1
|
Chen SM, Tang XQ. Homocysteinylation and Sulfhydration in Diseases. Curr Neuropharmacol 2022; 20:1726-1735. [PMID: 34951391 PMCID: PMC9881069 DOI: 10.2174/1570159x20666211223125448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/02/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022] Open
Abstract
Homocysteine (Hcy) is an important intermediate in methionine metabolism and generation of one-carbon units, and its dysfunction is associated with many pathological states. Although Hcy is a non-protein amino acid, many studies have demonstrated protein-related homocysteine metabolism and possible mechanisms underlying homocysteinylation. Homocysteinylated proteins lose their original biological function and have a negative effect on the various disease phenotypes. Hydrogen sulfide (H2S) has been recognized as an important gaseous signaling molecule with mounting physiological properties. H2S modifies small molecules and proteins via sulfhydration, which is supposed to be essential in the regulation of biological functions and signal transduction in human health and disorders. This review briefly introduces Hcy and H2S, further discusses pathophysiological consequences of homocysteine modification and sulfhydryl modification, and ultimately makes a prediction that H2S might exert a protective effect on the toxicity of homocysteinylation of target protein via sulfhydration. The highlighted information here yields new insights into the role of protein modification by Hcy and H2S in diseases.
Collapse
Affiliation(s)
- Si-Min Chen
- Emergency Intensive Care Unit, Department of Emergency, Xiangtan Central Hospital, Xiangtan, 411100, Hunan, P.R. China; ,The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China; ,Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Xiao-Qing Tang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China; ,Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China,Address correspondence to this author at the The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China 69 Chuanshan Road, Hengyang 421001, Hunan Province, P.R. China; E-mails: ;
| |
Collapse
|
2
|
G N S HS, Marise VLP, Satish KS, Yergolkar AV, Krishnamurthy M, Ganesan Rajalekshmi S, Radhika K, Burri RR. Untangling huge literature to disinter genetic underpinnings of Alzheimer's Disease: A systematic review and meta-analysis. Ageing Res Rev 2021; 71:101421. [PMID: 34371203 DOI: 10.1016/j.arr.2021.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Drug discovery for Alzheimer's Disease (AD) is channeled towards unravelling key disease specific drug targets/genes to predict promising therapeutic candidates. Though enormous literature on AD genetics is available, there exists dearth in data pertinent to drug targets and crucial pathological pathways intertwined in disease progression. Further, the research findings revealing genetic associations failed to demonstrate consistency across different studies. This scenario prompted us to initiate a systematic review and meta-analysis with an aim of unearthing significant genetic hallmarks of AD. Initially, a Boolean search strategy was developed to retrieve case-control studies from PubMed, Cochrane, ProQuest, Europe PMC, grey literature and HuGE navigator. Subsequently, certain inclusion and exclusion criteria were framed to shortlist the relevant studies. These studies were later critically appraised using New Castle Ottawa Scale and Q-Genie followed by data extraction. Later, meta-analysis was performed only for those Single Nucleotide Polymorphisms (SNPs) which were evaluated in at least two different ethnicities from two different reports. Among, 204,351 studies retrieved, 820 met our eligibility criteria and 117 were processed for systematic review after critical appraisal. Ultimately, meta-analysis was performed for 23 SNPs associated with 15 genes which revealed significant associations of rs3865444 (CD33), rs7561528 (BIN1) and rs1801133 (MTHFR) with AD risk.
Collapse
|
3
|
Shea TB. Improvement of cognitive performance by a nutraceutical formulation: Underlying mechanisms revealed by laboratory studies. Free Radic Biol Med 2021; 174:281-304. [PMID: 34352370 DOI: 10.1016/j.freeradbiomed.2021.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022]
Abstract
Cognitive decline, decrease in neuronal function and neuronal loss that accompany normal aging and dementia are the result of multiple mechanisms, many of which involve oxidative stress. Herein, we review these various mechanisms and identify pharmacological and non-pharmacological approaches, including modification of diet, that may reduce the risk and progression of cognitive decline. The optimal degree of neuronal protection is derived by combinations of, rather than individual, compounds. Compounds that provide antioxidant protection are particularly effective at delaying or improving cognitive performance in the early stages of Mild Cognitive Impairment and Alzheimer's disease. Laboratory studies confirm alleviation of oxidative damage in brain tissue. Lifestyle modifications show a degree of efficacy and may augment pharmacological approaches. Unfortunately, oxidative damage and resultant accumulation of biomarkers of neuronal damage can precede cognitive decline by years to decades. This underscores the importance of optimization of dietary enrichment, antioxidant supplementation and other lifestyle modifications during aging even for individuals who are cognitively intact.
