1
|
Jaramillo AA, Brown JA, Winder DG. Danger and distress: Parabrachial-extended amygdala circuits. Neuropharmacology 2021; 198:108757. [PMID: 34461068 DOI: 10.1016/j.neuropharm.2021.108757] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
Our understanding of the role of the parabrachial nucleus (PBN) has evolved as technology has advanced, in part due to cell-specific studies and complex behavioral assays. This is reflected in the heterogeneous neuronal populations within the PBN to the extended amygdala (EA) circuits which encompass the bed nucleus of the stria terminalis (BNST) and central amygdala (CeA) circuitry, as they differentially modulate aspects of behavior in response to diverse threat-like contexts necessary for survival. Here we review how the PBN→CeA and PBN→BNST pathways differentially modulate fear-like behavior, innate and conditioned, through unique changes in neurotransmission in response to stress-inducing contexts. Furthermore, we hypothesize how in specific instances the PBN→CeA and PBN→BNST circuits are redundant and in part intertwined with their respective reciprocal projections. By deconstructing the interoceptive and exteroceptive components of affect- and stress related behavioral paradigms, evidence suggests that the PBN→CeA circuit modulates innate response to physical stimuli and fear conditioning. Conversely, the PBN→BNST circuit modulates distress-like stress in unpredictable contexts. Thereby, the PBN provides a pathway for alarming interoceptive and exteroceptive stimuli to be processed and relayed to the EA to induce stress-relevant affect. Additionally, we provide a framework for future studies to detail the cell-type specific intricacies of PBN→EA circuits in mediating behavioral responses to threats, and the relevance of the PBN in drug-use as it relates to threat and negative reinforcement. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- A A Jaramillo
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA
| | - J A Brown
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA
| | - D G Winder
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA; Vanderbilt Kennedy Center, USA; Department of Psychiatry & Behavioral Sciences, USA.
| |
Collapse
|
2
|
Bodnar RJ. Endogenous opioid modulation of food intake and body weight: Implications for opioid influences upon motivation and addiction. Peptides 2019; 116:42-62. [PMID: 31047940 DOI: 10.1016/j.peptides.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
This review is part of a special issue dedicated to Opioid addiction, and examines the influential role of opioid peptides, opioid receptors and opiate drugs in mediating food intake and body weight control in rodents. This review postulates that opioid mediation of food intake was an example of "positive addictive" properties that provide motivational drives to maintain opioid-seeking behavior and that are not subject to the "negative addictive" properties associated with tolerance, dependence and withdrawal. Data demonstrate that opiate and opioid peptide agonists stimulate food intake through homeostatic activation of sensory, metabolic and energy-related In contrast, general, and particularly mu-selective, opioid receptor antagonists typically block these homeostatically-driven ingestive behaviors. Intake of palatable and hedonic food stimuli is inhibited by general, and particularly mu-selective, opioid receptor antagonists. The selectivity of specific opioid agonists to elicit food intake was confirmed through the use of opioid receptor antagonists and molecular knockdown (antisense) techniques incapacitating specific exons of opioid receptor genes. Further extensive evidence demonstrated that homeostatic and hedonic ingestive situations correspondingly altered the levels and expression of opioid peptides and opioid receptors. Opioid mediation of food intake was controlled by a distributed brain network intimately related to both the appetitive-consummatory sites implicated in food intake as well as sites intimately involved in reward and reinforcement. This emergent system appears to sustain the "positive addictive" properties providing motivational drives to maintain opioid-seeking behavior.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, United States; Psychology Doctoral Program and CUNY Neuroscience Collaborative, The Graduate Center of the City University of New York, United States.
| |
Collapse
|
3
|
Bodnar RJ. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin. Peptides 2015; 72:20-33. [PMID: 25843025 DOI: 10.1016/j.peptides.2015.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Functional elucidation of the endogenous opioid system temporally paralleled the creation and growth of the journal, Peptides, under the leadership of its founding editor, Dr. Abba Kastin. He was prescient in publishing annual and uninterrupted reviews on Endogenous Opiates and Behavior that served as a microcosm for the journal under his stewardship. This author published a 2004 review, "Endogenous opioids and feeding behavior: a thirty-year historical perspective", summarizing research in this field between 1974 and 2003. The present review "closes the circle" by reviewing the last 10 years (2004-2014) of research examining the role of endogenous opioids and feeding behavior. The review summarizes effects upon ingestive behavior following administration of opioid receptor agonists, in opioid receptor knockout animals, following administration of general opioid receptor antagonists, following administration of selective mu, delta, kappa and ORL-1 receptor antagonists, and evaluating opioid peptide and opioid receptor changes in different food intake models.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Behavioral and Cognitive Neuroscience Doctoral Program Cluster, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
4
|
Pavan CG, Roncari CF, Barbosa SP, De Paula PM, Colombari DS, De Luca LA, Colombari E, Menani JV. Activation of μ opioid receptors in the LPBN facilitates sodium intake in rats. Behav Brain Res 2015; 288:20-5. [DOI: 10.1016/j.bbr.2015.03.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/03/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
|
5
|
Castro DC, Berridge KC. Advances in the neurobiological bases for food 'liking' versus 'wanting'. Physiol Behav 2014; 136:22-30. [PMID: 24874776 DOI: 10.1016/j.physbeh.2014.05.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/29/2014] [Accepted: 05/19/2014] [Indexed: 02/04/2023]
Abstract
The neural basis of food sensory pleasure has become an increasingly studied topic in neuroscience and psychology. Progress has been aided by the discovery of localized brain subregions called hedonic hotspots in the early 2000s, which are able to causally amplify positive affective reactions to palatable tastes ('liking') in response to particular neurochemical or neurobiological stimulations. Those hedonic mechanisms are at least partly distinct from larger mesocorticolimbic circuitry that generates the incentive motivation to eat ('wanting'). In this review, we aim to describe findings on these brain hedonic hotspots, especially in the nucleus accumbens and ventral pallidum, and discuss their role in generating food pleasure and appetite.
