1
|
Marques TM, van Rumund A, Bruinsma IB, Wessels HJCT, Gloerich J, Esselink RAJ, Bloem BR, Kuiperij HB, Verbeek MM. Cerebrospinal Fluid Galectin-1 Levels Discriminate Patients with Parkinsonism from Controls. Mol Neurobiol 2018; 56:5067-5074. [PMID: 30465235 PMCID: PMC6647396 DOI: 10.1007/s12035-018-1426-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in elderly people. Currently, the diagnosis of PD is based on neurological examination, neuroimaging, and the response to dopaminergic medication. The diagnosis can be challenging, especially at early disease stages, when the symptoms of patients with atypical parkinsonism (APD) may strongly overlap. Therefore, reliable biomarkers that are able to identify patients with PD are much needed. Here, we aimed to identify and validate new biomarkers for PD in cerebrospinal fluid (CSF). We performed a profiling experiment using mass spectrometry (MS) of CSF from ten PD patients and ten matched non-neurological controls. We selected one protein, galectin-1 (Gal-1), which was differentially expressed in PD vs. controls, and quantified its concentrations in CSF by enzyme-linked immunosorbent assay (ELISA) in three new cohorts of 37 PD patients, 21 APD patients, and 44 controls. CSF levels of Gal-1 were lower in PD in both the discovery and validation experiments and discriminated PD from controls with moderate–high accuracy levels (ELISA: area under the curve = 0.7). Similar levels of Gal-1 were found in PD and APD. Gal-1 levels were correlated to age in all groups and correlated in the PD patients to CSF levels of total tau, phosphorylated tau, neurofilament light chain (NFL), and the mini-mental state examination (MMSE) score. We conclude that MS profiling of proteins may be a useful tool to identify novel biomarkers of neurological diseases and that CSF Gal-1 levels may discriminate PD from non-neurological controls.
Collapse
Affiliation(s)
- Tainá M Marques
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Parkinson Center Nijmegen, Nijmegen, The Netherlands
| | - Anouke van Rumund
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Parkinson Center Nijmegen, Nijmegen, The Netherlands
| | - Ilona B Bruinsma
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J C T Wessels
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolein Gloerich
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rianne A J Esselink
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Parkinson Center Nijmegen, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Parkinson Center Nijmegen, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- Parkinson Center Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Bentea E, Verbruggen L, Massie A. The Proteasome Inhibition Model of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2017; 7:31-63. [PMID: 27802243 PMCID: PMC5302045 DOI: 10.3233/jpd-160921] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pathological hallmarks of Parkinson's disease are the progressive loss of nigral dopaminergic neurons and the formation of intracellular inclusion bodies, termed Lewy bodies, in surviving neurons. Accumulation of proteins in large insoluble cytoplasmic aggregates has been proposed to result, partly, from a failure in the function of intracellular protein degradation pathways. Evidence in support for such a hypothesis emerged in the beginning of the years 2000 with studies demonstrating structural and functional deficits in the ubiquitin-proteasome pathway in post-mortem nigral tissue of patients with Parkinson's disease. These fundamental findings have inspired the development of a new generation of animal models based on the use of proteasome inhibitors to disturb protein homeostasis and trigger nigral dopaminergic neurodegeneration. In this review, we provide an updated overview of the current approaches in employing proteasome inhibitors to model Parkinson's disease, with particular emphasis on rodent studies. In addition, the mechanisms underlying proteasome inhibition-induced cell death and the validity criteria (construct, face and predictive validity) of the model will be critically discussed. Due to its distinct, but highly relevant mechanism of inducing neuronal death, the proteasome inhibition model represents a useful addition to the repertoire of toxin-based models of Parkinson's disease that might provide novel clues to unravel the complex pathogenesis of this disorder.
