaged cellular responses. This real-time imaging study provides, for the first time, statistically significant data on simultaneous multiple molecular level changes to enable refinements and testing of models of the dynamics of mitochondria-mediated apoptosis. Further, the platform developed and the approach has direct significance to the study of a variety of signaling pathway phenomena.
Collapse
Affiliation(s)
- Jae Kyoo Lee
- Department of Biomedical Engineering, University of Southern California, Los Angles, California, United States of America
| | - Siyuan Lu
- Department of Physics, University of Southern California, Los Angles, California, United States of America
- Department of Ophthalmology, University of Southern California, Los Angles, California, United States of America
| | - Anupam Madhukar
- Department of Biomedical Engineering, University of Southern California, Los Angles, California, United States of America
- Department of Physics, University of Southern California, Los Angles, California, United States of America
- Department of Materials Science, University of Southern California, Los Angles, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Paquet-Durand F, Sanges D, McCall J, Silva J, van Veen T, Marigo V, Ekström P. Photoreceptor rescue and toxicity induced by different calpain inhibitors. J Neurochem 2010; 115:930-40. [PMID: 20807308 DOI: 10.1111/j.1471-4159.2010.06983.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoreceptor degeneration is the hallmark of a group of inherited blinding diseases collectively termed retinitis pigmentosa (RP); a major cause of blindness in humans. RP is at present untreatable and the underlying neurodegenerative mechanisms are largely unknown, even though the genetic causes are often established. The activation of calpain-type proteases may play an important role in cell death in various neuronal tissues, including the retina. We therefore tested the efficacy of two different calpain inhibitors in preventing cell death in the retinal degeneration (rd1) human homologous mouse model for RP. Pharmacological inhibition of calpain activity in rd1 organotypic retinal explants had ambiguous effects on photoreceptor viability. Calpain inhibitor XI had protective effects when applied for short periods of time (16 h) but demonstrated substantial levels of toxicity in both wild-type and rd1 retina when used over several days. In contrast, the highly specific calpain inhibitor calpastatin peptide reduced photoreceptor cell death in vitro after both short and prolonged exposure, an effect that was also evident after in vivo application via intravitreal injection. These findings highlight the importance of calpain activation for photoreceptor cell death but also for photoreceptor survival and propose the use of highly specific calpain inhibitors to prevent or delay RP.
Collapse
Affiliation(s)
- François Paquet-Durand
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
31
|
Nickells RW. Variations in the rheostat model of apoptosis: what studies of retinal ganglion cell death tell us about the functions of the Bcl2 family proteins. Exp Eye Res 2010; 91:2-8. [PMID: 20230818 DOI: 10.1016/j.exer.2010.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/22/2010] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
Abstract
Studies of the functions of members of the Bcl2 gene family suggested that apoptosis was controlled by a rheostat in which anti-apoptotic proteins like BCL2 bound and sequestered pro-apoptotic proteins like BAX. Our current understanding of these proteins suggests that this is a simplistic model. The new rheostat model predicts that BH3-only peptides act as neutralizing ligands for the anti-apoptotic proteins, thus allowing molecules like BAX to become activated and initiate mitochondrial dysfunction - a critical step in the intrinsic apoptotic program. Studies of retinal ganglion cell apoptosis indicate that a threshold of BAX expression is required for its successful activation, which is independent of the overall concentration of anti-apoptotic proteins in these cells.
Collapse
Affiliation(s)
- Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, 1300 University Ave, Madison, WI 53706, USA.
