1
|
Effect of muscle contraction strength on gating of somatosensory magnetic fields. Exp Brain Res 2016; 234:3389-3398. [PMID: 27435203 DOI: 10.1007/s00221-016-4736-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
Afferent somatosensory information is modulated before the afferent input arrives at the primary somatosensory cortex during voluntary movement. The aim of the present study was to clarify the effect of muscular contraction strength on somatosensory evoked fields (SEFs) during voluntary movement. In addition, we examined the differences in gating between innervated and non-innervated muscle during contraction. We investigated the changes in gating effect by muscular contraction strength and innervated and non-innervated muscles in human using 306-channel magnetoencephalography. SEFs were recorded following the right median nerve stimulation in a resting condition and during isometric muscular contractions from 10 % electromyographic activity (EMG), 20 and 30 % EMG of the right extensor indicis muscle and abductor pollicis brevis muscle. Our results showed that the equivalent current dipole (ECD) strength for P35m decreased with increasing strength of muscular contraction of the right abductor pollicis brevis muscle. However, changes were observed only at 30 % EMG contraction level of the right extensor indicis muscle, which was not innervated by the median nerve. There were no significant changes in the peak latencies and ECD locations of each component in all conditions. The ECD strength did not differ significantly for N20m and P60m regardless of the strength of muscular contraction and innervation. Therefore, we suggest that the gating of SEF waveforms following peripheral nerve stimulation was affected by the strength of muscular contraction and innervation of the contracting muscle.
Collapse
|
2
|
Bourguignon M, Piitulainen H, De Tiège X, Jousmäki V, Hari R. Corticokinematic coherence mainly reflects movement-induced proprioceptive feedback. Neuroimage 2014; 106:382-90. [PMID: 25463469 PMCID: PMC4295920 DOI: 10.1016/j.neuroimage.2014.11.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/04/2014] [Accepted: 11/14/2014] [Indexed: 02/03/2023] Open
Abstract
Corticokinematic coherence (CKC) reflects coupling between magnetoencephalographic (MEG) signals and hand kinematics, mainly occurring at hand movement frequency (F0) and its first harmonic (F1). Since CKC can be obtained for both active and passive movements, it has been suggested to mainly reflect proprioceptive feedback to the primary sensorimotor (SM1) cortex. However, the directionality of the brain-kinematics coupling has not been previously assessed and was thus quantified in the present study by means of renormalized partial directed coherence (rPDC). MEG data were obtained from 15 subjects who performed right index-finger movements and whose finger was, in another session, passively moved, with or without tactile input. Four additional subjects underwent the same task with slowly varying movement pace, spanning the 1-5 Hz frequency range. The coupling between SM1 activity recorded with MEG and finger kinematics was assessed with coherence and rPDC. In all conditions, the afferent rPDC spectrum, which resembled the coherence spectrum, displayed higher values than the efferent rPDC spectrum. The afferent rPDC was 37% higher when tactile input was present, and it was at highest at F1 of the passive conditions; the efferent rPDC level did not differ between conditions. The apparent latency for the afferent input, estimated within the framework of the rPDC analysis, was 50-100 ms. The higher directional coupling between hand kinematics and SM1 activity in afferent than efferent direction strongly supports the view that CKC mainly reflects movement-related somatosensory proprioceptive afferent input to the contralateral SM1 cortex.
Collapse
Affiliation(s)
- Mathieu Bourguignon
- Brain Research Unit and MEG Core, O.V. Lounasmaa Laboratory, Aalto University School of Science, PO BOX 15100, FI-00076-AALTO Espoo, Finland.