Collapse
Affiliation(s)
- Thomas B Shea
- Laboratory for Neuroscience, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
4
|
Homocysteine Increases Tau Phosphorylation, Truncation and Oligomerization. Int J Mol Sci 2018; 19:ijms19030891. [PMID: 29562600 PMCID: PMC5877752 DOI: 10.3390/ijms19030891] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/01/2018] [Accepted: 03/13/2018] [Indexed: 11/22/2022] Open
Abstract
Increased plasma homocysteinemia is considered a risk factor of dementia, including Alzheimer’s disease (AD) and vascular dementia. However, the reason elevated plasma homocysteinemia increases the risk of dementia remains unknown. A pathological hallmark of AD is neurofibrillary tangles (NFTs) that consist of pathologically phosphorylated tau proteins. The effect of homocysteine (Hcy) on tau aggregation was explored using human neuroblastoma M1C cells that constitutively express human wild-type tau (4R0N) under the control of a tetracycline off system, primary mouse cultured neurons, and by inducing hyperhomocysteinemia in a mouse model of tauopathy (HHCy mice). A wide range of Hcy concentrations (10–1000 µM) increased total tau and phosphorylated tau protein levels. Hcy activated glycogen synthase kinase 3, and cyclin dependent kinase 5, major tau phosphokinases, and inactivated protein phosphatase 2A, a main tau phosphatase. Hcy exhibited cytotoxic effects associated with enhanced activation of caspase. Truncation of tau in the C-terminus, the cleavage site of caspase 3 (i.e., D421, detected by the TauC3 antibody) was also increased. Total tau, phosphorylated tau, as well as C-terminal cleaved tau were increased in the sarkosyl insoluble tau fraction. Hcy also increased the level of tau oligomers, as indicated by the tau oligomer complex 1 (TOC1) antibody that specifically identifies oligomeric tau species, in the tris insoluble, sarkosyl soluble fraction. The levels of TOC1-positive oligomeric tau were increased in brain lysates from HHCy mice, and treating HHCy mice with S-adenosylmethionine, an intermediate of Hcy, reduced the levels of oligomeric tau to control levels. These observations suggest that Hcy increases the levels of phosphorylated tau as well as truncated tau species via caspase 3 activation, and enhanced tau oligomerization and aggregation.
Collapse
|
5
|
Abstract
A high circulating concentration of the non proteinogenic amino acid homocysteine has been implicated as a risk factor for Alzheimer's Disease and its prodromal stage, mild cognitive impairement. Furthermore, hyperhomocysteinaemia has been directly attributed to a deficiency in vitamins B12, folate, and B6. Several studies have demonstrated decrease in progression of mild cognitive impairement to Alzheimer's Disease, and some have even shown an improvement in cognition after vitamin supplements with B12 and folate. Plausible mechanisms linking hyperhomocysteinaemia to Alzheimer's and cognitive impairement have been hypothesized and demonstrated in hyperhomocysteinemic mice models. However, some studies have not elucidated any benefit of vitamin supplements in subjects with cognitive impairment. Hence, multicentric clinical studies need to be conducted to substantiate the mechanisms of neuronal degeneration due to hyperhomocysteinaemia and to demonstrate the beneficial effect of folate, B6 and B12 supplements on cognition.