Collapse
Affiliation(s)
| | | | - Ann Massie
- Correspondence to: Dr. Ann Massie, Department of Pharmaceutical Biotechnology and Molecular Biology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium. Tel.: +32 2 477 4502; E-mail:
| |
Collapse
|
3
|
Rabilloud T, Lescuyer P. Proteomics in mechanistic toxicology: History, concepts, achievements, caveats, and potential. Proteomics 2014; 15:1051-74. [DOI: 10.1002/pmic.201400288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/25/2014] [Accepted: 08/25/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals; CNRS UMR; 5249 Grenoble France
- Laboratory of Chemistry and Biology of Metals; Université Grenoble Alpes; Grenoble France
- Laboratory of Chemistry and Biology of Metals; CEA Grenoble; iRTSV/CBM; Grenoble France
| | - Pierre Lescuyer
- Department of Human Protein Sciences; Clinical Proteomics and Chemistry Group; Geneva University; Geneva Switzerland
- Toxicology and Therapeutic Drug Monitoring Laboratory; Department of Genetic and Laboratory Medicine; Geneva University Hospitals; Geneva Switzerland
| |
Collapse
|
4
|
Hu X, Zhang H, Zhang Y, Zhang Y, Bai L, Chen Q, Wu J, Zhang L. Differential protein profile of PC12 cells exposed to proteasomal inhibitor lactacystin. Neurosci Lett 2014; 575:25-30. [PMID: 24858133 DOI: 10.1016/j.neulet.2014.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 04/09/2014] [Accepted: 05/13/2014] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide and recent studies implicate a central role for ubiquitin-proteasome system (UPS) impairment in the etiopathogenesis of PD. To explore the possible role of UPS dysfunction in PD and the proteins involved, PC12 cells were treated with 10μM lactacystin, a 20S proteasome inhibitor, for 24h. Lactacystin induced cell death and α-synuclein-positive inclusions in cytoplasm. Following two-dimensional difference in-gel electrophoresis (2-D DIGE) which was used to separate the cellular proteins, the proteins that were significantly altered were analyzed and identified. Proteomic study identified 6 differentially expressed proteins between lactacystin-treated and control cells in this study. Four proteins (heat shock 70kDa protein 8, 78kDa glucose-regulated protein, serine proteinase inhibitor clade B member 6 and aldehyde reductase) were increased and 2 proteins (peripherin and tyrosine hydroxylase) were decreased following proteasomal inhibition. The results revealed that PC12 cells treated with 10μM lactacystin for 24h could be used as a cellular model of PD. The proteins identified in the present indicate not only the damage of proteasomal inhibition to the cells but also the possible responses of the cells. These data show that proteomic study may provide information relevant to biological basis for PD and potential new treatment targets.
Collapse
Affiliation(s)
- Xinyu Hu
- Department of Neurology, The First Hospital, Jilin University, Changchun 130021, China
| | - Haina Zhang
- Department of Rehabilitation, The Second Hospital, Jilin University, Changchun 130041, China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital, Jilin University, Changchun 130041, China
| | - Ying Zhang
- Department of Neurology, The Second Hospital, Jilin University, Changchun 130041, China
| | - Ling Bai
- Department of Clinical Medicine, Norman Bethune Health Science Center, Jilin University, Changchun 130021, China
| | - Qiuhui Chen
- Department of Neurology, The Second Hospital, Jilin University, Changchun 130041, China
| | - Jiang Wu
- Department of Neurology, The First Hospital, Jilin University, Changchun 130021, China
| | - Lei Zhang
- Department of Pediatrics, The Second Hospital, Jilin University, Changchun 130041, China.
| |
Collapse
|
5
|
Srivastava G, Singh K, Tiwari MN, Singh MP. Proteomics in Parkinson’s disease: current trends, translational snags and future possibilities. Expert Rev Proteomics 2014; 7:127-39. [DOI: 10.1586/epr.09.91] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Gerster S, Kwon T, Ludwig C, Matondo M, Vogel C, Marcotte EM, Aebersold R, Bühlmann P. Statistical approach to protein quantification. Mol Cell Proteomics 2013; 13:666-77. [PMID: 24255132 DOI: 10.1074/mcp.m112.025445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A major goal in proteomics is the comprehensive and accurate description of a proteome. This task includes not only the identification of proteins in a sample, but also the accurate quantification of their abundance. Although mass spectrometry typically provides information on peptide identity and abundance in a sample, it does not directly measure the concentration of the corresponding proteins. Specifically, most mass-spectrometry-based approaches (e.g. shotgun proteomics or selected reaction monitoring) allow one to quantify peptides using chromatographic peak intensities or spectral counting information. Ultimately, based on these measurements, one wants to infer the concentrations of the corresponding proteins. Inferring properties of the proteins based on experimental peptide evidence is often a complex problem because of the ambiguity of peptide assignments and different chemical properties of the peptides that affect the observed concentrations. We present SCAMPI, a novel generic and statistically sound framework for computing protein abundance scores based on quantified peptides. In contrast to most previous approaches, our model explicitly includes information from shared peptides to improve protein quantitation, especially in eukaryotes with many homologous sequences. The model accounts for uncertainty in the input data, leading to statistical prediction intervals for the protein scores. Furthermore, peptides with extreme abundances can be reassessed and classified as either regular data points or actual outliers. We used the proposed model with several datasets and compared its performance to that of other, previously used approaches for protein quantification in bottom-up mass spectrometry.