| |
Collapse
|
32
|
Shimazawa M, Suemori S, Inokuchi Y, Matsunaga N, Nakajima Y, Oka T, Yamamoto T, Hara H. A Novel Calpain Inhibitor, ((1S)-1-((((1S)-1-Benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-methylbutyl)carbamic Acid 5-Methoxy-3-oxapentyl Ester (SNJ-1945), Reduces Murine Retinal Cell Death In Vitro and In Vivo. J Pharmacol Exp Ther 2009; 332:380-7. [DOI: 10.1124/jpet.109.156612] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
33
|
Vaisid T, Barnoy S, Kosower NS. Calpain activates caspase-8 in neuron-like differentiated PC12 cells via the amyloid-beta-peptide and CD95 pathways. Int J Biochem Cell Biol 2009; 41:2450-8. [PMID: 19646546 DOI: 10.1016/j.biocel.2009.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/10/2009] [Accepted: 07/19/2009] [Indexed: 01/11/2023]
Abstract
The neurotoxic amyloid-beta-peptide (Abeta) is important in the pathogenesis of Alzheimer's disease (AD). Calpain (Ca(2+)-dependent protease) and caspase-8 (the initiating caspase for the extrinsic, receptor-mediated apoptosis pathway) have been implicated in AD/Abeta toxicity. We previously found that Abeta promoted degradation of calpastatin (the specific endogenous calpain inhibitor); calpastatin degradation was prevented by inhibitors of either calpain or caspase-8. The results implied a cross-talk between the two proteases and suggested that one protease was responsible for the activity of the other one. We now report on the previously unrecognized caspase-8 activation by calpain. In neuron-like differentiated PC12 cells, calpain promotes active caspase-8 formation from procaspase-8 via the Abeta and CD95 pathways, along with degradation of the procaspase-8 processing inhibitor caspase-8 (FLICE)-like inhibitory protein, short isoform (FLIP(S)). Inhibition of calpain (by pharmacological inhibitors and by overexpression of calpastatin) prevents the cleavage of procaspase-8 to mature, active caspase-8, and inhibits FLIP(S) degradation in the Abeta-treated and CD95-triggered cells. Increased cellular Ca(2+) per se results in calpain activation but does not lead to caspase-8 activation or FLIP(S) degradation. The results suggest that procaspase-8 and FLIP(S) association with cell membrane receptor complexes is required for calpain-induced caspase-8 activation. The results presented here add to the understanding of the roles of calpain, caspase-8, and CD95 pathway in AD/Abeta toxicity. Calpain-promoted activation of caspase-8 may have implications for other types of CD95-induced cell damage, and for nonapoptotic functions of caspase-8. Inhibition of calpain may be useful for modulating certain caspase-8-dependent processes.
Collapse
Affiliation(s)
- Tali Vaisid
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
34
|
Chen Z, Peppi M, Kujawa SG, Sewell WF. Regulated expression of surface AMPA receptors reduces excitotoxicity in auditory neurons. J Neurophysiol 2009; 102:1152-9. [PMID: 19515954 DOI: 10.1152/jn.00288.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dynamic regulation of the expression of surface AMPA receptors (AMPARs) is a key mechanism to modulate synaptic strength and efficacy in the CNS and also to regulate auditory sensitivity. Here we address the role of surface AMPAR expression in excitotoxicity by blocking clathrin-mediated AMPAR endocytosis in auditory neurons. We used a membrane-permeable, dynamin-derived, myristoylated peptide (myr-Dyn) to inhibit surface AMPAR endocytosis induced by glutamate receptor agonists in culture and by noise exposure in vivo. Myr-Dyn infused into the mouse cochlea induced excitotoxic responses to acoustic stimuli that were normally not excitotoxic. These included vacuolization in the nerve terminals and spiral ganglion as well as irreversible auditory brain stem response threshold shifts. In cultured spiral ganglion neuronal cells, blockade of the reduction of surface AMPARs exacerbated neuronal death by incubation with N-methyl-d-aspartate and AMPA. This excitotoxic neuronal death could be prevented by calpeptin, a calpain-specific inhibitor. These results suggest that the reduction of surface AMPAR by endocytosis during excitatory stimulation plays an important role in limiting the excitotoxic damage to the neuron.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
35
|
Chen K, Zhang Q, Wang J, Liu F, Mi M, Xu H, Chen F, Zeng K. Taurine protects transformed rat retinal ganglion cells from hypoxia-induced apoptosis by preventing mitochondrial dysfunction. Brain Res 2009; 1279:131-8. [PMID: 19427840 DOI: 10.1016/j.brainres.2009.04.054] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/20/2009] [Accepted: 04/25/2009] [Indexed: 11/29/2022]
Abstract