Collapse
Affiliation(s)
- D C Castro
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - K C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Chaijale NN, Aloyo VJ, Simansky KJ. The stereoisomer (+)-naloxone potentiates G-protein coupling and feeding associated with stimulation of mu opioid receptors in the parabrachial nucleus. J Psychopharmacol 2013; 27:302-11. [PMID: 23348755 DOI: 10.1177/0269881112472561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Classically, opioids produce their effects by activating Gi-proteins that inhibit adenylate cyclase activity. Previous studies proposed that mu-opioid receptors can also stimulate adenylate cyclase due to an initial transient coupling to Gs-proteins. Treatment with ultra-low doses of the nonselective opioid antagonist (-)-naloxone or its inactive enantiomer (+)-naloxone blocks this excitatory effect and enhances Gi-coupling. Previously we reported that infusion of the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4, Glycinol5]-Enkephalin (DAMGO) into the mu-opioid receptor expressing lateral parabrachial nucleus increases feeding. Pretreatment with (-)-naloxone blocks this effect. We used this parabrachial circuit as a model to assess cellular actions of ultra-low doses of (-)-naloxone and (+)-naloxone in modifying the effects of DAMGO. Our results showed that an ultra-low concentration of (-)-naloxone (0.001 nM) and several concentrations of (+)-naloxone (0.01-10 nM) enhanced DAMGO-stimulated guanosine-5'-0-(γ-thio)-triphosphate incorporation in parabrachial sections in vitro. Further, we analyzed the relevance of these effects in vivo. In the present study, we show that (+)-naloxone can potentiate DAMGO-induced feeding at doses at which (-)-naloxone was an antagonist. These results implicated (+)-naloxone as a novel tool for studying mu-opioid receptor functions and suggest that (+)-naloxone may have therapeutic value to enhance clinical actions of opiate drugs.
Collapse
Affiliation(s)
- Nayla N Chaijale
- Drexel University College of Medicine, Department of Pharmacology and Physiology, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
7
|
Dietis N, Rowbotham DJ, Lambert DG. Opioid receptor subtypes: fact or artifact? Br J Anaesth 2011; 107:8-18. [PMID: 21613279 DOI: 10.1093/bja/aer115] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is a vast amount of pharmacological evidence favouring the existence of multiple subtypes of opioid receptors. In addition to the primary classification of µ (mu: MOP), δ (delta: DOP), κ (kappa: KOP) receptors, and the nociceptin/orphanin FQ peptide receptor (NOP), various groups have further classified the pharmacological µ into µ(1-3), the δ into δ(1-2)/δ(complexed/non-complexed), and the κ into κ(1-3). From an anaesthetic perspective, the suggestions that µ(1) produced analgesia and µ(2) produced respiratory depression are particularly important. However, subsequent to the formal identification of the primary opioid receptors (MOP/DOP/KOP/NOP) by cloning and the use of this information to produce knockout animals, evidence for these additional subtypes is lacking. Indeed, knockout of a single gene (and hence receptor) results in a loss of all function associated with that receptor. In the case of MOP knockout, analgesia and respiratory depression is lost. This suggests that further sub-classification of the primary types is unwise. So how can the wealth of pharmacological data be reconciled with new molecular information? In addition to some simple misclassification (κ(3) is probably NOP), there are several possibilities which include: (i) alternate splicing of a common gene product, (ii) receptor dimerization, (iii) interaction of a common gene product with other receptors/signalling molecules, or (iv) a combination of (i)-(iii). Assigning variations in ligand activity (pharmacological subtypes) to one or more of these molecular suggestions represents an interesting challenge for future opioid research.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | | | | |
Collapse
|
8
|
Remage-Healey L, Bass AH. Estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal pattern generator. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 196:137-46. [PMID: 20035335 PMCID: PMC2809949 DOI: 10.1007/s00359-009-0500-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 12/12/2022]
Abstract
