1
|
Metzger CE, Moore RC, Pirkle AS, Tak LY, Rau J, Bryan JA, Stefanov A, Allen MR, Hook MA. A moderate spinal contusion injury in rats alters bone turnover both below and above the level of injury with sex-based differences apparent in long-term recovery. Bone Rep 2024; 21:101761. [PMID: 38646090 PMCID: PMC11033081 DOI: 10.1016/j.bonr.2024.101761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Spinal cord injury (SCI) leads to significant sublesional bone loss and high fracture rates. While loss of mechanical loading plays a significant role in SCI-induced bone loss, animal studies have demonstrated mechanical loading alone does not fully account for loss of bone following SCI. Indeed, we have shown that bone loss occurs below the level of an incomplete moderate contusion SCI, despite the resumption of weight-bearing and stepping. As systemic factors could also impact bone after SCI, bone alterations may also be present in bone sites above the level of injury. To examine this, we assessed bone microarchitecture and bone turnover in the supralesional humerus in male and female rats at two different ages following a moderate contusion injury in both sub-chronic (30 days) and chronic (180 days) time points after injury. At the 30-day timepoint, we found that both young and adult male SCI rats had decrements in trabecular bone volume at the supralesional proximal humerus (PH), while female SCI rats were not different from age-matched shams. At the 180-day timepoint, there were no statistical differences between SCI and sham groups, irrespective of age or sex, at the supralesional proximal humerus. At the 30-day timepoint, all SCI rats had lower BFR and higher osteoclast-covered trabecular surfaces in the proximal humerus compared to age-matched sham groups generally matching the pattern of SCI-induced changes in bone turnover seen in the sublesional proximal tibia. However, at the 180-day timepoint, only male SCI rats had lower BFR at the supralesional proximal humerus while female SCI rats had higher or no different BFR than their age-matched counterparts. Overall, this preclinical study demonstrates that a moderate contusion SCI leads to alterations in bone turnover above the level of injury within 30-days of injury; however male SCI rats maintained lower BFR in the supralesional humerus into long-term recovery. These data further highlight that bone loss after SCI is not driven solely by disuse. Additionally, these data allude to potential systemic factors exerting influence on bone following SCI and highlight the need to consider treatments for SCI-induced bone loss that impact both sublesional and systemic factors.
Collapse
Affiliation(s)
- Corinne E. Metzger
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Robert C. Moore
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Alexander S. Pirkle
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Landon Y. Tak
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Josephina Rau
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States of America
| | - Jessica A. Bryan
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States of America
| | - Alexander Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States of America
| | - Matthew R. Allen
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States of America
| |
Collapse
|
2
|
Werner CM, Willing LB, Goudsward HJ, McBride AR, Stella SL, Holmes GM. Plasticity of colonic enteric nervous system following spinal cord injury in male and female rats. Neurogastroenterol Motil 2023; 35:e14646. [PMID: 37480186 PMCID: PMC11298951 DOI: 10.1111/nmo.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Neurogenic bowel is a dysmotility disorder following spinal cord injury (SCI) that negatively impacts quality of life, social integration, and physical health. Colonic transit is directly modulated by the enteric nervous system. Interstitial Cells of Cajal (ICC) distributed throughout the small intestine and colon serve as specialized pacemaker cells, generating rhythmic electrical slow waves within intestinal smooth muscle, or serve as an interface between smooth muscle cells and enteric motor neurons of the myenteric plexus. Interstitial Cells of Cajal loss has been reported for other preclinical models of dysmotility, and our previous experimental SCI study provided evidence of reduced excitatory and inhibitory enteric neuronal count and smooth muscle neural control. METHODS Immunohistochemistry for the ICC-specific marker c-Kit was utilized to examine neuromuscular remodeling of the distal colon in male and female rats with experimental SCI. KEY RESULTS Myenteric plexus ICC (ICC-MP) exhibited increased cell counts 3 days following SCI in male rats, but did not significantly increase in females until 3 weeks after SCI. On average, ICC-MP total primary arborization length increased significantly in male rats at 3-day, 3-week, and 6-week time points, whereas in females, this increase occurred most frequently at 6 weeks post-SCI. Conversely, circular muscle ICC (ICC-CM) did not demonstrate post-SCI changes. CONCLUSIONS AND INFERENCES These data demonstrate resiliency of the ICC-MP in neurogenic bowel following SCI, unlike seen in other related disease states. This plasticity underscores the need to further understand neuromuscular changes driving colonic dysmotility after SCI in order to advance therapeutic targets for neurogenic bowel treatment.
