1
|
Melo AI, Zempoalteca R, Ramirez-Funez G, Anaya-Hernández A, Porras MG, Aguirre-Benítez EL, González Del Pliego M, Armando PT, Jiménez-Estrada I. Role of tactile stimulation during the preweaning period on the development of the peripheral sensory sural (SU) nerve in adult artificially reared female rat. Dev Psychobiol 2024; 66:e22486. [PMID: 38739111 DOI: 10.1002/dev.22486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 05/14/2024]
Abstract
Maternal deprivation, as a result of the artificial rearing (AR) paradigm, disturbs electrophysiological and histological characteristics of the peripheral sensory sural (SU) nerve of infant and adult male rats. Such changes are prevented by providing tactile or social stimulation during isolation. AR also affects the female rat's brain and behavior; however, it is unknown whether this early adverse experience also alters their SU nerve development or if tactile stimulation might prevent these possible developmental effects. To assess these possibilities, the electrophysiological and histological characteristics of the SU nerve from adult diestrus AR female rats that: (i) received no tactile stimulation (AR group), (ii) received tactile stimulation in the anogenital and body area (AR-Tactile group), or (iii) were mother reared (MR group) were determined. We found that the amplitude, but not the area, of the evoked compound action potential response in SU nerves of AR rats was lower than those of SU nerves of MR female rats. Tactile stimulation prevented these effects. Additionally, we found a reduction in the outer diameter and myelin thickness of axons, as well as a large proportion of axons with low myelin thickness in nerves of AR rats compared to the nerves of the MR and AR-Tactile groups of rats; however, tactile stimulation only partially prevented these effects. Our data indicate that maternal deprivation disturbs the development of sensory SU nerves in female rats, whereas tactile stimulation partially prevents the changes generated by AR. Considering that our previous studies have shown more severe effects of AR on male SU nerve development, we suggest that sex-associated factors may be involved in these processes.
Collapse
Affiliation(s)
- Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, Mexico
| | - Rene Zempoalteca
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Mexico
| | - Gabriela Ramirez-Funez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, Mexico
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Mexico
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Mexico
| | - Mercedes G Porras
- Departamento de Fisiología, Facultad de Medicina, UNAM, Ciudad de México, Mexico
| | | | | | - Pérez-Torres Armando
- Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Ciudad de México, Mexico
| | | |
Collapse
|
2
|
Gómora-Arrati P, Cortes C, Trujillo A, Encarnación-Sánchez JL, Galicia-Aguas YL, González-Flores O, Eguibar JR. Mating-induced analgesia is dependent of copulatory male pattern in high- and low- yawning male rats. Physiol Behav 2022; 246:113694. [PMID: 34995550 DOI: 10.1016/j.physbeh.2022.113694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Mating behavior in rodents can modulate pain sensations in both sexes. In males, the execution of mounts, intromissions, and ejaculations induced a progressive increase in their vocalization thresholds induced by tail shocks and other types of noxious stimuli. We selectively inbred two sublines from Sprague-Dawley (SD) rats that differed in their spontaneous yawning frequency. The high-yawning (HY) subline had a mean of 20 yawns/h and a different pattern of sexual behavior characterized by longer interintromission intervals and more sexual bouts that delayed ejaculation. The low-yawning (LY) subline and SD rats yawned as a mean 2 and 1 yawns/h, respectively. So, we determine mating-induced analgesia in HY, LY, and SD male rats by measuring vocalization thresholds in response to noxious electric tail shocks. Our results showed that the magnitude of mating-induced analgesia was lower in HY and LY rats with respect to SD rats. When the rats performed different components of male sexual pattern, both sublines exhibited a significantly lower increase in their vocalization thresholds with respect to SD rats-being sublines less responsive regarding mating-induced analgesia. Pain modulation mechanisms depend on responses to stress, so the low levels of analgesia obtained in the yawning sublines may be due either to differences in their response to stress in other paradigms, or to atypical performance of male sexual behavior during mating, an event which as a stressful event in rats. Therefore, the yawning sublines are a suitable model for analyzing how a different temporal pattern in the display of male sexual behavior affects analgesia mechanisms. Our results concur with Wistar rats with different endophenotypes that could apply to humans as well.
Collapse
Affiliation(s)
- Porfirio Gómora-Arrati
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala and CINVESTAV del I.P.N, Mexico
| | - Carmen Cortes
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Angélica Trujillo
- Facultad de Ciencias Biológicas. Benemérita Universidad Autónoma de Puebla, Mexico
| | - José L Encarnación-Sánchez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala and CINVESTAV del I.P.N, Mexico
| | - Yadira L Galicia-Aguas
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala and CINVESTAV del I.P.N, Mexico
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala and CINVESTAV del I.P.N, Mexico
| | - Jose R Eguibar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Mexico; Research Office, Vice-Rectory of Research and Postgraduate Studies. Benemérita Universidad Autónoma de Puebla, Mexico.