Collapse
Affiliation(s)
- Seema Bhargava
- 1Department of Biochemistry and Professor, GRIPMER, Sir Ganga Ram Hospital, New Delhi, India
| | - Annsh Bhandari
- 2Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, India
| | | |
Collapse
|
6
|
Abstract
Turns out I have been a major contributor to the Journal of Alzheimer's Disease over its 20-year history. As such, I was invited to provide a review of my work over the years. What follows is a retrospective of how the Alzheimer-related research of a Ph.D. (i.e., not an M.D.) transitioned from basic to clinical, and moved from bench to bedside and back again.I have included some of the more humorous and poignant twists along the way that some older players may find familiar and I hope might inspire some younger players to hang in there.
Collapse
Affiliation(s)
- Thomas B. Shea
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA, USA
| |
Collapse
|
7
|
Robinson N, Grabowski P, Rehman I. Alzheimer's disease pathogenesis: Is there a role for folate? Mech Ageing Dev 2017; 174:86-94. [PMID: 29037490 DOI: 10.1016/j.mad.2017.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications, including changes in DNA methylation, have been implicated in a wide range of diseases including neurological diseases such as Alzheimer's. The role of dietary folate in providing methyl groups required for maintenance and modulation of DNA methylation makes it a nutrient of interest in Alzheimer's. Late onset Alzheimer's disease is the most common form of dementia and at present its aetiology is largely undetermined. From epidemiological studies, the interactions between folate, B-vitamins and homocysteine as well as the long latency period has led to difficulties in interpretation of the data, thus current evidence exploring the role of dietary folate in Alzheimer's is contradictory and unresolved. Therefore, examining the effects at a molecular level and exploring potential epigenetic mechanisms could increase our understanding of the disease and aetiology. The aim of this review is to examine the role that folate could play in Alzheimer's disease neuropathology and will focus on the effects of folate on DNA methylation which link to disease pathology, initiation and progression.
Collapse
Affiliation(s)
- Natassia Robinson
- Institute of Health & Society, University of Newcastle upon Tyne, United Kingdom.
| | - Peter Grabowski
- Human Nutrition Unit, Department of Oncology & Metabolism, University of Sheffield, United Kingdom
| | - Ishtiaq Rehman
- Academic Urology Unit, Department of Oncology and Metabolism, University of Sheffield, United Kingdom
| |
Collapse
|
8
|
Severe Hyperhomocysteinemia Decreases Creatine Kinase Activity and Causes Memory Impairment: Neuroprotective Role of Creatine. Neurotox Res 2017; 32:585-593. [DOI: 10.1007/s12640-017-9767-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 12/26/2022]
|
9
|
da Silva VC, de Oliveira AC, D’Almeida V. Homocysteine and Psychiatric Disorders. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817701471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Vânia D’Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Bhargava S, Bhandari A, Choudhury S. Role of Homocysteine in Cognitive Impairement and Alzheimer's Disease. Indian J Clin Biochem 2017; 33:16-20. [PMID: 29371765 DOI: 10.1007/s12291-017-0646-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 12/27/2022]
Abstract
A high circulating concentration of the non proteinogenic amino acid homocysteine has been implicated as a risk factor for Alzheimer's Disease and its prodromal stage, mild cognitive impairement. Furthermore, hyperhomocysteinaemia has been directly attributed to a deficiency in vitamins B12, folate, and B6. Several studies have demonstrated decrease in progression of mild cognitive impairement to Alzheimer's Disease, and some have even shown an improvement in cognition after vitamin supplements with B12 and folate. Plausible mechanisms linking hyperhomocysteinaemia to Alzheimer's and cognitive impairement have been hypothesized and demonstrated in hyperhomocysteinemic mice models. However, some studies have not elucidated any benefit of vitamin supplements in subjects with cognitive impairment. Hence, multicentric clinical studies need to be conducted to substantiate the mechanisms of neuronal degeneration due to hyperhomocysteinaemia and to demonstrate the beneficial effect of folate, B6 and B12 supplements on cognition.