Collapse
Affiliation(s)
- Claire M Werner
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lisa B Willing
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Hannah J Goudsward
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Amanda R McBride
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Salvatore L Stella
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
3
|
Metzger C, Rau J, Stefanov A, Joseph RM, Allaway HC, Allen MR, Hook MA. Inflammaging and bone loss in a rat model of spinal cord injury. J Neurotrauma 2022; 40:901-917. [PMID: 36226413 DOI: 10.1089/neu.2022.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) results in significant loss of sublesional bone, adding to the comorbidity of SCI with an increased risk of fracture and post-fracture complications. Unfortunately, the effect of SCI on skeletal health is also likely to rise as the average age of SCI has increased and there are well-known negative effects of age on bone. To date, however, the impact of age and age-associated inflammation (inflammaging) on skeletal health after SCI remains largely unknown. To address this, we compared bone parameters in young (3 month) and middle-aged (9 month) male and female rats with a moderate thoracic contusion injury, to age and sex matched sham-operated controls. Skeletal parameters, locomotor function and serum cytokine levels were assessed at both subchronic (30 days) and chronic (180 days) time points post injury. We hypothesized that SCI would lead to a dramatic loss of bone immediately after injury in all SCI-groups, with inflammaging leading to greater loss in middle-aged SCI rats. We also predicted that while younger rats may re-establish bone properties in more chronic phases of SCI, middle-aged rats would not. Supporting these hypothesis, trabecular bone volume was significantly lower in male and young female SCI rats early after injury. Contrary to our hypothesis, however, there was greater loss of trabecular bone volume, relative to age-matched shams, in young compared to middle-aged SCI rats with no effects of SCI on trabecular bone volume in middle-aged female rats. Moreover, despite recovery of weight-supported locomotor activity, bone loss persisted into the chronic phase of injury for the young rats. Bone formation rates were lower in young male SCI rats, regardless of the time since injury, while both young and middle-aged female SCI rats had lower bone formation in the subchronic but not chronic phase of SCI. In middle-aged rats, SCI-induced higher osteoclast surfaces, which also persisted into the chronic phase of SCI in middle-aged females. Neither age nor SCI-induced increases in inflammation seemed to be associated with bone loss. In fact, SCI had more dramatic and persistent effects on bone in male rats, while aging and SCI elevated serum cytokines only in female rats. Overall, this study demonstrates SCI-induced loss of bone and altered bone turnover in male and female rats that persists into the chronic phase post-injury. The sex and age dependent variations in bone turnover and serum cytokines, however, underscore the need to further explore both mechanisms and potential therapeutics in multiple demographics.