| |
Collapse
|
3
|
Threshold for copulation-induced analgesia varies according to the ejaculatory endophenotypes in rats. Int J Impot Res 2020; 34:195-202. [PMID: 33328617 DOI: 10.1038/s41443-020-00390-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 11/08/2022]
Abstract
Analgesia may be modulated by multiple internal and external factors. In prior studies, copulatory-induced analgesia was demonstrated using the vocalization threshold to tail shock (VTTS) in male and female rats. Three ejaculatory endophenotypes have been characterized in male Wistar rats based upon their ejaculation latency (EL). Since intromissions and ejaculations produce analgesia, and these copulatory patterns are performed with different frequency depending on the male's ejaculatory endophenotype, we hypothesized that copulation-induced analgesia would vary in relation to these endophenotypes. In the present study, we used three groups according to the EL (medians): rapid ejaculators (236 s; n = 21), intermediate ejaculators (663.2 s; n = 20) and sluggish ejaculators (1582.2 s; n = 8). Our aim was to evaluate whether copulation-induced analgesia is related to the ejaculatory endophenotypes during two consecutive ejaculatory series (EJS). In the first EJS, the VTTS of the rapid ejaculators was significantly higher than that of intermediate and sluggish rats. At the onset of the second EJS, the VTTS of the rapid and intermediate ejaculators was significantly higher than that of the sluggish rats. No differences in VTTS were observed during the first or second post-ejaculatory intervals among the three groups. These findings provide evidence that the more intromissions that occurred per unit time, the higher was the level of analgesia.
Collapse
|
4
|
Trejo-Sánchez I, Pérez-Monter C, Huerta-Pacheco S, Gutiérrez-Ospina G. Male Ejaculatory Endophenotypes: Revealing Internal Inconsistencies of the Concept in Heterosexual Copulating Rats. Front Behav Neurosci 2020; 14:90. [PMID: 32670030 PMCID: PMC7332778 DOI: 10.3389/fnbeh.2020.00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/14/2020] [Indexed: 12/17/2022] Open
Abstract
Distinct manifestations of sexual behavior are conceived as separate phenotypes. Each sexual phenotype is assumed to be associated with a characteristic brain. These notions have justified the phenotyping of heterosexual copulator males based upon their ejaculation's latencies (EL) or frequencies (i.e., cumulative ejaculation number; EN). For instance, men and male rats showing premature, normal or retarded ejaculation are assumed to be distinctive endophenotypes. This concept, nonetheless, contradicts past and recent evidence that supports that sexual behavior is highly variable within each sex, and that the brain sexual functional morphology represents an intricate sexual phenotypic mosaic. Hence, for ejaculatory male endophenotypes to be considered as a valid biological concept, it must show internal consistency at various levels of organization (including genetic architectures), after being challenged by intrinsic and/or extrinsic factors. We then judged the internal consistency of the presumed ejaculatory endophenotypes by assessing whether copulatory behavior and the expression of copulation relevant genes and brain limbic structures are specific to each of the presumed EL- or EN-ejaculatory endophenotypes. To do this, copulating male rats were first phenotyped in groups consistently displaying short, average or long ejaculation latencies or very high, high, average, low or very low EN, based in their copulatory performance. Then, the internal consistency of the presumed EL- or EN-endophenotypes was tested by introducing as covariates of phenotyping other copulatory parameters (e.g., number of intromissions) in addition to EL or EN, or by analyzing the expression levels of genes encoding for estrogen receptor alpha, progesterone receptor, androgen receptor, aromatase, DNA methyl-transferase 3a and DNA methyl-transferase 1 in the amygdala, medial preoptic area, ventromedial hypothalamus and olfactory bulb. We found that even though there were group-level differences in all the variables that were studied, these differences did not add-up to create the presumed EL- or EN-ejaculatory endophenotypes. In fact, the extensive overlapping of copulatory parameters and expression levels of copulation relevant genes in limbic structures across EL- or EN-phenotyped copulating male rats, is not consistent with the hypothesis that distinct ejaculatory endophenotypes exist and that they are associated with specific brain characteristics.
Collapse
Affiliation(s)
- Itztli Trejo-Sánchez
- Laboratorio de Biología de Sistemas, Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Pérez-Monter
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Sofía Huerta-Pacheco
- Consejo Nacional de Ciencia y Tecnología, Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Instituto de Investigaciones Biomédicas, Departamento de Biología Celular y Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Massa MG, Correa SM. Sexes on the brain: Sex as multiple biological variables in the neuronal control of feeding. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165840. [PMID: 32428559 DOI: 10.1016/j.bbadis.2020.165840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022]
Abstract
Neuronal interactions at the level of vagal, homeostatic, and hedonic circuitry work to regulate the neuronal control of feeding. This integrative system appears to vary across sex and gender in the animal and human worlds. Most feeding research investigating these variations across sex and gender focus on how the organizational and activational mechanisms of hormones contribute to these differences. However, in limited studies spanning both the central and peripheral nervous systems, sex differences in feeding have been shown to manifest not just at the level of the hormonal, but also at the chromosomal, epigenetic, cellular, and even circuitry levels to alter food intake. In this review, we provide a brief orientation to the current understanding of how these neuronal systems interact before dissecting selected studies from the recent literature to exemplify how feeding physiology at all levels can be affected by the various components of sex.