Collapse
Affiliation(s)
- Sarah Gerster
- Seminar for Statistics, Eidgenössische Technische Hochschule (ETH) Zurich, Rämistrasse 101, 8092 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Synthesis and protective effect of new ligustrazine-benzoic acid derivatives against CoCl2-induced neurotoxicity in differentiated PC12 cells. Molecules 2013; 18:13027-42. [PMID: 24145795 PMCID: PMC6270565 DOI: 10.3390/molecules181013027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/30/2013] [Accepted: 10/09/2013] [Indexed: 11/17/2022] Open
Abstract
A series of novel ligustrazine-benzoic acid derivatives were synthesized and evaluated for their protective effect against cobalt chloride-induced neurotoxicity in differentiated PC12 cells. Combining hematoxylin and eosin staining, we found compound that (3,5,6-trimethylpyrazin-2-yl)methyl 3-methoxy-4-[(3,5,6-trimethylpyrazin-2-yl)methoxy]benzoate (4a) displayed promising protective effect on the proliferation of the injured PC12 cells (EC50 = 4.249 µM). Structure-activity relationships are briefly discussed.
Collapse
|
8
|
Takaku S, Yanagisawa H, Watabe K, Horie H, Kadoya T, Sakumi K, Nakabeppu Y, Poirier F, Sango K. GDNF promotes neurite outgrowth and upregulates galectin-1 through the RET/PI3K signaling in cultured adult rat dorsal root ganglion neurons. Neurochem Int 2013; 62:330-9. [DOI: 10.1016/j.neuint.2013.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/28/2012] [Accepted: 01/08/2013] [Indexed: 01/22/2023]
|
9
|
Uttenweiler-Joseph S, Bouyssié D, Calligaris D, Lutz PG, Monsarrat B, Burlet-Schiltz O. Quantitative proteomic analysis to decipher the differential apoptotic response of bortezomib-treated APL cells before and after retinoic acid differentiation reveals involvement of protein toxicity mechanisms. Proteomics 2012; 13:37-47. [DOI: 10.1002/pmic.201200233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/30/2012] [Accepted: 10/02/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Sandrine Uttenweiler-Joseph
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale); Toulouse France
- Université de Toulouse; UPS; IPBS; Toulouse France
| | - David Bouyssié
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale); Toulouse France
- Université de Toulouse; UPS; IPBS; Toulouse France
| | - David Calligaris
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale); Toulouse France
- Université de Toulouse; UPS; IPBS; Toulouse France
| | - Pierre G. Lutz
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale); Toulouse France
- Université de Toulouse; UPS; IPBS; Toulouse France
| | - Bernard Monsarrat
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale); Toulouse France
- Université de Toulouse; UPS; IPBS; Toulouse France
| | - Odile Burlet-Schiltz
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale); Toulouse France
- Université de Toulouse; UPS; IPBS; Toulouse France
| |
Collapse
|
10
|
Transient elevation of synaptosomal mitoenergetic proteins and Hsp70 early in a rat model of chronic cerebrovascular hypoperfusion. Neurol Sci 2012; 34:471-7. [PMID: 22526757 DOI: 10.1007/s10072-012-1063-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/21/2012] [Indexed: 12/14/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) might account for the cognitive deficits associated with vascular cognitive impairment, but the mechanisms of hypoperfusion insulting to the cognition remain obscure. In the present study, Wistar rats underwent permanent occlusion of bilateral common carotid arteries to induce CCH. 2D-DIGE combined with MALDI-TOF MS was applied to determine the proteins that were differentially expressed in synaptosomes of prefrontal cortex and hippocampus. ATPsynβ, NDUFS1, UQCRC1 and Hsp70 were elevated both in synaptosomes of cortex and hippocampus at week 2 after operation, but subsided to baseline at week 4 except ATPsynβ which was still upregulated in synaptosomes of hippocampus at week 4. IDH3A and PDC-E2 were increased, respectively, in synaptosomes of prefrontal cortex and hippocampus at week 2, and showed no difference when compared to control at week 4. Malate dehydrogenase showed no difference in synaptosomes of prefrontal cortex and hippocampus at week 2, but showed an elevation in synaptosomes of prefrontal cortex at week 4. Our results imply that metabolic reserve and anti-oxidative stress might transiently exist in the early stage of CCH, which probably help cognitive save.