| | - Harri Piitulainen
- Brain Research Unit and MEG Core, O.V. Lounasmaa Laboratory, Aalto University School of Science, PO BOX 15100, FI-00076-AALTO Espoo, Finland
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, 808 Lennik Street, B-1070 Bruxelles, Belgium
| | - Veikko Jousmäki
- Brain Research Unit and MEG Core, O.V. Lounasmaa Laboratory, Aalto University School of Science, PO BOX 15100, FI-00076-AALTO Espoo, Finland
| | - Riitta Hari
- Brain Research Unit and MEG Core, O.V. Lounasmaa Laboratory, Aalto University School of Science, PO BOX 15100, FI-00076-AALTO Espoo, Finland
| |
Collapse
|
3
|
Araki T, Hirata M, Sugata H, Yanagisawa T, Onishi M, Watanabe Y, Omura K, Honda C, Hayakawa K, Yorifuji S. Genetic and environmental influences on motor function: a magnetoencephalographic study of twins. Front Hum Neurosci 2014; 8:455. [PMID: 24994981 PMCID: PMC4063293 DOI: 10.3389/fnhum.2014.00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/03/2014] [Indexed: 11/18/2022] Open
Abstract
To investigate the effect of genetic and environmental influences on cerebral motor function, we determined similarities and differences of movement-related cortical fields (MRCFs) in middle-aged and elderly monozygotic (MZ) twins. MRCFs were measured using a 160-channel magnetoencephalogram system when MZ twins were instructed to repeat lifting of the right index finger. We compared latency, amplitude, dipole location, and dipole intensity of movement-evoked field 1 (MEF1) between 16 MZ twins and 16 pairs of genetically unrelated pairs. Differences in latency and dipole location between MZ twins were significantly less than those between unrelated age-matched pairs. However, amplitude and dipole intensity were not significantly different. These results suggest that the latency and dipole location of MEF1 are determined early in life by genetic and early common environmental factors, whereas amplitude and dipole intensity are influenced by long-term environmental factors. Improved understanding of genetic and environmental factors that influence cerebral motor function may contribute to evaluation and improvement for individual motor function.
Collapse
Affiliation(s)
- Toshihiko Araki
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan
| | - Masayuki Hirata
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan ; Department of Neurosurgery, Osaka University Medical School , Suita , Japan
| | - Hisato Sugata
- Department of Neurosurgery, Osaka University Medical School , Suita , Japan
| | - Takufumi Yanagisawa
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan ; Department of Neurosurgery, Osaka University Medical School , Suita , Japan
| | - Mai Onishi
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan
| | - Yoshiyuki Watanabe
- Department of Diagnostic and Interventional Radiology, Osaka University Medical School , Suita , Japan
| | - Kayoko Omura
- Center for Twin Research, Osaka University Medical School , Suita , Japan
| | - Chika Honda
- Center for Twin Research, Osaka University Medical School , Suita , Japan
| | - Kazuo Hayakawa
- Center for Twin Research, Osaka University Medical School , Suita , Japan
| | - Shiro Yorifuji
- Division of Functional Diagnostic Science, Osaka University Medical School , Suita , Japan
| |
Collapse
|
4
|
Cheyne D, Jobst C, Tesan G, Crain S, Johnson B. Movement-related neuromagnetic fields in preschool age children. Hum Brain Mapp 2014; 35:4858-75. [PMID: 24700413 DOI: 10.1002/hbm.22518] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 11/05/2022] Open
Abstract
We examined sensorimotor brain activity associated with voluntary movements in preschool children using a customized pediatric magnetoencephalographic system. A videogame-like task was used to generate self-initiated right or left index finger movements in 17 healthy right-handed subjects (8 females, ages 3.2-4.8 years). We successfully identified spatiotemporal patterns of movement-related brain activity in 15/17 children using beamformer source analysis and surrogate MRI spatial normalization. Readiness fields in the contralateral sensorimotor cortex began ∼0.5 s prior to movement onset (motor field, MF), followed by transient movement-evoked fields (MEFs), similar to that observed during self-paced movements in adults, but slightly delayed and with inverted source polarities. We also observed modulation of mu (8-12 Hz) and beta (15-30 Hz) oscillations in sensorimotor cortex with movement, but with different timing and a stronger frequency band coupling compared to that observed in adults. Adult-like high-frequency (70-80 Hz) gamma bursts were detected at movement onset. All children showed activation of the right superior temporal gyrus that was independent of the side of movement, a response that has not been reported in adults. These results provide new insights into the development of movement-related brain function, for an age group in which no previous data exist. The results show that children under 5 years of age have markedly different patterns of movement-related brain activity in comparison to older children and adults, and indicate that significant maturational changes occur in the sensorimotor system between the preschool years and later childhood.