Collapse
Affiliation(s)
- Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America; Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, United States of America; Neuroscience Interdepartmental Doctoral Program, University of California, Los Angeles, CA, United States of America.
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America; Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, United States of America.
| |
Collapse
|
6
|
Synthesizing Views to Understand Sex Differences in Response to Early Life Adversity. Trends Neurosci 2020; 43:300-310. [PMID: 32353334 DOI: 10.1016/j.tins.2020.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Sex as a biological variable (SABV) is critical for understanding the broad range of physiological, neurobiological, and behavioral consequences of early life adversity(ELA). The study of the interaction of SABV and ELA ties into several current debates, including the importance of taking into account SABV in research, differing strategies employed by males and females in response to adversity, and the possible evolutionary and developmental mechanisms of altered development in response to adversity. This review highlights the importance of studying both sexes, of understanding sex differences (and similarities) in response to ELA, and provides a context for the debate surrounding whether the response to ELA may be an adaptive process.
Collapse
|
7
|
Abstract
In the past decennia, our understanding of the sexual differentiation of the mammalian brain has dramatically changed. The simple model according to which testosterone masculinizes the brain of males away from a default female form, was replaced with a complex scenario, according to which sex effects on the brain of both females and males are exerted by genetic, hormonal, and environmental factors. These factors act via multiple partly independent mechanisms that may vary according to internal and external factors. These observations led to the "mosaic" hypothesis-the expectation of high variability in the degree of "maleness"/"femaleness" of different features within a single brain. Here, we briefly review animal data that form the basis of current understanding of sexual differentiation; present, in this context, the results of co-analyses of human brain measures obtained by magnetic resonance imaging or postmortem; discuss criticisms and controversies of the mosaic hypothesis and implications for research; and conclude that co-analysis of several (preferably, many) features and going back from the group level to that of the individual would advance our understanding of the relations between sex and the brain in health and disease.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Alicia Garcia-Falgueras
- Netherlands Institute for Neuroscience, Amsterdam, An Institute of the Royal Netherlands Academy of Arts and Sciences, KNAW, Amsterdam, the Netherlands
| | - Dick Swaab
- Netherlands Institute for Neuroscience, Amsterdam, An Institute of the Royal Netherlands Academy of Arts and Sciences, KNAW, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Joshi A, Page CE, Damante M, Dye CN, Haim A, Leuner B, Lenz KM. Sex differences in the effects of early life stress exposure on mast cells in the developing rat brain. Horm Behav 2019; 113:76-84. [PMID: 31054843 DOI: 10.1016/j.yhbeh.2019.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/12/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022]
Abstract
Early life stress leads to long lasting effects on behavior. Neuroimmune cells have been implicated as key mediators of experience-induced changes in brain and behavioral development, in that they are highly responsive to stress. Mast cells are one such type of neuroimmune cell, but little is known about their role in brain development or following early life stress. Here, we assessed the impact of three different early life stress exposure paradigms on mast cell dynamics in the developing brain of male and female rats, focusing on the hippocampus and hypothalamus, where most mast cells reside. We found that exposure to two weeks of chronic variable stress during gestation led to increased mast cell number and activation in the female offspring hypothalamus on the day of birth. Acute exposure to maternal separation stress on postnatal day (PN) 2 led to significant decreases in mast cells within the hypothalamus and hippocampus of females, but not males. In contrast, one week of exposure to brief daily maternal separation stress (e.g., handling), increased mast cell numbers in the female, but not male, hippocampus. We found significant sex differences in mast cell number and activation, including males having more mast cells than females in the hippocampus on the day of birth and males having significantly more degranulated mast cells on PN11. Thus, mast cells may be an unappreciated mediator of sex-specific brain development in response to early life perturbations.
Collapse
Affiliation(s)
- Aarohi Joshi
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Chloe E Page
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mark Damante
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Courtney N Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Achikam Haim
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Schlinger BA, Paul K, Monks DA. Muscle, a conduit to brain for hormonal control of behavior. Horm Behav 2018; 105:58-65. [PMID: 30040953 DOI: 10.1016/j.yhbeh.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022]
Abstract
SBN Elsevier Lecture Investigation into mechanisms whereby hormones control behavior often starts with actions on central nervous system (CNS) motivation and motor systems and is followed by assessment of CNS drive of coordinated striated muscle contractions. Here we turn this perspective on its head by discussing ways in which hormones might first act on muscle that then secondarily drive upstream the evolution and function of the CNS. While there is a lengthy history for consideration of this perspective, newly discovered properties of muscle signaling reveal novel mechanisms that may well be captured by endocrine systems and thus of interest to behavioral endocrinologists.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, United States of America; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, United States of America; Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, United States of America; Smithsonian Tropical Research Institute, Panama City, Panama.