Hypoxia-induced apoptosis of retinal ganglion cells (RGCs) is the major cause of progressive vision loss in numerous retinal diseases, including glaucoma and diabetic retinopathy. Taurine is a naturally occurring free amino acid that has been shown to have neurotrophic and neuroprotective properties in the retina. We investigated the specific potential for taurine to be protective for immortalized rat retinal ganglion cells (RGC-5) exposed to hypoxia (5% O(2)). Pretreatment of RGC-5 cells with 0.1 mM taurine significantly reduced the extent of apoptosis detected by DAPI staining, MTT, and Annexin V-FITC/PI assays. To further study the mechanism underlying the beneficial effect of taurine, interactions between taurine and the process of mitochondria-mediated apoptosis were examined. Taurine treatment of RGC-5 cells suppressed the induction of the mitochondrial permeability transition (mPT) by reducing intracellular calcium levels and inhibiting the opening of mitochondrial permeability transition pores (mPTPs). Moreover, the loss of mitochondrial membrane potential, a decline in cellular ATP levels, a reduction in the amount of cytochrome c translocated to the cytoplasm and caspase-3 activation were observed in taurine-treated cultures. These results demonstrate the potential for taurine to protect RGCs against hypoxic damage in vivo by preventing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ka Chen
- Department of Nutrition and Food Hygiene, School of Preventive Medicine, The Third Military Medical University, Shapingba District, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim SH, Munemasa Y, Kwong JMK, Ahn JH, Mareninov S, Gordon LK, Caprioli J, Piri N. Activation of autophagy in retinal ganglion cells. J Neurosci Res 2008; 86:2943-51. [PMID: 18521932 DOI: 10.1002/jnr.21738] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy has been shown to be activated in neuronal cells in response to injury and suggested to have a cell-protective role in neurodegenerative diseases. In this study, we investigated the activation of autophagy in retinal ganglion cells (RGCs) following optic nerve transection (ONT) and evaluated its effect on RGC survival. Expression of several autophagy-related genes, including Atg5, Atg7, and Atg12, and autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1 were analyzed at the transcriptional or protein level 1, 3, and 7 days after ONT. Transcription of the Atg5, Atg7, and Atg12 genes was up-regulated 1.5- to 1.8-fold in the retina 3 days after ONT compared with that in the controls. Expression of Atg12 mRNA was increased 1.6-fold 1 day after ONT. Seven days after ONT, expression of Atg5, Atg7, and Atg12 mRNA was comparable to that in the untreated retinas. Western blot analysis of proteins isolated from RGCs showed 1.6-, 2.7-, and 1.7-fold increases in LC3-II level 1, 3, and 7 days after ONT, respectively, compared with those in the controls. Expression of beclin-1 was 1.7-fold higher 1 day after RGCs were axotomized, but 3 and 7 days after ONT it was comparable to that of the control. Inhibition of autophagy with bafilomycin A1, 3-methyladenine, and Wortmannin in RGC-5 cells under serum-deprived conditions decreased cell viability by approximately 40%. These results suggest possible activation of autophagy in RGCs after optic nerve transection and demonstrate its protective role in RGC-5 cells maintained under conditions of serum deprivation.
Collapse
Affiliation(s)
- Seok Hwan Kim
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, Ekström P, Paquet-Durand F. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 2008; 38:253-69. [PMID: 18982459 DOI: 10.1007/s12035-008-8045-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/16/2008] [Indexed: 02/24/2023]
Abstract
Photoreceptor cell death is the major hallmark of a group of human inherited retinal degenerations commonly referred to as retinitis pigmentosa (RP). Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Previous research work has focused on apoptosis, but recent evidence suggests that photoreceptor cell death may result primarily from non-apoptotic mechanisms independently of AP1 or p53 transcription factor activity, Bcl proteins, caspases, or cytochrome c release. This review briefly describes some animal models used for studies of retinal degeneration, with particular focus on the rd1 mouse. After outlining the major features of different cell death mechanisms in general, we then compare them with results obtained in retinal degeneration models, where photoreceptor cell death appears to be governed by, among other things, changes in cyclic nucleotide metabolism, downregulation of the transcription factor CREB, and excessive activation of calpain and PARP. Based on recent experimental evidence, we propose a putative non-apoptotic molecular pathway for photoreceptor cell death in the rd1 retina. The notion that inherited photoreceptor cell death is driven by non-apoptotic mechanisms may provide new ideas for future treatment of RP.