Collapse
Affiliation(s)
- Corinne Metzger
- Indiana University School of Medicine, 12250, Anatomy Cell Biology Physiology, Indianapolis, Indiana, United States;
| | - Josephina Rau
- Texas A&M University Health Science Center Department of Neuroscience and Experimental Therapeutics, 205278, 8447 Riverside Parkway, Bryan, Texas, United States, 77807-3260;
| | - Alexander Stefanov
- Texas A&M University Health Science Center Department of Neuroscience and Experimental Therapeutics, 205278, 8447 Riverside Pkwy, Bryan, Texas, United States, 77807.,Texas A&M Institute for Neuroscience, 464968, College Station, Texas, United States;
| | - Rose M Joseph
- Texas A&M School of Medicine, Department of Neuroscience and Experimental Therapeutics, Bryan, Texas, United States;
| | - Heather C Allaway
- Louisiana State University, 5779, School of Kinesiology, Baton Rouge, Louisiana, United States;
| | - Matthew R Allen
- Indiana University School of Medicine, 12250, Anatomy Cell Biology Physiology, Indianapolis, Indiana, United States;
| | - Michelle A Hook
- Texas A&M School of Medicine, Department of Neuroscience and Experimental Therapeutics, Bryan, Texas, United States;
| |
Collapse
|
4
|
Hook MA, Falck A, Dundumulla R, Terminel M, Cunningham R, Sefiani A, Callaway K, Gaddy D, Geoffroy CG. Osteopenia in a Mouse Model of Spinal Cord Injury: Effects of Age, Sex and Motor Function. BIOLOGY 2022; 11:biology11020189. [PMID: 35205056 PMCID: PMC8869334 DOI: 10.3390/biology11020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary In the first two years following spinal cord injury, people lose up to 50% of bone below the injury. This injury-induced bone loss significantly affects rehabilitation and leaves people vulnerable to fractures and post-fracture complications, including lung and urinary tract infections, blood clots in the veins, and depression. Unfortunately, little is known about the factors driving this bone loss. In fact, even though we know that injury, age, and sex independently increase bone loss, there have been no studies looking at the cumulative effects of these variables. People with spinal injury are aging, and the age at which injuries occur is increasing. It is essential to know whether these factors together will further compromise bone. To examine this, we assessed bone loss in young and old, male and female mice after spinal injury. As expected, we found that aging alone decreased motor activity and bone volume. Spinal injury also reduced bone volume, but it did not worsen the effects of age. Instead, injury effects appeared related to reduced rearing activity. The data suggest that although partial weight-bearing does not reduce bone loss after spinal cord injury, therapies that put full weight on the legs may be clinically effective. Abstract After spinal cord injury (SCI), 80% of individuals are diagnosed with osteopenia or osteoporosis. The dramatic loss of bone after SCI increases the potential for fractures 100-fold, with post-fracture complications occurring in 54% of cases. With the age of new SCI injuries increasing, we hypothesized that a SCI-induced reduction in weight bearing could further exacerbate age-induced bone loss. To test this, young (2–3 months) and old (20–30 months) male and female mice were given a moderate spinal contusion injury (T9–T10), and recovery was assessed for 28 days (BMS, rearing counts, distance traveled). Tibial trabecular bone volume was measured after 28 days with ex vivo microCT. While BMS scores did not differ across groups, older subjects travelled less in the open field and there was a decrease in rearing with age and SCI. As expected, aging decreased trabecular bone volume and cortical thickness in both old male and female mice. SCI alone also reduced trabecular bone volume in young mice, but did not have an additional effect beyond the age-dependent decrease in trabecular and cortical bone volume seen in both sexes. Interestingly, both rearing and total activity correlated with decreased bone volume. These data underscore the importance of load and use on bone mass. While partial weight-bearing does not stabilize/reverse bone loss in humans, our data suggest that therapies that simulate complete loading may be effective after SCI.
Collapse
Affiliation(s)
- Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
- Correspondence: ; Tel.: +1-979-436-0568
| | - Alyssa Falck
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; (A.F.); (D.G.)
| | - Ravali Dundumulla
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Mabel Terminel
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Rachel Cunningham
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Kayla Callaway
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| | - Dana Gaddy
- Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA; (A.F.); (D.G.)
| | - Cédric G. Geoffroy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA; (R.D.); (M.T.); (R.C.); (A.S.); (K.C.); (C.G.G.)