Collapse
|
11
|
Proteomics in Parkinson's disease: An unbiased approach towards peripheral biomarkers and new therapies. J Biotechnol 2011; 156:325-37. [DOI: 10.1016/j.jbiotec.2011.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 06/24/2011] [Accepted: 08/08/2011] [Indexed: 12/27/2022]
|
12
|
Jeon P, Yang S, Jeong H, Kim H. Cannabinoid receptor agonist protects cultured dopaminergic neurons from the death by the proteasomal dysfunction. Anat Cell Biol 2011; 44:135-42. [PMID: 21829757 PMCID: PMC3145842 DOI: 10.5115/acb.2011.44.2.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/16/2011] [Accepted: 06/22/2011] [Indexed: 11/27/2022] Open
Abstract
Cannabinoids have been proposed to possess neuroprotective properties; though their mechanism of action remains contentious, they are posited to prevent neurodegenerative disorders, including Parkinson's disease, the pathogenesis of which has not been established. Recent studies have demonstrated that induction of proteasomal dysfunction in animal models results in a phenotype similar to Parkinson's disease. Here, we investigated the neuroprotective function of a synthetic cannabinoid-receptor agonist (WIN55.212.2) in dopaminergic neuronal death induced by a proteasomal synthase inhibitor (PSI), additionally testing the hypothesis that WIN55.212.2 modulates cytoplasmic accumulation of parkin and α-synuclein, a key feature of proteasomal dysfunction in Parkinson's. WIN55.212.2 protects PC12 cells from PSI-induced cytotoxicity, concomitantly inhibiting PSI-induced polyADP ribose polymerase expression and activation of caspase-3. While PSI induces cytoplasmic accumulation of α-synuclein and parkin, WIN55.212.2 counters these effects. Interestingly, however, while PSI induces the activation and nuclear translocalization of nuclear factor κB, WIN55.212.2 potentiates this effect. These data are suggestive that WIN55.212.2 might confer a neuroprotective benefit in PSI-induced proteasomal dysfunction, and could further protect against neuronal degeneration stemming from cytoplasmic accumulation of α-synuclein and parkin. These results indicate that WIN55.212.2 may be a candidate for treatment of neurodegenerative diseases, including Parkinson's disease.
Collapse
Affiliation(s)
- Posung Jeon
- Department of Physical Medicine and Rehabilitation, Dong-Eui Medical Center, Busan, Korea
| | | | | | | |
Collapse
|
13
|
Li G, Chang M, Jiang H, Xie H, Dong Z, Hu L. Proteomics analysis of methylglyoxal-induced neurotoxic effects in SH-SY5Y cells. Cell Biochem Funct 2010; 29:30-5. [DOI: 10.1002/cbf.1714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 11/13/2010] [Accepted: 11/14/2010] [Indexed: 11/06/2022]
|
14
|
Li X, Zhang Y, Xie P, Piao J, Hu Y, Chang M, Liu T, Hu L. Proteomic characterization of an isolated fraction of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells might offer clues to aggresomes as a cellular defensive response against proteasome inhibition by PSI. BMC Neurosci 2010; 11:95. [PMID: 20704702 PMCID: PMC2928238 DOI: 10.1186/1471-2202-11-95] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 08/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cooperation of constituents of the ubiquitin proteasome system (UPS) with chaperone proteins in degrading proteins mediate a wide range of cellular processes, such as synaptic function and neurotransmission, gene transcription, protein trafficking, mitochondrial function and metabolism, antioxidant defence mechanisms, and apoptotic signal transduction. It is supposed that constituents of the UPS and chaperone proteins are recruited into aggresomes where aberrant and potentially cytotoxic proteins may be sequestered in an inactive form. RESULTS To determinate the proteomic pattern of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells after proteasome inhibition by PSI, we analyzed a fraction of PSI-induced inclusions. A proteomic feature of the isolated fraction was characterized by identification of fifty six proteins including twenty previously reported protein components of Lewy bodies, twenty eight newly identified proteins and eight unknown proteins. These proteins, most of which were recognized as a profile of proteins within cellular processes mediated by the UPS, a profile of constituents of the UPS and a profile of chaperone proteins, are classed into at least nine accepted categories. In addition, prolyl-4-hydroxylase beta polypeptide, an endoplasmic reticulum member of the protein disulfide isomerase family, was validated in the developmental process of PSI-induced inclusions in the cells. CONCLUSIONS It is speculated that proteomic characterization of an isolated fraction of PSI-induced inclusions in PC12 cells might offer clues to appearance of aggresomes serving as a cellular defensive response against proteasome inhibition.