Collapse
Affiliation(s)
- Seema Bhargava
- 1Department of Biochemistry and Professor, GRIPMER, Sir Ganga Ram Hospital, New Delhi, India
| | - Annsh Bhandari
- 2Department of Biochemistry, Sir Ganga Ram Hospital, New Delhi, India
| | | |
Collapse
|
11
|
Jamroz-Wiśniewska A, Bełtowski J, Bartosik-Psujek H, Wójcicka G, Rejdak K. Processes of plasma protein N-homocysteinylation in multiple sclerosis. Int J Neurosci 2016; 127:709-715. [PMID: 27671515 DOI: 10.1080/00207454.2016.1241782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Homocysteine thiolactone (HTL) is a cyclic thioester of homocysteine (Hcy) contributing to the toxicity of this amino acid. HTL spontaneously reacts with protein lysine residues leading to altered properties of target proteins and induction of immune response. HTL is hydrolyzed to Hcy by plasma enzyme, paraoxonase 1 (PON1). Although both Hcy and PON1 may be involved in the pathogenesis of multiple sclerosis (MS), protein modification by HTL in this disease has not been studied so far. Purpose/Aim: The aim of this study was to assess the level of Hcy, HTL and autoantibodies against N-homocysteinylated proteins as well as PON1 activity in patients with MS. METHODS The studies were performed in 61 MS patients with relapsing-remitting (RR group, n = 25) and secondary-progressive type of MS (SP group, n = 36), and in healthy people (C - control group, n = 44). RESULTS Homocysteine level was significantly higher in MS patients comparing to control group (C vs. RR p < 0.01; C vs. SP p < 0.05). The level of HTL tended to be higher in RR-MS in comparison to control group, but it did not reach the level of significance. The level of antibodies against N-homocysteinylated proteins did not differ significantly between studied groups. PON1 activity was significantly lower in SP type of MS (SP vs. C p < 0.05; SP vs. RR p < 0.05). CONCLUSIONS Although plasma Hcy concentration is higher in MS patients and PON1 activity is reduced in the SP form, MS is associated with minor or no changes in protein-attached HTL and anti-homocysteinylated protein immune response.
Collapse
Affiliation(s)
| | - J Bełtowski
- b Department of Pathophysiology , Lublin Medical University , Lublin , Poland
| | - H Bartosik-Psujek
- c Department of Neurology , University of Rzeszów , Rzeszów , Poland
| | - G Wójcicka
- b Department of Pathophysiology , Lublin Medical University , Lublin , Poland
| | - K Rejdak
- a Department of Neurology , Lublin Medical University , Lublin , Poland
| |
Collapse
|
12
|
Aitken RJ, Flanagan HM, Connaughton H, Whiting S, Hedges A, Baker MA. Involvement of homocysteine, homocysteine thiolactone, and paraoxonase type 1 (
PON
‐1) in the etiology of defective human sperm function. Andrology 2016; 4:345-60. [DOI: 10.1111/andr.12157] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/06/2015] [Accepted: 12/12/2015] [Indexed: 01/01/2023]
Affiliation(s)
- R. J. Aitken
- Priority Research Centre for Reproductive Science Discipline of Biological Sciences Faculty of Science and IT and Hunter Medical Institute University of Newcastle CallaghanNSW Australia
| | - H. M. Flanagan
- Priority Research Centre for Reproductive Science Discipline of Biological Sciences Faculty of Science and IT and Hunter Medical Institute University of Newcastle CallaghanNSW Australia
| | - H. Connaughton
- Priority Research Centre for Reproductive Science Discipline of Biological Sciences Faculty of Science and IT and Hunter Medical Institute University of Newcastle CallaghanNSW Australia
| | - S. Whiting
- Priority Research Centre for Reproductive Science Discipline of Biological Sciences Faculty of Science and IT and Hunter Medical Institute University of Newcastle CallaghanNSW Australia
| | - A. Hedges
- Hunter IVF John Hunter Hospital New Lambton Heights NSW Australia
| | - M. A. Baker
- Priority Research Centre for Reproductive Science Discipline of Biological Sciences Faculty of Science and IT and Hunter Medical Institute University of Newcastle CallaghanNSW Australia
| |
Collapse
|
13
|
Li MH, Tang JP, Zhang P, Li X, Wang CY, Wei HJ, Yang XF, Zou W, Tang XQ. Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats. Behav Brain Res 2014; 262:35-41. [PMID: 24423987 DOI: 10.1016/j.bbr.2014.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 01/02/2014] [Accepted: 01/05/2014] [Indexed: 11/18/2022]
Abstract
Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Hydrogen sulfide (H2S) acts as an endogenous neuromodulator and neuroprotectant. It has been shown that endoplasmic reticulum (ER) stress is involved in the pathological mechanisms of the learning and memory dysfunctions and that H2S exerts its neuroprotective role via suppressing ER stress. In the present work, we explored the effects of intracerebroventricular injection of Hcy on the formation of learning and memory, the generation of endogenous H2S, and the expression of ER stress in the hippocampus of rats. We found that intracerebroventricular injection of Hcy in rats leads to learning and memory dysfunctions in the Morris water maze and novel of object recognition test and decreases in the expression of cystathionine-β-synthase, the major enzyme responsible for endogenous H2S generation, and the generation of endogenous H2S in the hippocampus of rats. We also showed that exposure of Hcy could up-regulate the expressions of glucose-regulated protein 78 (GRP78), CHOP, and cleaved caspase-12, which are the major mark proteins of ER stress, in the hippocampus of rats. Taken together, these results suggest that the disturbance of hippocampal endogenous H2S generation and the increase in ER stress in the hippocampus are related to Hcy-induced defect in learning and memory.
Collapse
Affiliation(s)
- Man-Hong Li
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, PR China; Institute of Neuroscience, Medical College, University of South China, Hengyang, 421001 Hunan, PR China
| | - Ji-Ping Tang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, PR China; Institute of Neuroscience, Medical College, University of South China, Hengyang, 421001 Hunan, PR China
| | - Ping Zhang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, PR China
| | - Xiang Li
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, PR China
| | - Chun-Yan Wang
- Department of Pathophysiology, Medical College, University of South China, Hengyang, 421001 Hunan, PR China
| | - Hai-Jun Wei
- Institute of Neuroscience, Medical College, University of South China, Hengyang, 421001 Hunan, PR China
| | - Xue-Feng Yang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, PR China
| | - Wei Zou
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, PR China.
| | - Xiao-Qing Tang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang, 421001 Hunan, PR China; Institute of Neuroscience, Medical College, University of South China, Hengyang, 421001 Hunan, PR China.
| |
Collapse
|
14
|
Schaub C, Uebachs M, Beck H, Linnebank M. Chronic homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons. Exp Brain Res 2013; 225:527-34. [PMID: 23307157 DOI: 10.1007/s00221-012-3392-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 12/20/2012] [Indexed: 01/22/2023]
Abstract
Homocystinuria is an inborn error of metabolism characterized by plasma homocysteine levels up to 500 μM, premature vascular events and mental retardation. Mild elevations of homocysteine plasma levels up to 25 μM, which are common in the general population, are associated with vascular disease, cognitive impairment and neurodegeneration. Several mechanisms of homocysteine neurotoxicity have been investigated. However, information on putative effects of hyperhomocysteinemia on the electrophysiology of neurons is limited. To screen for such effects, we examined primary cultures of mouse hippocampal neurons with the whole-cell patch-clamp technique. Homocysteine was applied intracellularly (100 μM), or cell cultures were incubated with 100 μM homocysteine for 24 h. Membrane voltage was measured in current-clamp mode, and action potential firing was induced with short and prolonged current injections. Single action potentials induced by short current injections (5 ms) were not altered by acute application or incubation of homocysteine. When we elicited trains of action potentials with prolonged current injections (200 ms), a broadening of action potentials during repetitive firing was observed in control neurons. This spike broadening was unaltered by acute application of homocysteine. However, it was significantly diminished when incubation with homocysteine was extended to 24 h prior to recording. Furthermore, the number of action potentials elicited by low current injections was reduced after long-term incubation with homocysteine, but not by the acute application. After 24 h of homocysteine incubation, the input resistance was reduced which might have contributed to the observed alterations in membrane excitability. We conclude that homocysteine exposure causes changes in the intrinsic electrophysiological properties of cultured hippocampal neurons as a mechanism of neurological symptoms of hyperhomocysteinemia.