| |
Collapse
|
5
|
Baine RE, Johnston DT, Strain MM, Henwood MK, Davis JA, Reynolds JA, Giles ED, Grau JW. Noxious Stimulation Induces Acute Hemorrhage and Impairs Long-Term Recovery after Spinal Cord Injury (SCI) in Female Rats: Evidence Estrous Cycle May Have a Modulatory Effect. Neurotrauma Rep 2022; 3:70-86. [PMID: 35112109 PMCID: PMC8804264 DOI: 10.1089/neur.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injuries (SCIs) are often the result of traumatic accidents, which also produce multiple other injuries (polytrauma). Nociceptive input from associated injuries has been shown to significantly impair recovery post-SCI. Historically, work in our laboratory has focused exclusively on male animals; however, increasing incidence of SCI in females requires research to determine whether pain (nociceptive) input poses the same risk to their recovery. Some animal studies have shown that females demonstrate greater tissue preservation and better locomotor recovery post-SCI. Given this, we examined the effect of sex on SCI recovery in two pain models—intermittent electrical stimulation (shock) to the tail or capsaicin injection to the hindpaw. Female rats received a lower thoracic contusion injury and were exposed to noxious stimulation the next day. The acute effect of noxious input on cardiovascular function, locomotor performance, and hemorrhage were assessed. Treatment with capsaicin or noxious electrical stimulation disrupted locomotor performance, increased blood pressure, and disrupted stepping. Additional experiments examined the long-term consequences of noxious input, demonstrating that both noxious electrical stimulation and capsaicin impair long-term recovery in female rats. Interestingly, injury had a greater effect on behavioral performance when progesterone and estrogen were low (metestrus). Conversely, nociceptive input led to a greater disruption in locomotor performance and produced a greater rise in blood pressure in animals injured during estrus.
Collapse
Affiliation(s)
- Rachel E. Baine
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - David T. Johnston
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Misty M. Strain
- Department of Cellular and Integrative Physiology, University of Texas Health Science, San Antonio, Texas, USA
| | - Melissa K. Henwood
- Department of Neuroscience, Cell Biology, Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jacob A. Davis
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Joshua A. Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Erin D. Giles
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Ha XQ, Yang B, Hou HJ, Cai XL, Xiong WY, Wei XP. Protective effect of rhodioloside and bone marrow mesenchymal stem cells infected with HIF-1-expressing adenovirus on acute spinal cord injury. Neural Regen Res 2020; 15:690-696. [PMID: 31638093 PMCID: PMC6975151 DOI: 10.4103/1673-5374.266920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhodioloside has been shown to protect cells from hypoxia injury, and bone marrow mesenchymal stem cells have a good effect on tissue repair. To study the effects of rhodioloside and bone marrow mesenchymal stem cells on spinal cord injury, a rat model of spinal cord injury was established using the Infinite Horizons method. After establishing the model, the rats were randomly divided into five groups. Rats in the control group were intragastrically injected with phosphate buffered saline (PBS) (5 μL). PBS was injected at 6 equidistant points around 5 mm from the injury site and at a depth of 5 mm. Rats in the rhodioloside group were intragastrically injected with rhodioloside (5 g/kg) and intramuscularly injected with PBS. Rats in the mesenchymal stem cell (MSC) group were intramuscularly injected with PBS and intramuscularly with MSCs (8 × 106/mL in a 50-μL cell suspension). Rats in the Ad-HIF-MSC group were intragastrically injected with PBS and intramuscularly injected with HIF-1 adenovirus-infected MSCs. Rats in the rhodioloside + Ad-HIF-MSC group were intramuscularly injected with MSCs infected with the HIF-1 adenovirus and intragastrically injected with rhodioloside. One week after treatment, exercise recovery was evaluated with a modified combined behavioral score scale. Hematoxylin-eosin staining and Pischingert’s methylene blue staining were used to detect any histological or pathological changes in spinal cord tissue. Levels of adenovirus IX and Sry mRNA were detected by real-time quantitative polymerase chain reaction and used to determine the number of adenovirus and mesenchymal stem cells that were transfected into the spinal cord. Immunohistochemical staining was applied to detect HIF-1 protein levels in the spinal cord. The results showed that: (1) compared with the other groups, the rhodioloside + Ad-HIF-MSC group exhibited the highest combined behavioral score (P < 0.05), the most recovered tissue, and the greatest number of neurons, as indicated by Pischingert’s methylene blue staining. (2) Compared with the PBS group, HIF-1 protein expression was greater in the rhodioloside group (P < 0.05). (3) Compared with the Ad-HIF-MSC group, Sry mRNA levels were higher in the rhodioloside + Ad-HIF-MSC group (P < 0.05). These results confirm that rhodioloside combined with bone marrow mesenchymal stem cells can promote the recovery of spinal cord injury and activate the HIF-1 pathway to promote the survival of bone marrow mesenchymal stem cells and repair damaged neurons within spinal cord tissue. This experiment was approved by the Animal Ethics Committee of Gansu University of Traditional Chinese Medicine, China (approval No. 2015KYLL029) in June 2015.