Collapse
Affiliation(s)
- Javier Sancho-Pelluz
- Institute for Ophthalmic Research, University of Tübingen, Centre for Ophthalmology, Röntgenweg 11, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Das A, Guyton MK, Matzelle DD, Ray SK, Banik NL. Time-dependent increases in protease activities for neuronal apoptosis in spinal cords of Lewis rats during development of acute experimental autoimmune encephalomyelitis. J Neurosci Res 2008; 86:2992-3001. [PMID: 18521931 PMCID: PMC2614291 DOI: 10.1002/jnr.21737] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) is characterized by axonal demyelination and neurodegeneration, the latter having been inadequately explored in the MS animal model experimental autoimmune encephalomyelitis (EAE). The purpose of this study was to examine the time-dependent correlation between increased calpain and caspase activities and neurodegeneration in spinal cord tissues from Lewis rats with acute EAE. An increase in TUNEL-positive neurons and internucleosomal DNA fragmentation in EAE spinal cords suggested that neuronal death was a result of apoptosis on days 8-10 following induction of EAE. Increases in calpain expression in EAE correlated with activation of pro-apoptotic proteases, leading to apoptotic cell death beginning on day 8 of EAE, which occurred before the appearance of visible clinical symptoms. Increases in calcineurin expression and decreases in phospho-Bad (p-Bad) suggested Bad activation in apoptosis during acute EAE. Increases in the Bax:Bcl-2 ratio and activation of caspase-9 showed the involvement of mitochondria in apoptosis. Further, caspase-8 activation suggested induction of the death receptor-mediated pathway for apoptosis. Endoplasmic reticulum stress leading to caspase-3 activation was also observed, indicating that multiple apoptotic pathways were activated following EAE induction. In contrast, cell death was mostly a result of necrosis on the later day (day 11), when EAE entered a severe stage. From these findings, we conclude that increases in calpain and caspase activities play crucial roles in neuronal apoptosis during the development of acute EAE.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - M. Kelly Guyton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Denise D. Matzelle
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Naren L. Banik
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
39
|
Bian ZM, Elner SG, Elner VM. Regulated expression of caspase-12 gene in human retinal pigment epithelial cells suggests its immunomodulating role. Invest Ophthalmol Vis Sci 2008; 49:5593-601. [PMID: 18791174 DOI: 10.1167/iovs.08-2116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To investigate the expression and regulation of the short form of caspase-12, caspase-12S, in human retinal pigment epithelial (hRPE) cells. METHODS hRPE cells were stimulated by the proinflammatory agents IL-1beta (2 ng/mL) and TNF-alpha (20 ng/mL); LPS (1000 ng/mL); coculture with monocytes; the immunomodulating agent cyclosporine (Cys; 30 ng/mL); the anti-inflammatory cytokine IL-10 (100 U/mL); and the endoplasmic reticulum (ER) stress inducers tunicamycin (3 or 10 muM) and thapsigargin (25 or 100 nM) for 6 hours or longer. The total RNAs were isolated and subjected to semiquantitative and quantitative real-time RT-PCR analysis. Effects of tunicamycin and thapsigargin on IL-1beta- and TNF-alpha-stimulated MCP-1 mRNA expression and protein production were further examined by RT-PCR and ELISA, respectively. RESULTS RT-PCR results showed that caspase-12S is the predominant form of caspase-12 in the examined hRPE cells of this study, with expression at levels as high as those in many other human tissues such as pancreas, prostate, small intestine, lung, spleen, and kidney. Treatment with IL-1beta and TNF-alpha, as well as LPS and coculture with monocytes reduced hRPE caspase-12S mRNA expression within 6 hours. In contrast, hRPE exposure to cyclosporine (Cys) and the cytokine IL-10 for 6 hours increased caspase-12S mRNA expression. Compared to Cys and IL-10, the ER stress activators tunicamycin and thapsigargin were even more potent enhancers of hRPE caspase-12S gene expression. They also caused corresponding reductions in IL-1beta- and TNF-alpha-induced MCP-1 mRNA expression and protein production. CONCLUSIONS hRPE cells express a high level of caspase-12S. The regulated expression of caspase-12S suggests that this caspase recruitment domain (CARD)-only protein may be an endogenous dominant negative regulator that modulates inflammatory responses in hRPE cells.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
40
|
Petrs-Silva H, Chiarini LB, Linden R. Nuclear proteasomal degradation and cytoplasmic retention underlie early nuclear exclusion of transcription factor Max upon axon damage. Exp Neurol 2008; 213:202-9. [PMID: 18601921 DOI: 10.1016/j.expneurol.2008.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 05/19/2008] [Accepted: 06/06/2008] [Indexed: 11/26/2022]
Abstract
The behavior of the transcription factor Max in axon-damaged retinal ganglion cells (RGC) was investigated in explants from the rat retina, used as a tissue culture model of the central nervous system (CNS). Axon damage leads to an apparent rapid shift in the localization of Max from the nucleus to the cytoplasm, in advance of markers of apoptosis. This nuclear exclusion resisted treatments with calpeptin or the CRM1 exportin inhibitor leptomycin B, but was prevented by low temperature. Inhibition of either transcription or translation prevented RGC death, but only the latter robustly prevented nuclear exclusion. The proteasome inhibitor lactacystin prevented nuclear exclusion, whereas newly synthesized Max still accumulated in the cytoplasm of the axon-damaged RGC. The results show that proteosomal degradation of nuclear Max coupled with continued expression and cytoplasmic accumulation of Max, with blockade of nucleocytoplasmic transport of the newly synthesized protein, is an early event after CNS axonal damage.