Collapse
Affiliation(s)
- Xing'an Li
- Department of Neurology, The First Affiliated Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Proteomics analysis of MPP+-induced apoptosis in SH-SY5Y cells. Neurol Sci 2010; 32:221-8. [DOI: 10.1007/s10072-010-0340-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 05/22/2010] [Indexed: 01/06/2023]
|
16
|
Bieler S, Meiners S, Stangl V, Pohl T, Stangl K. Comprehensive proteomic and transcriptomic analysis reveals early induction of a protective anti-oxidative stress response by low-dose proteasome inhibition. Proteomics 2009; 9:3257-67. [PMID: 19562799 DOI: 10.1002/pmic.200800927] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Effective inhibition of the proteasome by high doses of proteasome inhibitors induces apoptotic cell death. In contrast, partial proteasome inhibition by low inhibitor doses mediates a protective cellular stress response. The early targets and mediators of these dose-dependent effects of proteasome inhibitors are unknown. Primary human umbilical cord vein endothelial cells were treated with low and high doses of the proteasome inhibitor MG132 for 2 h. In a combined 2-DE and MS approach, we identified more than 20 new targets of proteasome inhibition. These proteins are involved in cell cycle regulation, signaling, cytoskeletal rearrangement, and cellular stress response. Accompanying Affymetrix analysis revealed that these proteins are not regulated on the transcriptional level but are mainly stabilized by proteasome inhibition. The proteasome-dependent accumulation of the anti-oxidative sensor proteins DJ-1, peroxiredoxin-1 and -6 was accompanied by dose-dependent induction of oxidative stress after 2 h of proteasome inhibition and contributed to the differential transcriptional stress response to low- and high-dose proteasome inhibition: Whereas low-dose proteasome inhibition induces a transcriptional profile reminiscent of a physiological stress response that preconditions and protects endothelial cells from oxidative stress, high inhibitor doses induce massive transcriptional dysregulation and pronounced oxidative stress triggering apoptosis.
Collapse
Affiliation(s)
- Sven Bieler
- Medizinische Klinik mit Schwerpunkt Kardiologie und Angiologie, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Santamaría E, Mora MI, Muñoz J, Sánchez-Quiles V, Fernández-Irigoyen J, Prieto J, Corrales FJ. Regulation of stathmin phosphorylation in mouse liver progenitor-29 cells during proteasome inhibition. Proteomics 2009; 9:4495-506. [DOI: 10.1002/pmic.200900110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Miller VM, Kenny RA, Oakley AE, Hall R, Kalaria RN, Allan LM. Dorsal Motor Nucleus of Vagus protein aggregates in Lewy Body Disease with autonomic dysfunction. Brain Res 2009; 1286:165-73. [DOI: 10.1016/j.brainres.2009.05.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 05/20/2009] [Accepted: 05/24/2009] [Indexed: 11/28/2022]
|
19
|
Lopez-Campistrous A, Hao L, Xiang W, Ton D, Semchuk P, Sander J, Ellison MJ, Fernandez-Patron C. Mitochondrial dysfunction in the hypertensive rat brain: respiratory complexes exhibit assembly defects in hypertension. Hypertension 2008; 51:412-9. [PMID: 18172056 DOI: 10.1161/hypertensionaha.107.102285] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The central nervous system plays a critical role in the normal control of arterial blood pressure and in its elevation in virtually all forms of hypertension. Mitochondrial dysfunction has been increasingly associated with the development of hypertension. Therefore, we examined whether mitochondrial dysfunction occurs in the brain in hypertension and characterized it at the molecular scale. Mitochondria from whole brain and brain stem from 12-week-old spontaneously hypertensive rats with elevated blood pressure (190+/-5 mm Hg) were compared against those from age-matched normotensive (134+/-7 mm Hg) Wistar Kyoto rats (n=4 in each group). Global differential analysis using 2D electrophoresis followed by tandem mass spectrometry-based protein identification suggested a downregulation of enzymes involved in cellular energetics in hypertension. Targeted differential analysis of mitochondrial respiratory complexes using the classical blue-native SDS-PAGE/Western method and a complementary combination of sucrose-gradient ultracentrifugation/tandem mass spectrometry revealed previously unknown assembly defects in complexes I, III, IV, and V in hypertension. Interestingly, targeted examination of the brain stem, a regulator of cardiovascular homeostasis and systemic blood pressure, further showed the occurrence of mitochondrial complex I dysfunction, elevated reactive oxygen species production, decreased ATP synthesis, and impaired respiration in hypertension. Our findings suggest that in already-hypertensive spontaneously hypertensive rats, the brain respiratory complexes exhibit previously unknown assembly defects. These defects impair the function of the mitochondrial respiratory chain. This mitochondrial dysfunction localizes to the brain stem and is, therefore, likely to contribute to the development, as well as to pathophysiological complications, of hypertension.
Collapse
Affiliation(s)
- Ana Lopez-Campistrous
- Department of Biochemistry, Institute for Biomolecular Design, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|