Collapse
Affiliation(s)
- Douglas Cheyne
- Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, M5G1X8, Canada
| | | | | | | | | |
Collapse
|
5
|
Suzuki M, Wasaka T, Inui K, Kakigi R. Reappraisal of field dynamics of motor cortex during self-paced finger movements. Brain Behav 2013; 3:747-62. [PMID: 24363977 PMCID: PMC3868179 DOI: 10.1002/brb3.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/13/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The exact origin of neuronal responses in the human sensorimotor cortex subserving the generation of voluntary movements remains unclear, despite the presence of characteristic but robust waveforms in the records of electroencephalography or magnetoencephalography (MEG). AIMS To clarify this fundamental and important problem, we analyzed MEG in more detail using a multidipole model during pulsatile extension of the index finger, and made some important new findings. RESULTS Movement-related cerebral fields (MRCFs) were confirmed over the sensorimotor region contralateral to the movement, consisting of a temporal succession of the first premovement component termed motor field, followed by two or three postmovement components termed movement evoked fields. A source analysis was applied to separately model each of these field components. Equivalent current diploes of all components of MRCFs were estimated to be located in the same precentral motor region, and did not differ with respect to their locations and orientations. The somatosensory evoked fields following median nerve stimulation were used to validate these findings through comparisons of the location and orientation of composite sources with those specified in MRCFs. The sources for the earliest components were evoked in Brodmann's area 3b located lateral to the sources of MRCFs, and those for subsequent components in area 5 and the secondary somatosensory area were located posterior to and inferior to the sources of MRCFs, respectively. Another component peaking at a comparable latency with the area 3b source was identified in the precentral motor region where all sources of MRCFs were located. CONCLUSION These results suggest that the MRCF waveform reflects a series of responses originating in the precentral motor area.
Collapse
Affiliation(s)
- Masataka Suzuki
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan ; Department of Psychology, Kinjo Gakuin University Omori 2-1723 Moriyama, Nagoya, 463-8521, Japan
| | - Toshiaki Wasaka
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan
| | - Koji Inui
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences Okazaki, 444-8585, Japan
| |
Collapse
|
6
|
Sugawara K, Onishi H, Yamashiro K, Kirimoto H, Tsubaki A, Suzuki M, Tamaki H, Murakami H, Kameyama S. Activation of the Human Premotor Cortex During Motor Preparation in Visuomotor Tasks. Brain Topogr 2013; 26:581-90. [DOI: 10.1007/s10548-013-0299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
7
|
Sugawara K, Onishi H, Yamashiro K, Soma T, Oyama M, Kirimoto H, Tamaki H, Murakami H, Kameyama S. Repeated practice of a Go/NoGo visuomotor task induces neuroplastic change in the human posterior parietal cortex: an MEG study. Exp Brain Res 2013; 226:495-502. [PMID: 23455731 DOI: 10.1007/s00221-013-3461-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
The posterior parietal cortex (PPC) is strongly related to task performance by evaluating sensory cues and visually guided movements. Sensorimotor processing is improved by task repetition as indicated by reduced response time. We investigated practice-induced changes in PPC visuomotor processing during a Go/NoGo task in humans using 306-channel magnetoencephalography. Eleven healthy adult males were instructed to extend the right index finger when presented with the Go stimulus (a red circle), but not to react to the NoGo stimulus (a green circle or a red square). Magnetic fields over the visual, posterior parietal, and sensorimotor cortices were measured before and after 3 days of task practice. The first peak of the visual-evoked field (VEF) occurred at approximately 80 ms after presentation of either the Go or NoGo stimulus, while a PPC response, with latency to a peak of 175.8 ± 26.7 ms, occurred only after the Go stimulus. No significant change in the first peak of VEF was measured after 3 days of task practice, but there was a significant reduction in the latency to peak PPC activity (160.1 ± 27.6 ms) and in the time from peak PPC activity to electromyogram onset. In all participants, practice resulted in a significant reduction in reaction time. These results demonstrate that practicing a sensorimotor task induces neuroplastic changes in PPC that accelerate sensorimotor processing and reduce motor response times.