| | - Ketema Paul
- Department of Integrative Biology and Physiology, University of California, Los Angeles, United States of America; Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, United States of America
| | - D Ashley Monks
- Department of Psychology, University of Toronto Mississauga, Canada; Cell and Systems Biology, University of Toronto, Canada
| |
Collapse
|
10
|
Experience-Dependent Plasticity Drives Individual Differences in Pheromone-Sensing Neurons. Neuron 2017; 91:878-892. [PMID: 27537487 DOI: 10.1016/j.neuron.2016.07.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 03/30/2016] [Accepted: 07/06/2016] [Indexed: 02/03/2023]
Abstract
Different individuals exhibit distinct behaviors, but studying the neuronal basis of individuality is a daunting challenge. Here, we considered this question in the vomeronasal organ, a pheromone-detecting epithelium containing hundreds of distinct neuronal types. Using light-sheet microscopy, we characterized in each animal the abundance of 17 physiologically defined types, altogether recording from half a million sensory neurons. Inter-animal differences were much larger than predicted by chance, and different physiological cell types showed distinct patterns of variability. One neuronal type was present in males and nearly absent in females. Surprisingly, this apparent sexual dimorphism was generated by plasticity, as exposure to female scents or single ligands led to both the elimination of this cell type and alterations in olfactory behavior. That an all-or-none apparent sex difference in neuronal types is controlled by experience-even in a sensory system devoted to "innate" behaviors-highlights the extraordinary role of "nurture" in neural individuality.
Collapse
|
11
|
Kauer SD, Allmond JT, Belnap SC, Brumley MR. Maternal behavior influences development of a reflexive action pattern in the newborn rat. Dev Psychobiol 2016; 58:1043-1054. [PMID: 27279291 DOI: 10.1002/dev.21438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 05/23/2016] [Indexed: 11/09/2022]
Abstract
This study examined the effect of maternal behavior on the expression and postnatal development of a reflexive behavior in rat pups. In neonatal rats, the leg extension response (LER) is a bilateral hyperextension of the hindlimbs in response to maternal anogenital licking (AGL). Past research has found that intranasal application of zinc sulfate (ZnSO4 ) to the dam induces hyponosmia, thereby reducing the incidence of AGL. In this study, pregnant dams received intranasal application of air (control), distilled water (control), or ZnSO4 on the day before birth and every other day thereafter until postnatal day 9 (P9). The LER was experimentally evoked in pups, using a vibrotactile device, at P1, P5, or P10. Pups born to ZnSO4 -treated dams showed significantly shorter bilateral LER durations and significantly smaller ankle angles than pups born to control dams. Reduction of overall maternal AGL approached significance, and afternoon AGL was significantly reduced. These data suggest that maternal behavior influenced development of the LER in rat pups, demonstrating the influence of maternal care on behavioral development during the perinatal period.
Collapse
Affiliation(s)
- Sierra D Kauer
- Department of Psychology, Idaho State University, Pocatello, Idaho
| | - Jacob T Allmond
- Department of Psychology, Idaho State University, Pocatello, Idaho
| | - Starlie C Belnap
- Department of Psychology, Florida International University, Miami, Florida
| | | |
Collapse
|
12
|
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 2016; 40:67-86. [PMID: 26790970 PMCID: PMC4897775 DOI: 10.1016/j.yfrne.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/16/2023]
Abstract
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | - J Alex Strahan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | | |
Collapse
|
13
|
Brumley MR, Kauer SD, Swann HE. Developmental plasticity of coordinated action patterns in the perinatal rat. Dev Psychobiol 2015; 57:409-20. [PMID: 25739742 DOI: 10.1002/dev.21280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/10/2014] [Indexed: 11/08/2022]
Abstract
Some of the most simple, stereotyped, reflexive, and spinal-mediated motor behaviors expressed by animals display a level of flexibility and plasticity that is not always recognized. We discuss several examples of how coordinated action patterns have been shown to be flexible and adaptive in response to sensory feedback. We focus on interlimb and intralimb coordination during the expression of two action patterns (stepping and the leg extension response) in newborn rats, as well as interlimb motor learning. We also discuss the idea that the spinal cord is a major site for supporting plasticity in the developing motor system. An implication of this research is that normally occurring sensory stimulation during the perinatal period influences the typical development and expression of action patterns, and that exploiting the developmental plasticity of the motor system may lead to improved strategies for promoting recovery of function in human infants with motor disorders.