Collapse
|
15
|
Lee S, Shea TB. Regulation of tau proteolysis by phosphatases. Brain Res 2012; 1495:30-6. [PMID: 23159717 DOI: 10.1016/j.brainres.2012.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 01/06/2023]
Abstract
One pathological hallmark of Alzheimer's disease is the accumulation of highly phosphorylated tau. Since tau phosphorylation inhibits its proteolysis, we examined the impact of endogenous phosphatase activities on tau proteolysis by homogenization of cultured cells and 3xTg-AD mouse brain followed by incubation with or without phosphatase inhibitors. Incubation without phosphatase inhibitors significantly increased tau immunoreactivity against antibody C3 (which reacts with tau truncated at D421), and increased the generation of tau breakdown products. These changes were augmented by lithium treatment and inhibited by constitutively active GSK3β. These findings underscore that tau proteolysis is regulated by a balance of kinase and phosphatase activities.
Collapse
Affiliation(s)
- Sangmook Lee
- University of Massachusetts Lowell, Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, One University Avenue, Lowell, MA 01854, USA
| | | |
Collapse
|
16
|
Coppedè F, Tannorella P, Pezzini I, Migheli F, Ricci G, Caldarazzo lenco E, Piaceri I, Polini A, Nacmias B, Monzani F, Sorbi S, Siciliano G, Migliore L. Folate, homocysteine, vitamin B12, and polymorphisms of genes participating in one-carbon metabolism in late-onset Alzheimer's disease patients and healthy controls. Antioxid Redox Signal 2012; 17:195-204. [PMID: 22034983 DOI: 10.1089/ars.2011.4368] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS We screened 378 late-onset Alzheimer's disease (LOAD) patients and 308 matched controls for the presence of the common MTHFR 677C>T, MTRR 66A>G, MTR 2756 A>G, and TYMS 28 bp repeat polymorphisms, searching for association with disease risk and age at onset. Moreover, we searched for correlation between each of the studied polymorphisms and available data on plasma homocysteine (Hcy), serum folate, and vitamin B12 values. RESULTS We observed a significant increased frequency of the MTHFR 677T allele (0.48 vs. 0.42; p=0.019) and of MTHFR 677CT (OR=1.46; 95%CI=1.03-2.06) and TT genotypes (OR=1.62; 95%CI=1.05-2.49) in LOAD subjects with respect to controls. We also observed a significant increased frequency of the MTRR 66G allele (0.49 vs. 0.43; p=0.044) and of the MTRR 66GG genotype (OR=1.57; 95%CI=1.01-2.46) in the LOAD group. Significantly increased mean plasma Hcy levels (22.7±1.7 vs 14.5±1.7 μmol/L; p=0.037) and decreased serum folate values (5.7±0.5 vs. 7.8±0.8 ng/mL; p=0.005) were observed in LOAD subjects with respect to controls, whilst the difference in serum vitamin B12 values did not reach statistical significance. Several interactions between the studied polymorphisms and biochemical biomarkers were observed. None of the studied polymorphisms was associated with disease age at onset. INNOVATION The present study suggests that the MTRR 66G allele might contribute to LOAD risk and confirms an increased frequency of the MTHFR 677T allele in LOAD. CONCLUSION Overall, present results support a contribution for one-carbon metabolism to LOAD pathogenesis.