Collapse
Affiliation(s)
- Kazuhiro Sugawara
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City 9503198, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Onishi H, Sugawara K, Yamashiro K, Sato D, Suzuki M, Kirimoto H, Tamaki H, Murakami H, Kameyama S. Neuromagnetic activation following active and passive finger movements. Brain Behav 2013; 3:178-92. [PMID: 23531918 PMCID: PMC3607158 DOI: 10.1002/brb3.126] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/31/2012] [Accepted: 01/15/2013] [Indexed: 11/10/2022] Open
Abstract
The detailed time courses of cortical activities and source localizations following passive finger movement were studied using whole-head magnetoencephalography (MEG). We recorded motor-related cortical magnetic fields following voluntary movement and somatosensory-evoked magnetic fields following passive movement (PM) in 13 volunteers. The most prominent movement-evoked magnetic field (MEF1) following active movement was obtained approximately 35.3 ± 8.4 msec after movement onset, and the equivalent current dipole (ECD) was estimated to be in the primary motor cortex (Brodmann area 4). Two peaks of MEG response associated with PM were recorded from 30 to 100 msec after movement onset. The earliest component (PM1) peaked at 36.2 ± 8.2 msec, and the second component (PM2) peaked at 86.1 ± 12.1 msec after movement onset. The peak latency and ECD localization of PM1, estimated to be in area 4, were the same as those of the most prominent MEF following active movement. ECDs of PM2 were estimated to be not only in area 4 but also in the supplementary motor area (SMA) and the posterior parietal cortex (PPC) over the hemisphere contralateral to the movement, and in the secondary somatosensory cortex (S2) of both hemispheres. The peak latency of each source activity was obtained at 54-109 msec in SMA, 64-114 msec in PPC, and 84-184 msec in the S2. Our results suggest that the magnetic waveforms at middle latency (50-100 msec) after PM are different from those after active movement and that these waveforms are generated by the activities of several cortical areas, that is, area 4 and SMA, PPC, and S2. In this study, the time courses of the activities in SMA, PPC, and S2 accompanying PM in humans were successfully recorded using MEG with a multiple dipole analysis system.
Collapse
Affiliation(s)
- Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Increased occlusal vertical dimension induces cortical plasticity in the rat face primary motor cortex. Behav Brain Res 2011; 228:254-60. [PMID: 22123413 DOI: 10.1016/j.bbr.2011.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/23/2022]
Abstract
Previous studies have demonstrated that functional plasticity in the primary motor cortex (M1) is related to motor-skill learning and changes in the environment. Increased occlusal vertical dimension (iOVD) may modulate mastication, such as in the masticatory cycle, and the firing properties of jaw-muscle spindles. However, little is known about the changes in motor representation within the face primary motor cortex (face-M1) after iOVD. The purpose of the present study was to determine the effect of iOVD on the face-M1 using intracortical microstimulation (ICMS). In an iOVD group, the maxillary molars were built-up by 2mm with acrylic. The electromyographic (EMG) activities from the left (LAD) and right (RAD) anterior digastric (AD), masseter and genioglossus (GG) muscles elicited by ICMS within the right face-M1 were recorded 1, 2 and 8 weeks after iOVD. IOVD was associated with a significant increase in the number of sites within the face-M1 from which ICMS evoked LAD and/or GG EMG activities, as well as a lateral shift in the center of gravity of the RAD and LAD muscles at 1 and 2 weeks, but not at 8 weeks. These findings suggest that a time-dependent neuroplastic change within the rat face-M1 occurs in association with iOVD. This may be related to the animal's ability to adapt to a change in the oral environment.
Collapse
|
10
|
Onishi H, Oyama M, Soma T, Kirimoto H, Sugawara K, Murakami H, Kameyama S. Muscle-afferent projection to the sensorimotor cortex after voluntary movement and motor-point stimulation: An MEG study. Clin Neurophysiol 2011; 122:605-610. [DOI: 10.1016/j.clinph.2010.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/17/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
|
11
|
A magnetoencephalographic study of sensorimotor activity differences during unilateral and bilateral forearm movements. Int J Rehabil Res 2010; 33:254-60. [DOI: 10.1097/mrr.0b013e328333de7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Darvas F, Scherer R, Ojemann JG, Rao RP, Miller KJ, Sorensen LB. High gamma mapping using EEG. Neuroimage 2009; 49:930-8. [PMID: 19715762 DOI: 10.1016/j.neuroimage.2009.08.041] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/30/2009] [Accepted: 08/18/2009] [Indexed: 11/25/2022] Open
Abstract
High gamma (HG) power changes during motor activity, especially at frequencies above 70 Hz, play an important role in functional cortical mapping and as control signals for BCI (brain-computer interface) applications. Most studies of HG activity have used ECoG (electrocorticography) which provides high-quality spatially localized signals, but is an invasive method. Recent studies have shown that non-invasive modalities such as EEG and MEG can also detect task-related HG power changes. We show here that a 27 channel EEG (electroencephalography) montage provides high-quality spatially localized signals non-invasively for HG frequencies ranging from 83 to 101 Hz. We used a generic head model, a weighted minimum norm least squares (MNLS) inverse method, and a self-paced finger movement paradigm. The use of an inverse method enables us to map the EEG onto a generic cortex model. We find the HG activity during the task to be well localized in the contralateral motor area. We find HG power increases prior to finger movement, with average latencies of 462 ms and 82 ms before EMG (electromyogram) onset. We also find significant phase-locking between contra- and ipsilateral motor areas over a similar HG frequency range; here the synchronization onset precedes the EMG by 400 ms. We also compare our results to ECoG data from a similar paradigm and find EEG mapping and ECoG in good agreement. Our findings demonstrate that mapped EEG provides information on two important parameters for functional mapping and BCI which are usually only found in HG of ECoG signals: spatially localized power increases and bihemispheric phase-locking.