Collapse
Affiliation(s)
- Michele R Brumley
- Department of Psychology, Idaho State University, 921 S 8th Ave, Stop 8112, Pocatello, 83209-8112, ID
| | | | | |
Collapse
|
14
|
Reducing early maternal licking of male lambs (Ovis aries) does not impair their sexual behavior in adulthood. J Vet Behav 2015. [DOI: 10.1016/j.jveb.2014.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ball GF, Balthazart J, McCarthy MM. Is it useful to view the brain as a secondary sexual characteristic? Neurosci Biobehav Rev 2014; 46 Pt 4:628-38. [PMID: 25195165 DOI: 10.1016/j.neubiorev.2014.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/04/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Many sex differences in brain and behavior related to reproduction are thought to have evolved based on sexual selection involving direct competition for mates during male-male competition and female choice. Therefore, certain aspects of brain circuitry can be viewed as secondary sexual characteristics. The study of proximate causes reveals that sex differences in the brain of mammals and birds reflect organizational and activational effects of sex steroids as articulated by Young and collaborators. However, sex differences in brain and behavior have been identified in the cognitive domain with no obvious link to reproduction. Recent views of sexual selection advocate for a broader view of how intra-sexual selection might occur including such examples as competition within female populations for resources that facilitate access to mates rather than mating competition per se. Sex differences can also come about for other reasons than sexual selection and recent work on neuroendocrine mechanisms has identified a plethora of ways that the brain can develop in a sex specific manner. Identifying the brain as sexually selected requires careful hypothesis testing so that one can link a sex-biased aspect of a neural trait to a behavior that provides an advantage in a competitive mating situation.
Collapse
Affiliation(s)
- Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N, Charles Street, Baltimore, MD 21218, USA.
| | - Jacques Balthazart
- GIGA Neuroscience, University of Liege, 1 boulevard de l'Hôpital, 4000 Liege, Belgium.
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21210, USA
| |
Collapse
|
16
|
Belnap SC, Allmond JT, Boomhower SR, Roberto ME, Brumley MR. Sensorimotor training during expression of the leg extension response (LER) in 1-day-old rats. Dev Psychobiol 2014; 56:1553-63. [PMID: 25171018 DOI: 10.1002/dev.21250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 07/25/2014] [Indexed: 11/05/2022]
Abstract
In newborn rats, the leg extension response (LER) is a coordinated hyperextension of the hindlimbs that is shown in response to anogenital stimulation. Here we examined the influence of sensorimotor training on LER expression in postnatal day 1 rats. In Experiment 1, we examined if proprioceptive feedback facilitates LER expression. We did this by repeatedly stimulating the pup's anogenital region with a vibrotactile device, to experimentally evoke the LER, thus increasing LER-relevant hindlimb proprioceptive feedback during training. In trained subjects, the LER was evoked every 4 min for 15 trials, followed by a final LER test. Results indicated that proprioceptive feedback on its own did not alter later expression of the LER. In Experiment 2, we examined the effect of both proprioceptive and cutaneous feedback on LER expression, through the use of a range of motion (ROM) restriction during training. During ROM restriction, a Plexiglas plate was placed beneath the pup at 50% of limb length. After the 15th training trial, a final LER test occurred with no ROM restriction in place. Compared to controls, pups that experienced ROM restriction exhibited a significantly shorter LER duration, and smaller hip and ankle angles during the LER test (indicating greater limb flexion). Together these findings show that concurrent proprioceptive and cutaneous feedback, but not proprioceptive feedback alone, has persistent effects on expression of this newborn action pattern.
Collapse
Affiliation(s)
- Starlie C Belnap
- Department of Psychology, Idaho State University, 921 S 8th Ave, Stop 8112, Pocatello, ID, 83209-8112
| | | | | | | | | |
Collapse
|
17
|
Yu P, An S, Tai F, Wang J, Wu R, Wang B. Early social deprivation impairs pair bonding and alters serum corticosterone and the NAcc dopamine system in mandarin voles. Psychoneuroendocrinology 2013; 38:3128-38. [PMID: 24103891 DOI: 10.1016/j.psyneuen.2013.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/02/2013] [Accepted: 09/12/2013] [Indexed: 11/27/2022]
Abstract
Early life stress has a long-term negative impact on emotion, learning, memory and adult sexual behavior, and these deficits most likely impair pair bonding. Here, we investigated whether early social deprivation (ED) affects the formation of pair bonds in socially monogamous mandarin voles (Microtus mandarinus). In a partner preference test (PPT), ED-reared adult females and males did not show a preference for their partner, spent more time exploring the cage of an unfamiliar animal and directed high levels of aggression toward unfamiliar animals. In social interaction test, ED increased exploring behavior only in females, but increased movement around the partner and reduced inactivity in both males and females. Three days of cohabitation did not alter serum corticosterone levels in ED-reared males, but increased corticosterone levels in males that received bi-parental care (PC). Interestingly, serum corticosterone levels in ED- and PC-reared females declined after cohabitation. ED significantly increased basal serum corticosterone levels in males, but had no effect on females. ED significantly up-regulated the levels of dopamine and the mRNA expression of dopamine 1-type receptor (D1R) in the nucleus accumbens (NAcc) in females and males. ED suppressed dopamine 2-type receptor mRNA (D2R) expression in females, but increased this in males. After three days of cohabitation, levels of D1R mRNA and D2R mRNA expression changed in opposite directions in PC-reared voles, but in the same direction in ED-reared males, and only the expression of D2R mRNA increased in ED-reared females. Our results indicate that early social deprivation inhibits pair bonding at adulthood. This inhibition is possibly associated with sex-specific alterations in serum corticosterone, levels of dopamine and mRNA expression of two types of dopamine receptors in the NAcc.