Collapse
Affiliation(s)
- Fabio Coppedè
- Faculty of Medicine, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Evidence that AKT and GSK‐3β pathway are involved in acute hyperhomocysteinemia. Int J Dev Neurosci 2012; 30:369-74. [DOI: 10.1016/j.ijdevneu.2012.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 02/04/2023] Open
|
18
|
Obeid R, Schlundt J, Umanskaya N, Herrmann W, Herrmann M. Folate is related to phosphorylated neurofilament-H and P-tau (Ser396) in rat brain. J Neurochem 2011; 117:1047-54. [PMID: 21517845 DOI: 10.1111/j.1471-4159.2011.07280.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein phosphatase PP2A dephosphorylates phosphorylated tau (P-tau) and neurofilaments (pNFs). PP2A is S-adenosylmethionine (SAM)-dependent and might thus link methylation with neurodegeneration. Low SAM and increased S-adenosylhomocysteine (SAH) can enhance the risk of dementia. We studied the effect of hyperhomocysteinemia on P-tau (Ser396), pNF-H (heavy chain), and PP2A-activity and level (the C subunit) in rat brain. Wistar rats (total n=55) were fed either on a standard, a homocystine 1.7% or a methionine 2.4%-rich diet for 5 months. P-tau was tested in 21 frontal cortex tissue slices using immuno-fluorescence. Concentrations of pNF-H and the activity and level of PP2A were measured in brain extracts. Concentrations of homocysteine, SAM and SAH strongly increased in plasma of rats on the modified diets. The diets caused lowering of plasma folate and vitamin B12 and a significant increase in P-tau (Ser396) in brain tissues but PP2A activity and level were unchanged. Plasma folate correlated to brain tissue PP2A activity (r=0.28), pNF-H (r=-0.30), and P-tau (Ser396) staining (r=-0.57) all p<0.05. Phosphorylation of brain functional proteins was related to folate. The effect of the diet on P-tau and pNF-H seemed not to be explained by a lower activity or protein level of PP2A. Folate might prove protective against multiple steps in the process of neurodegeneration.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine/Central Laboratory, University Hospital, Saarland University, Homburg, Germany.
| | | | | | | | | |
Collapse
|
19
|
McCampbell A, Wessner K, Marlatt MW, Wolffe C, Toolan D, Podtelezhnikov A, Yeh S, Zhang R, Szczerba P, Tanis KQ, Majercak J, Ray WJ, Savage M. Induction of Alzheimer's-like changes in brain of mice expressing mutant APP fed excess methionine. J Neurochem 2010; 116:82-92. [PMID: 21054384 DOI: 10.1111/j.1471-4159.2010.07087.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elevated plasma homocysteine, a risk factor for Alzheimer's disease, could result from increased production from methionine or by inefficient clearance by folate- and B-vitamin-dependent pathways. Understanding the relative contributions of these processes to pathogenesis is important for therapeutic strategies designed to lower homocysteine. To assess these alternatives, we elevated plasma homocysteine by feeding mutant amyloid precursor protein (APP)-expressing mice diets with either high methionine (HM) or deficient in B-vitamins and folate (B Def). Mutant APP mice fed HM demonstrated increased brain beta amyloid. Interestingly, this increase was not observed in mutant APP mice fed B Def diet, nor was it observed in C57Bl6 or YAC-APP mice fed HM. Furthermore, HM, but not B Def, produced a prolonged increase in brain homocysteine only in mutant APP mice but not wild-type mice. These changes were time-dependent over 10 weeks. Further, by 10 weeks HM increased brain cholesterol and phosphorylated tau in mutant APP mice. Transcriptional profiling experiments revealed robust differences in RNA expression between C57Bl6 and mutant APP mice. The HM diet in C57Bl6 mice transiently induced a transcriptional profile similar to mutant APP cortex, peaking at 2 weeks , following a time course comparable to brain homocysteine changes. Together, these data suggest a link between APP and methionine metabolism.