Collapse
Affiliation(s)
- F Darvas
- Department of Neurological Surgery, University of Washington, Seattle, WA 98104, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Jouanin JC, Pérès M, Ducorps A, Renault B. A dynamic network involving M1-S1, SII-insular, medial insular, and cingulate cortices controls muscular activity during an isometric contraction reaction time task. Hum Brain Mapp 2009; 30:675-88. [PMID: 18266218 DOI: 10.1002/hbm.20534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Magnetoencephalographic, electromyographic (EMG), work, and reaction time (RT) were recorded from nine subjects during visually triggered intermittent isometric contractions of the middle finger under two conditions: unloaded and loaded (30% of maximal voluntary contraction). The effect of muscle fatigue was studied over three consecutive periods under both conditions. In the loaded condition, the motor evoked field triggered by the EMG onset decreased with fatigue, whereas movement-evoked fields (MEFs) increased (P < 0.01). Fatigue was demonstrated in the loaded condition, since (i) RT increased due to an increase in the electromechanical delay (P < 0.002); (ii) work decreased from Periods 1 to 3 (P < 0.005), while (iii) the myoelectric RMS amplitude of both flexor digitorum superficialis and extensor muscles increased (P < 0.003) and (iv) during Period 3, the spectral deflection of the EMG median frequency of the FDS muscle decreased (P < 0.001). In the unloaded condition and at the beginning of the loaded condition, a parallel network including M1-S1, posterior SII-insular, and posterior cingulate cortices accounted for the MEF activities. However, under the effect of fatigue, medial insular and posterior cingulate cortices drove this network. Moreover, changes in the location of insular and M1-S1 activations were significantly correlated with muscle fatigue (increase of RMS-EMG; P < 0.03 and P < 0.01, respectively). These results demonstrate that a plastic network controls the strength of the motor command as fatigue occurs: sensory information, pain, and exhaustion act through activation of the medial insular and posterior cingulate cortices to decrease the motor command in order to preserve muscle efficiency and integrity.
Collapse
Affiliation(s)
- Jean-Claude Jouanin
- Department of Integrated Physiology, Aerospace Medical Institute of Health, Brétigny-sur-Orge, France.
| | | | | | | |
Collapse
|
14
|
Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging. J Neurosci 2009; 28:13615-20. [PMID: 19074035 DOI: 10.1523/jneurosci.3303-08.2008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dorsal parietal cortex is required for visually guided prehension. Transcranial magnetic stimulation to either the anterior intraparietal sulcus (aIPS) or superior parietal lobule (SPL) disrupts on-line adaptive adjustments of grasp when objects are perturbed. We used high-density electroencephalography during grasping to determine the relative timing of these two areas and to test whether the temporal contribution of each site would change when the task goal was perturbed. During object grasping with the right-hand, two distinct evoked responses were present over the 50-100 and 100-200 ms periods after movement onset. Distributed linear source estimation of these scalp potentials localized left lateralized sources, first in the aIPS and then the SPL. The duration of the response from the aIPS area was longer when there was an object perturbation. Initiation of a corrective movement coincided with activation in SPL. These data support a two-stage process: the integration of target goal and an emerging action plan within aIPS and subsequent on-line adjustments within SPL.
Collapse
|