Collapse
Affiliation(s)
- Xiao-Qin Ha
- Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Bo Yang
- Department of Clinical Laboratory, Lanzhou General Hospital of Lanzhou Military Area Command; School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Huai-Jing Hou
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Xiao-Ling Cai
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu Province, China
| | - Wan-Yuan Xiong
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| | - Xu-Pan Wei
- School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, China
| |
Collapse
|
7
|
Eldahshan W, Ishrat T, Pillai B, Sayed MA, Alwhaibi A, Fouda AY, Ergul A, Fagan SC. Angiotensin II type 2 receptor stimulation with compound 21 improves neurological function after stroke in female rats: a pilot study. Am J Physiol Heart Circ Physiol 2019; 316:H1192-H1201. [PMID: 30822121 PMCID: PMC6580399 DOI: 10.1152/ajpheart.00446.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/18/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
The angiotensin II type 2 receptor (AT2R) agonist, compound 21 (C21), has been shown to be neurovascularly protective after ischemic stroke in male rats. In the current study, we aim to study the impact of C21 treatment on female rats. Young female Wistar rats were subjected to different durations of middle cerebral artery occlusion (MCAO) (3 h, 2 h, and 1 h) using a silicone-coated monofilament, treated at reperfusion with 0.03 mg/kg ip of C21 and followed up for different times (1, 3, and 14 days) after stroke. Behavioral tests were performed (Bederson, paw grasp, beam walk, and rotarod), and animals were euthanized for infarct size analysis and Western blot analysis. In vitro, primary male and female brain microvascular endothelial cells (ECs) were grown in culture, and the expression of the AT2R was compared between males and females. At 1 day, C21 treatment resulted in an improvement in Bederson scores. However, at 3 days and 14 days, the impact of C21 on stroke outcomes was less robust. In vitro, the expression of the AT2R was significantly higher in female ECs compared with male ECs. In conclusion, C21 improves Bederson scores after stroke in female rats when administered early at reperfusion. The ability of C21 to exert its neuroprotective effects might be affected by fluctuating levels of female hormones. NEW & NOTEWORTHY The present study shows the neuroprotective impact of C21 on ischemic stroke in female rats and how the protective effects of C21 can be influenced by the hormonal status of female rodents.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/blood supply
- Brain/drug effects
- Brain/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- Infarction, Middle Cerebral Artery/diagnosis
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/psychology
- Male
- Microvessels/drug effects
- Microvessels/metabolism
- Motor Activity/drug effects
- Neuroprotective Agents/pharmacology
- PPAR gamma/agonists
- PPAR gamma/metabolism
- Pilot Projects
- Rats, Wistar
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Recovery of Function
- Sex Factors
- Signal Transduction
- Sulfonamides/pharmacology
- Thiophenes/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Medical Center and University of Georgia, College of Pharmacy , Augusta, Georgia
| | - Tauheed Ishrat
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Medical Center and University of Georgia, College of Pharmacy , Augusta, Georgia
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Medical Center and University of Georgia, College of Pharmacy , Augusta, Georgia
| | - Mohammed A Sayed
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Medical Center and University of Georgia, College of Pharmacy , Augusta, Georgia
| | - Abdulrahman Alwhaibi
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Medical Center and University of Georgia, College of Pharmacy , Augusta, Georgia
| | - Abdelrahman Y Fouda
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Medical Center and University of Georgia, College of Pharmacy , Augusta, Georgia
| | - Adviye Ergul
- Department of Physiology, Augusta University , Augusta, Georgia
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, Charlie Norwood Veterans Affairs Medical Center and University of Georgia, College of Pharmacy , Augusta, Georgia
- Department of Neurology, Augusta University , Augusta, Georgia
| |
Collapse
|
8
|