Collapse
Affiliation(s)
- Hilda Petrs-Silva
- Instituto de Biofisica da UFRJ, CCS, bloco G, Cidade Universitaria, 21941-900, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
41
|
Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 2008; 38:78-100. [PMID: 18686046 DOI: 10.1007/s12035-008-8036-x] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/17/2008] [Indexed: 12/19/2022]
Abstract
Calpain is a ubiquitous calcium-sensitive protease that is essential for normal physiologic neuronal function. However, alterations in calcium homeostasis lead to persistent, pathologic activation of calpain in a number of neurodegenerative diseases. Pathologic activation of calpain results in the cleavage of a number of neuronal substrates that negatively affect neuronal structure and function, leading to inhibition of essential neuronal survival mechanisms. In this review, we examine the mechanistic underpinnings of calcium dysregulation resulting in calpain activation in the acute neurodegenerative diseases such as cerebral ischemia and in the chronic neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, prion-related encephalopathy, and amylotrophic lateral sclerosis. The premise of this paper is that analysis of the signaling and transcriptional consequences of calpain-mediated cleavage of its various substrates for any neurodegenerative disease can be extrapolated to all of the neurodegenerative diseases vulnerable to calcium dysregulation.
Collapse
|
42
|
Khoutorsky A, Spira ME. Calpain inhibitors alter the excitable membrane properties of cultured aplysia neurons. J Neurophysiol 2008; 100:2784-93. [PMID: 18684908 DOI: 10.1152/jn.90487.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The calpain superfamily of calcium-dependent papain-like cysteine proteases constitutes highly conserved proteases that function to posttranslationally modify substrates by partial proteolysis. Calpains are known to proteolyze >100 substrates that lack strong sequence homology. Consequently, the calpain superfamily has been implicated in playing a central role in diverse physiological and pathological processes. Investigation of the physiological functions of calpains, on the one hand, and the need to develop pharmacological reagents to inhibit calpain-mediated pathological processes, on the other hand, led to the development of numerous calpain inhibitors. Using cultured Aplysia neurons and voltage-clamp analysis, we report here that the calpain inhibitors calpeptin, MG132, and the calpain inhibitor XII inhibit voltage-gated potassium conductance and moderately reduce the sodium conductance. These consequently lead to spike broadening and increased calcium influx. Such alterations of the excitable membrane properties may alter the normal patterns of neuronal and muscle electrical activities and thus should be taken into account when evaluating the effects of calpain inhibitors as protective/therapeutic drugs and as research tools.
Collapse
Affiliation(s)
- Arkady Khoutorsky
- Department of Neurobiology, The Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
43
|
Das A, Banik NL, Ray SK. N-(4-Hydroxyphenyl) retinamide induced both differentiation and apoptosis in human glioblastoma T98G and U87MG cells. Brain Res 2008; 1227:207-15. [PMID: 18602901 DOI: 10.1016/j.brainres.2008.06.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 11/29/2022]
Abstract
N-(4-Hydroxyphenyl) retinamide (4-HPR) is a synthetic retinoid that has shown biological activity against several malignant tumors and minimal side effects in humans. To explore the mechanisms underlying the chemotherapeutic effects of 4-HPR in glioblastoma, we used two human glioblastoma T98G and U87MG cell lines. In situ methylene blue staining showed the morphological features of astrocytic differentiation in glioblastoma cells following exposure to 1 microM and 2 microM 4-HPR for a short duration (24 h). Astrocytic differentiation was associated with an increase in expression of glial fibrillary acidic protein (GFAP) and downregulation of telomerase. Wright staining and ApopTag assay indicated appearance of apoptotic features in glioblastoma cells following exposure to 1 microM and 2 microM 4-HPR for a long duration (72 h). We found that 4-HPR caused apoptosis with activation of caspase-8 and cleavage of Bid to truncated Bid (tBid). Besides, apoptosis was associated with alterations in expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins resulting in an increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c and Smac, downregulation of selective baculoviral inhibitor-of-apoptosis repeat containing (BIRC) molecules, an increase in intracellular free [Ca2+], and activation of calpain and caspase-3. Taken together, these results strongly suggested that 4-HPR could be used at low doses for induction of both differentiation and apoptosis in human glioblastoma cells.