Collapse
Affiliation(s)
- Peng Yu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | | | | | |
Collapse
|
18
|
Turning sex inside-out: Peripheral contributions to sexual differentiation of the central nervous system. Biol Sex Differ 2012; 3:12. [PMID: 22640590 PMCID: PMC3464926 DOI: 10.1186/2042-6410-3-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/28/2012] [Indexed: 02/04/2023] Open
Abstract
Sexual differentiation of the nervous system occurs via the interplay of genetics, endocrinology and social experience through development. Much of the research into mechanisms of sexual differentiation has been driven by an implicit theoretical framework in which these causal factors act primarily and directly on sexually dimorphic neural populations within the central nervous system. This review will examine an alternative explanation by describing what is known about the role of peripheral structures and mechanisms (both neural and non-neural) in producing sex differences in the central nervous system. The focus of the review will be on experimental evidence obtained from studies of androgenic masculinization of the spinal nucleus of the bulbocavernosus, but other systems will also be considered.
Collapse
|
19
|
Abstract
In the twentieth century, the dominant model of sexual differentiation stated that genetic sex (XX versus XY) causes differentiation of the gonads, which then secrete gonadal hormones that act directly on tissues to induce sex differences in function. This serial model of sexual differentiation was simple, unifying and seductive. Recent evidence, however, indicates that the linear model is incorrect and that sex differences arise in response to diverse sex-specific signals originating from inherent differences in the genome and involve cellular mechanisms that are specific to individual tissues or brain regions. Moreover, sex-specific effects of the environment reciprocally affect biology, sometimes profoundly, and must therefore be integrated into a realistic model of sexual differentiation. A more appropriate model is a parallel-interactive model that encompasses the roles of multiple molecular signals and pathways that differentiate males and females, including synergistic and compensatory interactions among pathways and an important role for the environment.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Departments of Physiology and Psychiatry and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
20
|
Lenz KM, Sengelaub DR. Maternal care effects on the development of a sexually dimorphic motor system: the role of spinal oxytocin. Horm Behav 2010; 58:575-81. [PMID: 20688065 PMCID: PMC2934889 DOI: 10.1016/j.yhbeh.2010.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/09/2010] [Accepted: 07/25/2010] [Indexed: 11/28/2022]
Abstract
Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking results in decreased motoneuron number, size, and dendritic length in the adult SNB, as well as deficits in adult male copulatory behavior. Our previous findings that licking-like tactile stimulation influences SNB dendritic development and upregulates Fos expression in the lumbosacral spinal cord suggest that afferent signaling is changed by differences in maternal stimulation. Oxytocin afferents from the hypothalamus are a possible candidate, given previous research that has shown oxytocin is released following sensory stimulation, oxytocin modulates excitability in the spinal cord, and is a pro-erectile modulator of male sex behavior. In this experiment, we used immunofluorescence and immediate early gene analysis to assess whether licking-like tactile stimulation of the perineum activated parvocellular oxytocinergic neurons in the hypothalamus in neonates. We also used enzyme immunoassay to determine whether this same stroking stimulation produced an increase in spinal oxytocin levels. We found that stroking increased Fos immunolabeling in small oxytocin-positive cells in the paraventricular nucleus of the hypothalamus, in comparison to unstroked or handled control pups. In addition, 60s of licking-like perineal stimulation produced a transient 89% increase in oxytocin levels in the lumbosacral spinal cord. Together, these results suggest that oxytocin afferent activity may contribute to the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Physiology and Program in Neuroscience, University of Maryland-Baltimore, MD 21201, USA.
| | | |
Collapse
|
21
|
Garcia-Martinez R, Miquel M, Garcia LI, Coria-Avila GA, Perez CA, Aranda-Abreu GE, Toledo R, Hernandez ME, Manzo J. Multiunit recording of the cerebellar cortex, inferior olive, and fastigial nucleus during copulation in naive and sexually experienced male rats. THE CEREBELLUM 2010; 9:96-102. [PMID: 20016964 DOI: 10.1007/s12311-009-0148-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The sexual behavior of male rats constitutes a natural model to study learning of motor skills at the level of the central nervous system. We previously showed that sexual behavior increases Fos expression in granule cells at lobules 6 to 9 of the vermis cerebellum. Herein, we obtained multiunit recordings of lobules 6a and 7 during the training period of naive subjects, and during consecutive ejaculations of expert males. Recordings from both lobules and the inferior olive showed that the maximum amplitude of mount, intromission, and ejaculation signals were similar, but sexual behavior during training tests produced a decrease in the amplitude for mount and intromission signals. The fastigial nucleus showed an inverse mirror-like response. Thus, the cerebellum is involved in the neural basis of sexual behavior and the learning of appropriate behavioral displays during copulation, with a wiring that involves the cerebellar cortex, inferior olive, and fastigial nucleus.