Krassioukov A, Elliott S. Neural Control and Physiology of Sexual Function: Effect of Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2018; 23:1-10. [PMID: 29339872 DOI: 10.1310/sci2301-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: To present the current understanding of normal anatomy, physiology, sexual physiology, pathophysiology and the consequential sexual changes and dysfunctions following a spinal cord injury (SCI). Methods: Narrative review of the latest literature. Results: Peripheral innervations of the pelvis involve 3 sets of efferent neurons coordinated though the pelvic plexus (somatic, thoracolumbar sympathetic, and sacral parasympathetic), and these are under cerebral descending excitatory and inhibitory control. SCI, depending on the level of lesion and completeness, can alter this cerebral control, affecting the psychological and reflexogenic potential for genital arousal and also ejaculation and orgasm. During arousal, nitric oxide is the main neurotransmitter for smooth muscle relaxation in both male and female erectile tissue. In men, erection, ejaculation, and orgasm are under separate neurological control and can be individually affected by SCI. Conclusions: Since sexual function is rated amongst the highest priorities by individuals living with SCI, methods employed to affect the neurological changes to maximize sexual neurophysiology prior to initiating medical therapies including paying attention to sexual sensate areas and visceral signals with mindfulness techniques, practicing body mapping, and sexual stimulation of sensate areas to encourage neuroplasticity. Attention should be paid to the biopsychosocial sexual contexts within which persons with SCI live to maximize their sexual and fertility rehabilitation.
Collapse
Affiliation(s)
- Andrei Krassioukov
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Authority, Vancouver, BC, Canada.,Department of Psychiatry, Vancouver Coastal Health Authority, Vancouver, BC, Canada.,Division of Physical Medicine and Rehabilitation, Vancouver Coastal Health Authority, Vancouver, BC, Canada.,University of British Columbia, and GF Strong Rehabilitation Centre, Vancouver Coastal Health Authority, Vancouver, BC, Canada
| | - Stacy Elliott
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Authority, Vancouver, BC, Canada.,Department of Urologic Sciences, Vancouver Coastal Health Authority, Vancouver, BC, Canada.,University of British Columbia, and GF Strong Rehabilitation Centre, Vancouver Coastal Health Authority, Vancouver, BC, Canada.,Department of Psychiatry, Vancouver Coastal Health Authority, Vancouver, BC, Canada
| |
Collapse
|
9
|
Tucker LB, Burke JF, Fu AH, McCabe JT. Neuropsychiatric Symptom Modeling in Male and Female C57BL/6J Mice after Experimental Traumatic Brain Injury. J Neurotrauma 2016; 34:890-905. [PMID: 27149139 PMCID: PMC5314988 DOI: 10.1089/neu.2016.4508] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Psychiatric symptoms such as anxiety and depression are frequent and persistent complaints following traumatic brain injury (TBI). Modeling these symptoms in animal models of TBI affords the opportunity to determine mechanisms underlying behavioral pathologies and to test potential therapeutic agents. However, testing these symptoms in animal models of TBI has yielded inconsistent results. The goal of the current study was to employ a battery of tests to measure multiple anxiety- and depressive-like symptoms following TBI in C57BL/6J mice, and to determine if male and female mice are differentially affected by the injury. Following controlled cortical impact (CCI) at a parietal location, neither male nor female mice showed depressive-like symptoms as measured by the Porsolt forced-swim test and sucrose preference test. Conclusions regarding anxiety-like behaviors were dependent upon the assay employed; CCI-induced thigmotaxis in the open field suggested an anxiogenic effect of the injury; however, results from the elevated zero maze, light-dark box, and marble-burying tests indicated that CCI reduced anxiety-like behaviors. Fewer anxiety-like behaviors were also associated with the female sex. Increased levels of activity were also measured in female mice and injured mice in these tests, and conclusions regarding anxiety should be taken with caution when experimental manipulations induce changes in baseline activity. These results underscore the irreconcilability of results from studies attempting to model TBI-induced neuropsychiatric symptoms. Changes in injury models or better attempts to replicate the clinical syndrome may improve the translational applicability of rodent models of TBI-induced anxiety and depression.