Collapse
Affiliation(s)
- Arabinda Das
- Division of Neurology, Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
44
|
The role of calcium-activated protease calpain in experimental retinal pathology. Surv Ophthalmol 2008; 53:150-63. [PMID: 18348880 DOI: 10.1016/j.survophthal.2007.12.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The purpose of this review is to present the recent evidence linking the family of ubiquitous proteases called calpains (EC 3.4.22.17) to neuropathologies of the retina. The hypothesis being tested in such studies is that over-activation of calpains by elevated intracellular calcium contributes to retinal cell death produced by conditions such as elevated intraocular pressure and hypoxia. Recent x-ray diffraction studies have provided insight into the molecular events causing calpain activation. Further, x-ray diffraction data has provided details on how side chains on calpain inhibitors affect docking into the active site of calpain 1. This opens the possibility of testing calpain-specific inhibitors, such as SJA6017 and SNJ1945, for human safety and as a site-directed form of treatment for retinal pathologies.
Collapse
|
45
|
Das A, Banik NL, Ray SK. Molecular mechanisms of the combination of retinoid and interferon-gamma for inducing differentiation and increasing apoptosis in human glioblastoma T98G and U87MG cells. Neurochem Res 2008; 34:87-101. [PMID: 18368485 DOI: 10.1007/s11064-008-9669-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 03/12/2008] [Indexed: 11/26/2022]
Abstract
Glioblastoma is the deadliest brain tumor that remains incurable. We examined efficacy of combination of retinoid and interferon-gamma (IFN-gamma) in human glioblastoma T98G and U87MG cells. We conjectured that retinoid could induce differentiation with down regulation of telomerase activity to increase sensitivity to IFN-gamma for apoptosis in glioblastoma cells. Indeed, treatment of cells with 1 muM all-trans retinoic acid (ATRA) or 1 muM 13-cis retinoic acid (13-CRA) for 7 days induced astrocytic differentiation with upregulation of glial fibrillary acidic protein (GFAP) and down regulation of telomerase activity. Wright staining and ApopTag assay showed, respectively, morphological and biochemical features of apoptosis in glioblastoma cells following exposure to 200 units/ml IFN-gamma for 48 h. Induction of differentiation was associated with decreases in levels of nuclear factor kappa B (NFkappaB), inducible nitric oxide synthase (iNOS), and production of nitric oxide (NO) so as to increase sensitivity to IFN-gamma for apoptosis. Notably, IFN-gamma induced signal transducer and activator of transcription-1 (STAT-1) to bind to gamma-activated sequence (GAS) of the target gene. Also, IFN-gamma activated caspase-8 and cleaved Bid to truncated Bid (tBid) for translocation to mitochondria. Fura-2 assay showed increases in intracellular free [Ca2+] and activation of calpain in apoptotic cells. Besides, increases in Bax:Bcl-2 ratio and mitochondrial release of cytochrome c and Smac into the cytosol activated caspase-9 and caspase-3 for apoptosis. Taken together, our results showed that retinoid induced astrocytic differentiation with down regulation of telomerase activity and enhanced sensitivity to IFN-gamma for increasing apoptosis in human glioblastoma cells.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
46
|
Luthra S, Dong J, Gramajo AL, Chwa M, Kim DW, Neekhra A, Kuppermann BD, Kenney MC. 7-Ketocholesterol activates caspases-3/7, -8, and -12 in human microvascular endothelial cells in vitro. Microvasc Res 2008; 75:343-50. [PMID: 18068200 DOI: 10.1016/j.mvr.2007.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/18/2007] [Accepted: 10/19/2007] [Indexed: 11/30/2022]