Collapse
|
22
|
Kurian JR, Olesen KM, Auger AP. Sex differences in epigenetic regulation of the estrogen receptor-alpha promoter within the developing preoptic area. Endocrinology 2010; 151:2297-305. [PMID: 20237133 PMCID: PMC2869250 DOI: 10.1210/en.2009-0649] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex differences in the brain are largely organized by a testicular hormone surge that occurs in males shortly after birth. Although this hormone surge is transient, sex differences in brain and behavior are lasting. Here we describe a sex difference in DNA methylation of the estrogen receptor-alpha (ERalpha) promoter region within the developing rat preoptic area, with males exhibiting more DNA methylation within the ERalpha promoter than females. More importantly, we report that simulating maternal grooming, a form of maternal interaction that is sexually dimorphic with males experiencing more than females during the neonatal period, effectively masculinizes female ERalpha promoter methylation and gene expression. This suggests natural variations in maternal care that are directed differentially at males vs. females can influence sex differences in the brain by creating sexually dimorphic DNA methylation patterns. We also find that the early estradiol exposure may contribute to sex differences in DNA methylation patterns. This suggests that early social interaction and estradiol exposure may converge at the genome to organize lasting sex differences in the brain via epigenetic differentiation.
Collapse
Affiliation(s)
- Joseph R Kurian
- Psychology Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
23
|
Lenz KM, Sengelaub DR. Maternal care effects on SNB motoneuron development: the mediating role of sensory afferent distribution and activity. Dev Neurobiol 2009; 69:603-15. [PMID: 19472187 DOI: 10.1002/dneu.20729] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking produces decreased motoneuron number, size, and dendritic length in the rostral portion of the adult SNB as well as deficits in adult male copulatory behavior. Previous research suggests that decreases in perineal tactile stimulation may be responsible for these effects. To determine whether the regional effects of maternal licking on SNB morphology are driven by sensory afferent innervation of the lumbosacral spinal cord, we used WGA-HRP to reconstruct the location of sensory afferent fibers from the perineal skin. We found that these fibers are caudally concentrated relative to the area of the SNB dendritic field, with the rostral dendritic arbor receiving little perineal afferent innervation. We also assessed Fos expression following perineal tactile stimulation to determine whether it increased local spinal cord activity in the SNB dendritic field. Sixty seconds of licking-like perineal stimulation produced a transient 115% increase in Fos expression in the area of the SNB dendritic field. This effect was driven by a significant increase in Fos in the caudal portion of the SNB dendritic field, matching the pattern of perineal afferent fiber labeling. Perineal tactile stimulation also produced significantly greater Fos expression in male pups than in female pups. Together, these results suggest that perineal sensory afferent activity mediates the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
24
|
Williams SK, Cox ET, McMurray MS, Fay EE, Jarrett TM, Walker CH, Overstreet DH, Johns JM. Simultaneous prenatal ethanol and nicotine exposure affect ethanol consumption, ethanol preference and oxytocin receptor binding in adolescent and adult rats. Neurotoxicol Teratol 2009; 31:291-302. [PMID: 19539752 PMCID: PMC2743885 DOI: 10.1016/j.ntt.2009.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/21/2009] [Accepted: 06/09/2009] [Indexed: 11/20/2022]
Abstract
Ethanol consumption and smoking during pregnancy are common, despite the known adverse effects on the fetus. The teratogenicity of each drug independently is well established; however, the effects of concurrent exposure to ethanol and nicotine in preclinical models remain unclear. This study examined the impact of simultaneous prenatal exposure to both ethanol and nicotine on offspring ethanol preference behaviors and oxytocin system dynamics. Rat dams were given liquid diet (17% ethanol derived calories (EDC)) on gestational day (GD) 5 and 35% EDC from GD 6-20 and concurrently an osmotic minipump delivered nicotine (3-6mg/kg/day) from GD 4-postpartum day 10. Offspring were tested for ethanol preference during adolescence (postnatal day (PND) 30-43) and again at adulthood (PND 60-73), followed by assays for oxytocin mRNA expression and receptor binding in relevant brain regions. Prenatal exposure decreased ethanol preference in males during adolescence, and decreased consumption and preference in females during adulthood compared to controls. Oxytocin receptor binding in the nucleus accumbens and hippocampus was increased in adult prenatally exposed males only. Prenatal exposure to these drugs sex-specifically decreased ethanol preference behavior in offspring unlike reports for either drug separately. The possible role of oxytocin in reduction of ethanol consumption behavior is highlighted.
Collapse
Affiliation(s)
- Sarah K Williams
- Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Borgdorff AJ, Rössler AS, Clément P, Bernabé J, Alexandre L, Giuliano F. Differences in the Spinal Command of Ejaculation in Rapid Ejaculating Rats. J Sex Med 2009; 6:2197-205. [DOI: 10.1111/j.1743-6109.2009.01308.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Forger NG. The organizational hypothesis and final common pathways: Sexual differentiation of the spinal cord and peripheral nervous system. Horm Behav 2009; 55:605-10. [PMID: 19446077 PMCID: PMC2703449 DOI: 10.1016/j.yhbeh.2009.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 10/20/2022]
Abstract
In honor of the 50th anniversary of the "organizational hypothesis," this paper reviews work on sexual differentiation of the spinal cord and peripheral nervous system. Topics considered include the spinal nucleus of the bulbocavernosus, the ejaculation center, the cremaster nucleus, sensory and autonomic neurons, and pain. These relatively simple neural systems offer ample confirmation that early exposure to testicular hormones masculinizes the nervous system, including final common pathways. However, I also discuss findings that challenge, or at least stretch, the organizational hypothesis, with important implications for understanding sex differences throughout the nervous system.