Collapse
Affiliation(s)
- Laura B Tucker
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - John F Burke
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Amanda H Fu
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Joseph T McCabe
- 1 Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Uniformed Service University of the Health Sciences , Bethesda, Maryland.,2 Department of Anatomy, Physiology, and Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| |
Collapse
|
10
|
Shah PK, Song J, Kim S, Zhong H, Roy RR, Edgerton VR. Rodent estrous cycle response to incomplete spinal cord injury, surgical interventions, and locomotor training. Behav Neurosci 2012; 125:996-1002. [PMID: 22122153 DOI: 10.1037/a0026032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estrous cycle disruption after spinal cord injury (SCI) in female rats is a common phenomenon. It remains unknown, however, if the aberrant estrous cycle is a result of an injury to the spinal cord itself or due to the general stress associated with surgical interventions. We addressed this issue by determining estrous cyclicality in female rats after a spinal cord hemisection (HX), implantation of EMG wires into selected hind limb muscles, and/or injections of tracer dyes into the spinal cord. Because it is known that aerobic exercise can enhance the recovery of locomotor function in rodents with an incomplete SCI, we also determined if locomotor training positively impacts the disrupted estrous cycle after an HX. Estrous cycle assessments were made during a 5-8 week period in 27 female rats before and after HX, EMG, and/or dye injection surgeries and in HX rats that recovered spontaneously or underwent locomotor training. Our results show that estrous cyclicality was disrupted (cycle length >5 days) in approximately 76%, 46%, and 50% of the rats after HX, EMG, and dye injection surgeries, respectively. The cyclicality, however, was disrupted for a longer period after HX than after EMG or dye injection surgeries. Furthermore, estrous cycle mean length was shorter in the trained than nontrained HX group. These results suggest that estrous cycle disruption after a major SCI is a consequence of both the direct injury to the spinal cord and to the associated stress. Moreover, moderate aerobic exercise initiated early after a spinal cord HX returns the duration of the estrous cycle toward normal.
Collapse
Affiliation(s)
- Prithvi K Shah
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1527, USA
| | | | | | | | | | | |
Collapse
|
11
|
Shunmugavel A, Khan M, Chou PCT, Singh I. Spinal cord injury induced arrest in estrous cycle of rats is ameliorated by S-nitrosoglutathione: novel therapeutic agent to treat amenorrhea. J Sex Med 2011; 9:148-58. [PMID: 22024253 DOI: 10.1111/j.1743-6109.2011.02526.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Amenorrhea following spinal cord injury (SCI) has been well documented. There has been little research on the underlying molecular mechanisms and therapeutics. AIM The purpose of the present study was to investigate the effect of GSNO in ameliorating SCI-induced amenorrhea through affecting the expression of CX43, NFkB, and ERβ protein. METHODS SCI was induced in female SD rats at the T9-T10 level. Estrous stage was determined by vaginal smear. GSNO (50 µg/kg body weight) was gavage fed daily. Animals were sacrificed on day 7 and 14 post SCI. Ovaries were fixed for histological and biochemical studies. Expression levels of ERβ, CX-43, and NFkB were analyzed by Western blot and immunofluorescence. MAIN OUTCOME MEASURES GSNO hastens resumption of the estrous cycle following SCI-induced transient arrest. RESULTS Resumption of estrous cycle was hastened by GSNO. Atretic and degenerating follicles seen in the ovary of SCI rats on day 14 post-SCI were decreased in GSNO treated animals. The increased CX43 expression observed with SCI ovary was decreased by GSNO. ERβ expression decreased significantly on day 7 and 14 post-SCI and was restored with GSNO treatment. Following SCI, NFkB expression was increased in the ovarian follicles and the expression was reduced with GSNO administration. The number of terminal deoxynucleotidyl transferase-mediated biotinylated uridine triphosphate (UTP) nick end labeling positive follicular and luteal cells was increased after SCI. GSNO-treated animals had significantly fewer apoptotic cells in the ovary. CONCLUSION SCI-induced amenorrhea is accompanied by an increase in CX43 expression and a decrease in ERβ expression. SCI animals treated with GSNO resumed the estrous cycle significantly earlier. These results indicate a potential therapeutic value for GSNO in treating amenorrhea among SCI patients.
