1
|
Hascher S, Shuster A, Mukamel R, Ossmy O. The power of multivariate approach in identifying EEG correlates of interlimb coupling. Front Hum Neurosci 2023; 17:1256497. [PMID: 37900731 PMCID: PMC10603300 DOI: 10.3389/fnhum.2023.1256497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Interlimb coupling refers to the interaction between movements of one limb and movements of other limbs. Understanding mechanisms underlying this effect is important to real life because it reflects the level of interdependence between the limbs that plays a role in daily activities including tool use, cooking, or playing musical instruments. Interlimb coupling involves multiple brain regions working together, including coordination of neural activity in sensory and motor regions across the two hemispheres. Traditional neuroscience research took a univariate approach to identify neural features that correspond to behavioural coupling measures. Yet, this approach reduces the complexity of the neural activity during interlimb tasks to one value. In this brief research report, we argue that identifying neural correlates of interlimb coupling would benefit from a multivariate approach in which full patterns from multiple sources are used to predict behavioural coupling. We demonstrate the feasibility of this approach in an exploratory EEG study where participants (n = 10) completed 240 trials of a well-established drawing paradigm that involves interlimb coupling. Using artificial neural network (ANN), we show that multivariate representation of the EEG signal significantly captures the interlimb coupling during bimanual drawing whereas univariate analyses failed to identify such correlates. Our findings demonstrate that analysing distributed patterns of multiple EEG channels is more sensitive than single-value techniques in uncovering subtle differences between multiple neural signals. Using such techniques can improve identification of neural correlates of complex motor behaviours.
Collapse
Affiliation(s)
- Sophie Hascher
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Anastasia Shuster
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Roy Mukamel
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ori Ossmy
- Centre for Brain and Cognitive Development, School of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| |
Collapse
|
2
|
Zhang J, Zhu C, Han J. The neural mechanism of non-phase-locked EEG activity in task switching. Neurosci Lett 2023; 792:136957. [PMID: 36347341 DOI: 10.1016/j.neulet.2022.136957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Flexible switching between different tasks is an important cognitive ability for humans and it is often studied using the task-switching paradigm. Although the neural mechanisms of task switching have been extensively explored in previous studies using event-related potentials techniques, the activity and process mechanisms of non-phase-locked electroencephalography (EEG) have rarely been revealed. For this reason, this paper discusses the processing of non-phase-locked EEG oscillations in task switching based on frequency-band delineation. First, the roles of each frequency band in local brain regions were summarized. In particular, during the proactive control process (the cue-stimulus interval), delta, theta, and alpha oscillations played more roles in the switch condition while beta played more roles in repeat task. In the reactive control process (post-target), delta, alpha, and beta are all related to sensorimotor function. Then, utilizing the functional connectivity (FC) method, delta connections in the frontotemporal regions and theta connections located in the parietal-to-occipital sites are involved in the preparatory period before task switching, while alpha connections located in the sensorimotor areas and beta connections located in the frontal-parietal cortex are involved in response inhibition. Finally, cross-frequency coupling (CFC) play an important role in working memory among different band oscillation. The present study shows that in addition to the processing mechanisms specific to each frequency band, there are some shared and interactive neural mechanism in task switching by using different analysis techniques.
Collapse
Affiliation(s)
- Jing Zhang
- Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China
| | - Chengdong Zhu
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Jiahui Han
- Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China.
| |
Collapse
|
3
|
Tisseyre J, Amarantini D, Tallet J. Behavioural and cerebral asymmetries of mirror movements are specific to rhythmic task and related to higher attentional and executive control. Behav Brain Res 2021; 412:113429. [PMID: 34175358 DOI: 10.1016/j.bbr.2021.113429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
Mirror movements (MM) refer to the involuntary movements or contractions occurring in homologous muscles contralateral to the unilateral voluntary movements. This behavioural manifestation increases in elderly. In right-handed adults, some studies report asymmetry in MM production, with greater MM in the right dominant hand during voluntary movements of the left non-dominant hand than the opposite. However, other studies report contradictory results, suggesting that MM asymmetry could depend on the characteristics of the task. The present study investigates the behavioural asymmetry of MM and its associated cerebral correlates during a rhythmic task and a non-rhythmic task using low-force contractions (i.e., 25 % MVC). We determined the quantity and the intensity of MM using electromyography (EMG) and cerebral correlates through electroencephalography (EEG) in right-handed healthy young and middle-aged adults during unimanual rhythmic vs. non-rhythmic tasks. Overall, results revealed (1) behavioural asymmetry of MM specific to the rhythmic task and irrespective of age, (2) cerebral asymmetry of motor activations specific to the rhythmic task and irrespective of age and (3) greater attentional and executive activations in the rhythmic task compared to the non-rhythmic task. In line with our hypotheses, behavioural and cerebral motor asymmetries of MM seem to be specific to the rhythmic task. Results are discussed in terms of cognitive-motor interactions: greater attentional and executive control required in the rhythmic tasks could contribute to the increased occurrence of involuntary movements in both young and middle-aged adults.