Collapse
Affiliation(s)
- Alexander McCampbell
- Department of Neurology, Merck Research Laboratory, West Point, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fenech M. Folate, DNA damage and the aging brain. Mech Ageing Dev 2010; 131:236-41. [DOI: 10.1016/j.mad.2010.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 01/05/2010] [Accepted: 02/20/2010] [Indexed: 11/16/2022]
|
21
|
Chan A, Tchantchou F, Rogers EJ, Shea TB. Dietary deficiency increases presenilin expression, gamma-secretase activity, and Abeta levels: potentiation by ApoE genotype and alleviation by S-adenosyl methionine. J Neurochem 2009; 110:831-6. [PMID: 19457069 DOI: 10.1111/j.1471-4159.2009.06177.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Apolipoprotein E4 (ApoE4) is a risk factor for Alzheimer's disease (AD). Whether this risk arises from a deficient function of E4 or the lack of protection provided by E2 or E3 is unclear. Previous studies demonstrate that deprivation of folate and vitamin E, coupled with dietary iron as a pro-oxidant, for 1 month displayed increased presenilin 1 (PS-1) expression, gamma-secretase, and Abeta generation in mice lacking ApoE (ApoE-/- mice). While ApoE-/- mice are a model for ApoE deficiency, they may not reflect the entire range of consequences of E4 expression. We therefore compared herein the impact of the above deficient diet on mice expressing human E2, E3, or E4. As folate deficiency is accompanied by a decrease in the major methyl donor, S-adenosyl methionine (SAM), additional mice received the deficient diet plus SAM. E2 was more protective than murine ApoE or E3 and E4. Surprisingly, PS-1 and gamma-secretase were over-expressed in E3 to the same extent as in E4 even under a complete diet, and were not alleviated by SAM supplementation. Abeta increased only in E4 mice maintained under the complete diet, and was alleviated by SAM supplementation. These findings suggest dietary compromise can potentiate latent risk factors for AD.
Collapse
Affiliation(s)
- Amy Chan
- Department of Biological Sciences and Health and Clinical Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, Massachusets 01854, USA
| | | | | | | |
Collapse
|
22
|
Kuszczyk M, Gordon-Krajcer W, Lazarewicz JW. Homocysteine-induced acute excitotoxicity in cerebellar granule cells in vitro is accompanied by PP2A-mediated dephosphorylation of tau. Neurochem Int 2009; 55:174-80. [DOI: 10.1016/j.neuint.2009.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/27/2009] [Accepted: 02/17/2009] [Indexed: 12/29/2022]
|
23
|
Folate deficiency induces in vitro and mouse brain region-specific downregulation of leucine carboxyl methyltransferase-1 and protein phosphatase 2A B(alpha) subunit expression that correlate with enhanced tau phosphorylation. J Neurosci 2008; 28:11477-87. [PMID: 18987184 DOI: 10.1523/jneurosci.2816-08.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Altered folate homeostasis is associated with many clinical and pathological manifestations in the CNS. Notably, folate-mediated one-carbon metabolism is essential for methyltransferase-dependent cellular methylation reactions. Biogenesis of protein phosphatase 2A (PP2A) holoenzyme containing the regulatory B(alpha) subunit, a major brain tau phosphatase, is controlled by methylation. Here, we show that folate deprivation in neuroblastoma cells induces downregulation of PP2A leucine carboxyl methyltransferase-1 (LCMT-1) expression, resulting in progressive accumulation of newly synthesized demethylated PP2A pools, concomitant loss of B(alpha), and ultimately cell death. These effects are further accentuated by overexpression of PP2A methylesterase (PME-1) but cannot be rescued by PME-1 knockdown. Overexpression of either LCMT-1 or B(alpha) is sufficient to protect cells against the accumulation of demethylated PP2A, increased tau phosphorylation, and cell death induced by folate starvation. Conversely, knockdown of either protein accelerates folate deficiency-evoked cell toxicity. Significantly, mice maintained for 2 months on low-folate or folate-deficient diets have brain-region-specific alterations in metabolites of the methylation pathway. Those are associated with downregulation of LCMT-1, methylated PP2A, and B(alpha) expression and enhanced tau phosphorylation in susceptible brain regions. Our studies provide novel mechanistic insights into the regulation of PP2A methylation and tau. They establish LCMT-1- and B(alpha)-containing PP2A holoenzymes as key mediators of the role of folate in the brain. Our results suggest that counteracting the neuronal loss of LCMT-1 and B(alpha) could be beneficial for all tauopathies and folate-dependent disorders of the CNS.
Collapse
|