Abstract
7-Ketocholesterol (7kCh) is a major oxysterol found associated with vascular diseases. Human microvascular endothelial cells (HMVECs) were cultured with different concentrations of 7kCh with and without inhibitors. Cell viabilities and caspase activities were assessed. 7kCh caused loss of cell viability in a dose-dependent manner. Caspases-8, -12, and -3/7 but not caspase-9 were activated by 7kCh treatment. The 7kCh-induced caspase-8 activity was blocked partially by pre-treatment with z-VAD-fmk and z-IETD-fmk, a caspase-8 inhibitor. However, pre-treatment with z-ATAD-fmk, a caspase-12 inhibitor, followed by 7kCh exposure lead to significantly increased caspase-8 activity. This suggests that caspase-8 and caspase-12 pathways have unique inhibition patterns and that caspase-12 is likely not upstream and feeding into caspase-8 but the pathways may function in parallel to each other. Caspase-3/7 activation was inhibited partially by low density lipoprotein (LDL), high density lipoprotein (HDL), z-VAD-fmk (pan-caspase inhibitor), and low doses (0.01 and 0.001 microM) of the cholesterol lowering drug, simvastatin. However, only LDL partially protected against 7kCh-induced loss of cell viability suggesting that caspase-independent pathways also contributed to the cell loss and that protection from oxysterol damage may require inhibition of multiple pathways. Moreover, our data suggest that oxysterols such as 7kCh can damage HMVECs cells in part via caspase-dependent apoptosis and may play a role in vascular and retinal diseases.
Collapse
|
47
|
Retinoids induced astrocytic differentiation with down regulation of telomerase activity and enhanced sensitivity to taxol for apoptosis in human glioblastoma T98G and U87MG cells. J Neurooncol 2007; 87:9-22. [PMID: 17987264 DOI: 10.1007/s11060-007-9485-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
We hypothesized that induction of differentiation with retinoid could increase sensitivity to microtubule-binding drug taxol (TXL) for apoptosis in human glioblastoma T98G and U87MG cells. Treatment of cells with 1 microM all-trans retinoic acid (ATRA) or 1 microM 13-cis retinoic acid (13-CRA) for 7 days induced astrocytic differentiation, overexpression of glial fibrillary acidic protein (GFAP), and also down regulated telomerase expression and activity, thereby increased sensitivity to TXL for apoptosis. Treatment of glioblastoma cells with TXL triggered production of reactive oxygen species (ROS), induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), and activated the redox-sensitive c-Jun NH(2)-terminal kinase 1 (JNK1) pathway. Moreover, TXL activated Raf-1 kinase for phosphorylation and inactivation of anti-apoptotic Bcl-2 protein. The events of apoptosis included increase in expression of Bax, down regulation of Bcl-2 and baculoviral inhibitor-of-apoptosis protein (IAP) repeat containing (BIRC) proteins, mitochondrial release of cytochrome c and Smac into the cytosol, increase in intracellular free [Ca(2+)], and activation of calpain, caspase-9, and caspase-3. Increased activity of caspase-3 cleaved inhibitor of caspase-activated DNase (ICAD) to release and translocate CAD to the nucleus for DNA fragmentation. Involvement of stress signaling kinases and proteolytic activities of calpain and caspase-3 in apoptosis was confirmed by pretreating cells with specific inhibitors. Taken together, our results suggested that retinoid (ATRA or 13-CRA) induced astrocytic differentiation with down regulation of telomerase activity to increase sensitivity to TXL to enhance apoptosis in glioblastoma cells. Thus, combination of retinoid and TXL could be an effective therapeutic strategy for controlling the growth of glioblastoma.