Collapse
|
12
|
Hubscher CH, Fell JD, Gupta DS. Sex and hormonal variations in the development of at-level allodynia in a rat chronic spinal cord injury model. Neurosci Lett 2010; 477:153-6. [PMID: 20434524 DOI: 10.1016/j.neulet.2010.04.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 01/02/2023]
Abstract
The development of central neuropathic pain varies among patients with spinal cord injury (SCI). The factors contributing to the development and perpetuation of segmental pain (at-level allodynia) has been the focus of ongoing experiments in our laboratory. One such factor is hormonal status. We have shown previously, using a male rat model of SCI, that a severe contusion injury is necessary for the development of allodynia in trunk regions at and just above the level of a T8 injury. In this study, we examined at-level sensitivity for SCI ovariectomized (ovx) and cycling female rats as well as for SCI males implanted with either a placebo pellet or one that slowly releases 17beta-estradiol. The proportion of ovx SCI female rats and placebo-treated SCI males displaying pain-like behaviors to touch/pressure of at-level dermatomes up to 6 weeks post-injury (67% and 75%, respectively) was similar to our previous studies on SCI males (69%). In contrast, significantly fewer cycling SCI female rats and 17beta-estradiol treated SCI male rats showed sensitivity to touch at-level (26% and 30%, respectively). These results implicate 17beta-estradiol as a potential target that can readily be modulated to prevent segmental pain following SCI.
Collapse
Affiliation(s)
- Charles H Hubscher
- Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40292, USA.
| | | | | |
Collapse
|
13
|
Rutberg L, Fridén B, Karlsson AK. Amenorrhoea in newly spinal cord injured women: an effect of hyperprolactinaemia? Spinal Cord 2007; 46:189-91. [PMID: 17607310 DOI: 10.1038/sj.sc.3102095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Prospective, single centre study. OBJECTIVES Previous studies have suggested a relationship between stress reaction and elevated levels of prolactine. The aim of the present study was to investigate if there was a relationship between s-prolactine and menstrual cycle status following spinal cord injury (SCI). SETTING Spinal Cord Injury Unit, Göteborg, Sweden. METHODS S-prolactine and menstrual cycle status were investigated in 16 consecutive women with SCI, treated at the SCI Unit, Sahlgrens University Hospital, Göteborg, Sweden. Level of injury ranged from C1 to L5, ASIA A-D. Mean age at injury was 45 years (range 20-79). RESULTS S-Prolactine showed a mean value of 741 mIU/l (standard deviation (s.d.): 625; 95% confidence interval (CI): 435-1788 mIU/l, reference value <400 mIU/l). When dividing the group according to fertility status we found hyperprolactinaemia in the women who were in childbearing age (n=9): mean value 1050 mIU/l (s.d.: 678; 95% CI: 607-1493 mIU/ml), whereas it was normal in the group in menopause (n=7): mean value 343 mIU/l (s.d.: 185, 95% CI: 206-480 mIU/l) (P<0.01 when comparing groups). The group that developed amenorrhoea showed the highest values of s-prolactine. All values but one was normalised 3-6 months later. CONCLUSION Amenorrhoea following SCI is correlated to level of s-prolactine. We found no correlation between level of s-prolactine and level or degree of injury.
Collapse
Affiliation(s)
- L Rutberg
- Spinal Injury Unit, Institution of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg, Sweden.
| | | | | |
Collapse
|