Collapse
Affiliation(s)
- Nancy G Forger
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst MA 01003, USA.
| |
Collapse
|
27
|
Cameron NM, Fish EW, Meaney MJ. Maternal influences on the sexual behavior and reproductive success of the female rat. Horm Behav 2008; 54:178-84. [PMID: 18417127 DOI: 10.1016/j.yhbeh.2008.02.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/26/2022]
Abstract
In many species, including humans, there is evidence for parental effects on within-sex variations in reproductive behavior. In the present studies we found that variations in postnatal maternal care were associated with individual differences in female sexual behavior in the rat. Females born to and reared by dams that showed enhanced pup licking/grooming (i.e., High LG mothers) over the first week postpartum showed significantly reduced sexual receptivity and alterations in the pacing of male mounting (i.e., longer inter-intromission intervals) observed in a paced mating test. There were minimal effects on the sexual behavior of the male offspring. The female offspring of High LG mothers showed a reduced lordosis rating, a decreased mount:intromission ratio, received fewer ejaculations and were less likely to achieve pregnancy following mating in the paced mating context. The data suggest maternal influences on the sexual development of the female rat that are functionally relevant for reproductive success. Together with previous studies these findings imply that maternal care can 'program' reproductive strategies in the female rat.
Collapse
Affiliation(s)
- Nicole M Cameron
- Sackler Program for Developmental Psychobiology and Epigenetics at McGill University, Montréal, Canada.
| | | | | |
Collapse
|
28
|
Lenz KM, Graham MD, Parada M, Fleming AS, Sengelaub DR, Monks DA. Tactile stimulation during artificial rearing influences adult function and morphology in a sexually dimorphic neuromuscular system. Dev Neurobiol 2008; 68:542-57. [PMID: 18186491 DOI: 10.1002/dneu.20608] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Maternal licking of rat pups affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Maternal licking influences SNB motoneurons, with reductions in licking producing decreased SNB number, size, and dendritic length in adulthood. Reduced maternal licking also produces deficits in adult male copulatory behavior. In this experiment, we used an artificial rearing paradigm to assess the potential role of tactile stimulation in mediating the effects of maternal licking on the SNB neuromuscular system. During artificial rearing, pups were stroked with a paintbrush to mimic maternal licking, receiving low, medium, or high levels of daily stimulation. In adulthood, ex copula penile reflex behavior was tested and the morphology of SNB motoneurons assessed. SNB motoneurons were retrogradely labeled with cholera toxin-conjugated HRP and dendritic arbor was reconstructed in three dimensions. Animals that received low levels of stimulation showed deficits in penile reflexes relative to maternally reared controls, including a longer latency to erection, fewer cup erections, and fewer erection clusters. SNB dendritic morphology was also shaped by stimulation condition, with animals that received low or medium levels of stimulation showing an average 27% reduction in dendritic length. In addition, several reflex behaviors were significantly correlated with dendritic length, including latency to first erection, percent of cup erections, and number of erection clusters. These results suggest that tactile stimulation provided by maternal licking mediates some of the effects of maternal care on the development of male copulatory behavior.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Sengelaub DR, Forger NG. The spinal nucleus of the bulbocavernosus: firsts in androgen-dependent neural sex differences. Horm Behav 2008; 53:596-612. [PMID: 18191128 PMCID: PMC2423220 DOI: 10.1016/j.yhbeh.2007.11.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022]
Abstract
Cell number in the spinal nucleus of the bulbocavernosus (SNB) of rats was the first neural sex difference shown to differentiate under the control of androgens, acting via classical intracellular androgen receptors. SNB motoneurons reside in the lumbar spinal cord and innervate striated muscles involved in copulation, including the bulbocavernosus (BC) and levator ani (LA). SNB cells are much larger and more numerous in males than in females, and the BC/LA target muscles are reduced or absent in females. The relative simplicity of this neuromuscular system has allowed for considerable progress in pinpointing sites of hormone action, and identifying the cellular bases for androgenic effects. It is now clear that androgens act at virtually every level of the SNB system, in development and throughout adult life. In this review we focus on effects of androgens on developmental cell death of SNB motoneurons and BC/LA muscles; the establishment and maintenance of SNB motoneuron soma size and dendritic length; BC/LA muscle morphology and physiology; and behaviors controlled by the SNB system. We also describe new data on neurotherapeutic effects of androgens on SNB motoneurons after injury in adulthood.
Collapse
Affiliation(s)
- Dale R Sengelaub
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|