Collapse
|
48
|
Hong S, Lee JE, Kim CY, Seong GJ. Agmatine protects retinal ganglion cells from hypoxia-induced apoptosis in transformed rat retinal ganglion cell line. BMC Neurosci 2007; 8:81. [PMID: 17908330 PMCID: PMC2089075 DOI: 10.1186/1471-2202-8-81] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 10/02/2007] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Agmatine is an endogenous polyamine formed by the decarboxylation of L-arginine. We investigated the protective effects of agmatine against hypoxia-induced apoptosis of immortalized rat retinal ganglion cells (RGC-5). RGC-5 cells were cultured in a closed hypoxic chamber (5% O2) with or without agmatine. Cell viability was determined by lactate dehydrogenase (LDH) assay and apoptosis was examined by annexin V and caspase-3 assays. Expression and phosphorylation of mitogen-activated protein kinases (MAPKs; JNK, ERK p44/42, and p38) and nuclear factor-kappa B (NF-kappaB) were investigated by Western immunoblot analysis. The effects of agmatine were compared to those of brain-derived neurotrophic factor (BDNF), a well-known protective neurotrophin for retinal ganglion cells. RESULTS After 48 hours of hypoxic culture, the LDH assay showed 52.3% cell loss, which was reduced to 25.6% and 30.1% when agmatine and BDNF were administered, respectively. This observed cell loss was due to apoptotic cell death, as established by annexin V and caspase-3 assays. Although total expression of MAPKs and NF-kappaB was not influenced by hypoxic injury, phosphorylation of these two proteins was increased. Agmatine reduced phosphorylation of JNK and NF-kappaB, while BDNF suppressed phosphorylation of ERK and p38. CONCLUSION Our results show that agmatine has neuroprotective effects against hypoxia-induced retinal ganglion cell damage in RGC-5 cells and that its effects may act through the JNK and NF-kappaB signaling pathways. Our data suggest that agmatine may lead to a novel therapeutic strategy to reduce retinal ganglion cell injury related to hypoxia.
Collapse
Affiliation(s)
- Samin Hong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Yun Kim
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| | - Gong Je Seong
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Evans JS, Turner MD. Emerging functions of the calpain superfamily of cysteine proteases in neuroendocrine secretory pathways. J Neurochem 2007; 103:849-59. [PMID: 17666040 DOI: 10.1111/j.1471-4159.2007.04815.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first calpain protease was discovered over 40 years ago now, yet despite the vast amount of literature that has subsequently emerged detailing their involvement in the pathophysiology of a variety of human diseases, it is only in the last decade that calpain-mediated actions along the secretory pathway have begun to emerge. However, the number of secretory pathway substrates identified and their diversity of function continues to grow. This review summarizes our current knowledge of calpain-mediated mechanisms of action that are pertinent to synaptic vesicle assembly and budding, cytoskeletal organization, endosomal recycling, and exocytotic membrane fusion.
Collapse
Affiliation(s)
- Joanne S Evans
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, London, UK
| | | |
Collapse
|
50
|
Das A, Banik NL, Ray SK. Methylprednisolone and indomethacin inhibit oxidative stress mediated apoptosis in rat C6 glioblastoma cells. Neurochem Res 2007; 32:1849-56. [PMID: 17570061 DOI: 10.1007/s11064-007-9371-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Accepted: 05/01/2007] [Indexed: 11/30/2022]
Abstract
Glioblastoma patients receive anti-inflammatory agent for alleviation of vasogenic edema and pain prior to surgery, radiotherapy, and chemotherapy. Oxidative stress is an important mechanism of action of some chemotherapeutic agents in the treatment of glioblastoma. So, we examined the modulatory effects of methylprednisolone (MP, a steroidal anti-inflammatory agent) and indomethacin (IM, a non-steroidal anti-inflammatory agent) on apoptosis in rat C6 glioblastoma cells following oxidative stress with hydrogen peroxide (H(2)O(2)). Exposure of C6 cells to 1 mM H(2)O(2) for 24 h caused significant amounts of morphological and biochemical features of apoptosis. Expressions of Bax and Bcl-2 at mRNA and protein levels were altered resulting in an increase in Bax : Bcl-2 ratio in apoptotic cells, which also exhibited overexpression of 80 kDa calpain and an increase in calpain-cleaved 145 kDa alpha-spectrin breakdown product. Immunofluorescent and propidium iodide labeling detected caspase-3-p20 fragment in apoptotic cells, indicating activation of caspase-3 as well. Treatment of cells with 1 microM MP or 10 microM IM alone did not induce apoptosis. Pretreatment (1 h) with either 1 microM MP or 10 microM IM significantly inhibited H(2)O(2) mediated apoptosis in C6 cells. Thus, pretreatment of glioblastoma with an anti-inflammatory agent, either steroidal or non-steroidal, may compromise the action of a chemotherapeutic agent that mediates therapeutic action via oxidative stress.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosciences, Medical University of South Carolina (MUSC), 96 Jonathan Lucas Street, Suite 323K, P.O. Box 250606, Charleston, SC 29425, USA
| | | | | |
Collapse
|