Estrogens rapidly regulate neuronal activity within seconds-to-minutes, yet it is unclear how estrogens interact with neural circuits to rapidly coordinate behavior. This study examines whether 17-beta-estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal control circuit. Adult plainfin midshipman fish emit vocalizations that mainly differ in duration, and rhythmic activity of a hindbrain–spinal vocal pattern generator (VPG) directly establishes the temporal features of midshipman vocalizations. VPG activity is therefore predictive of natural calls, and ‘fictive calls’ can be elicited by electrical microstimulation of the VPG. Prior studies show that intramuscular estradiol injection rapidly (within 5 min) increases fictive call duration in midshipman. Here, we delivered opioid antagonists near the VPG prior to estradiol injection. Rapid estradiol actions on fictive calling were completely suppressed by the broad-spectrum opioid antagonist naloxone and the mu-opioid antagonist beta-funaltrexamine, but were unaffected by the kappa-opioid antagonist nor-binaltorphimine. Unexpectedly, prior to estradiol administration, all three opioid antagonists caused immediate, transient reductions in fictive call duration. Together, our results indicate that: (1) vocal activity is modulated by opioidergic networks, confirming hypotheses from birds and mammals, and (2) the rapid actions of estradiol on vocal patterning depend on interactions with a mu-opioid modulatory network.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
9
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
10
|
Wu Q, Boyle MP, Palmiter RD. Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 2009; 137:1225-34. [PMID: 19563755 DOI: 10.1016/j.cell.2009.04.022] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 02/09/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Neurons in the arcuate nucleus that produce AgRP, NPY, and GABA (AgRP neurons) promote feeding. Ablation of AgRP neurons in adult mice results in Fos activation in postsynaptic neurons and starvation. Loss of GABA is implicated in starvation because chronic subcutaneous delivery of bretazenil (a GABA(A) receptor partial agonist) suppresses Fos activation and maintains feeding during ablation of AgRP neurons. Moreover, under these conditions, direct delivery of bretazenil into the parabrachial nucleus (PBN), a direct target of AgRP neurons that also relays gustatory and visceral sensory information, is sufficient to maintain feeding. Conversely, inactivation of GABA biosynthesis in the ARC or blockade of GABA(A) receptors in the PBN of mice promote anorexia. We suggest that activation of the PBN by AgRP neuron ablation or gastrointestinal malaise inhibits feeding. Chronic delivery of bretazenil during loss of AgRP neurons provides time to establish compensatory mechanisms that eventually allow mice to eat.
Collapse
Affiliation(s)
- Qi Wu
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
11
|
Denbleyker M, Nicklous DM, Wagner PJ, Ward HG, Simansky KJ. Activating mu-opioid receptors in the lateral parabrachial nucleus increases c-Fos expression in forebrain areas associated with caloric regulation, reward and cognition. Neuroscience 2009; 162:224-33. [PMID: 19422884 DOI: 10.1016/j.neuroscience.2009.04.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/26/2009] [Accepted: 04/29/2009] [Indexed: 11/19/2022]
Abstract
The pontine parabrachial nucleus (PBN) has been implicated in the modulation of ingestion and contains high levels of mu-opioid receptors (MOPRs). In previous work, stimulating MOPRs by infusing the highly selective MOPR agonist [d-Ala2, N-Me-Phe4, Gly5-ol]enkephalin (DAMGO) into the lateral parabrachial region (LPBN) increased food intake. The highly selective MOPR antagonist d-Phe-Cys-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) prevented the hyperphagic action of DAMGO. The present experiments aimed to analyze both the pattern of neural activation and the underlying cellular processes associated with MOPR activation in the LPBN. Male Sprague-Dawley rats received a unilateral microinfusion of a nearly maximal hyperphagic dose of DAMGO into the LPBN. We then determined the level of c-Fos immunoreactivity in regions throughout the brain. MOPR activation in the LPBN increased c-Fos in the LPBN and in the nucleus accumbens, hypothalamic arcuate nucleus, paraventricular nucleus of the thalamus and hippocampus. Pretreatment with CTAP prevented the increase in c-Fos translation in each of these areas. CTAP also prevented the coupling of MOPRs to their G-proteins which was measured by [(35)S] guanosine 5'-O-[gamma-thio]triphosphate ([(35)S]GTPgammaS) autoradiography. Together, these data strongly suggest that increasing the coupling of MOPRs to their G-proteins in the LPBN disinhibits parabrachial neurons which subsequently leads to excitation of neurons in regions associated with caloric regulation, ingestive reward and cognitive processes in feeding.
Collapse
Affiliation(s)
- M Denbleyker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N 15th Street, 19 Floor MS 400, Philadelphia, PA 19102, USA
| | | | | | | | | |
Collapse
|