Collapse
Affiliation(s)
- Joseph Tisseyre
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
4
|
|
5
|
Torkamani-Azar M, Kanik SD, Ali Ahmed SA, Aydin S, Cetin M. Prediction of Response Time and Vigilance Score in a Sustained Attention Task from Pre-trial Phase Synchrony using Deep Neural Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:676-679. [PMID: 31945988 DOI: 10.1109/embc.2019.8856291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A real-time assessment of sustained attention requires a continuous performance measure ideally obtained objectively and without disrupting the ongoing behavioral patterns. In this work, we investigate whether the phasic functional connectivity patterns from short- and long-range attention networks can predict the tonic performance in a long Sustained Attention to Response Task (SART). Pre-trial phase synchrony indices (PSIs) from individual experiment blocks are used as features for assessment of the proposed average cumulative vigilance score (CVS) and hit response time (HRT). Deep neural networks (DNNs) with the mean-squared-error (MSE) loss function outperformed the ones with mean-absolute-error (MAE) in 4-fold cross-validations. PSI features from the 16-20 Hz beta sub-band obtained the lowest RMSE of 0.043 and highest correlation of 0.806 for predicting the average CVS, and the alpha oscillation PSIs resulted in an RMSE of 51.91 ms and a correlation of 0.903 for predicting the mean HRT. The proposed system can be used for monitoring performance of users susceptible to hypo- or hyper-vigilance and the subsequent system adaptation without implemented eye trackers. To the best of our knowledge, functional connectivity features in general and phase locking values in particular have not been used for regression models of vigilance variations with neural networks.
Collapse
|
6
|
Tisseyre J, Marquet-Doléac J, Barral J, Amarantini D, Tallet J. Lateralized inhibition of symmetric contractions is associated with motor, attentional and executive processes. Behav Brain Res 2019; 361:65-73. [DOI: 10.1016/j.bbr.2018.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
7
|
Heise KF, Monteiro TS, Leunissen I, Mantini D, Swinnen SP. Distinct online and offline effects of alpha and beta transcranial alternating current stimulation (tACS) on continuous bimanual performance and task-set switching. Sci Rep 2019; 9:3144. [PMID: 30816305 PMCID: PMC6395614 DOI: 10.1038/s41598-019-39900-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/31/2019] [Indexed: 11/09/2022] Open
Abstract
In the present study we examined the effect of bihemispheric in-phase synchronization of motor cortical rhythms on complex bimanual coordination. Twenty young healthy volunteers received 10 Hz or 20 Hz tACS in a double-blind crossover design while performing a bimanual task-set switching paradigm. We used a bilateral high-density montage centred over the hand knob representation within the primary motor cortices to apply tACS time-locked to the switching events. Online tACS in either frequency led to faster but more erroneous switching transitions compared to trials without active stimulation. When comparing stimulation frequencies, 10 Hz stimulation resulted in higher error rates and slower switching transitions than 20 Hz stimulation. Furthermore, the stimulation frequencies showed distinct carry-over effects in trials following stimulation trains. Non-stimulated switching transitions were generally faster but continuous performance became more erroneous over time in the 20 Hz condition. We suggest that the behavioural effects of bifocal in-phase tACS are explained by online synchronization of long-range interhemispheric sensorimotor oscillations, which impacts on interhemispheric information flow and the top-down control required for flexible control of complex bimanual actions. Different stimulation frequencies may lead to distinct offline effects, which potentially accumulate over time and therefore need to be taken into account when evaluating subsequent performance.
Collapse
Affiliation(s)
- Kirstin-Friederike Heise
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium. .,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Thiago Santos Monteiro
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Inge Leunissen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Functional Neuroimaging Laboratory, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Mirror Movements are Linked to Executive Control in Healthy and Brain-injured Adults. Neuroscience 2018; 379:246-256. [DOI: 10.1016/j.neuroscience.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022]
|
9
|
Huster RJ, Schneider S, Lavallee CF, Enriquez-Geppert S, Herrmann CS. Filling the void-enriching the feature space of successful stopping. Hum Brain Mapp 2016; 38:1333-1346. [PMID: 27862666 DOI: 10.1002/hbm.23457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023] Open
Abstract
The ability to inhibit behavior is crucial for adaptation in a fast changing environment and is commonly studied with the stop signal task. Current EEG research mainly focuses on the N200 and P300 ERPs and corresponding activity in the theta and delta frequency range, thereby leaving us with a limited understanding of the mechanisms of response inhibition. Here, 15 functional networks were estimated from time-frequency transformed EEG recorded during processing of a visual stop signal task. Cortical sources underlying these functional networks were reconstructed, and a total of 45 features, each representing spectrally and temporally coherent activity, were extracted to train a classifier to differentiate between go and stop trials. A classification accuracy of 85.55% for go and 83.85% for stop trials was achieved. Features capturing fronto-central delta- and theta activity, parieto-occipital alpha, fronto-central as well as right frontal beta activity were highly discriminating between trial-types. However, only a single network, comprising a feature defined by oscillatory activity below 12 Hz, was associated with a generator in the opercular region of the right inferior frontal cortex and showed the expected associations with behavioral inhibition performance. This study pioneers by providing a detailed ranking of neural features regarding their information content for stop and go differentiation at the single-trial level, and may further be the first to identify a scalp EEG marker of the inhibitory control network. This analysis allows for the characterization of the temporal dynamics of response inhibition by matching electrophysiological phenomena to cortical generators and behavioral inhibition performance. Hum Brain Mapp 38:1333-1346, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- René J Huster
- Department of Psychology, University of Oslo, Norway.,Psychology Clinical Neurosciences Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Signe Schneider
- Department of Systems Nseuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University, Oldenburg, Germany.,Research Center Neurosensory Science, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Hong X, Liu Y, Sun J, Tong S. Age-Related Differences in the Modulation of Small-World Brain Networks during a Go/NoGo Task. Front Aging Neurosci 2016; 8:100. [PMID: 27242512 PMCID: PMC4869596 DOI: 10.3389/fnagi.2016.00100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/18/2016] [Indexed: 11/30/2022] Open
Abstract
Although inter-regional phase synchrony of neural oscillations has been proposed as a plausible mechanism for response control, little is known about the possible effects due to normal aging. We recorded multi-channel electroencephalography (EEG) from healthy younger and older adults in a Go/NoGo task, and examined the aging effects on synchronous brain networks with graph theoretical analysis. We found that in both age groups, brain networks in theta, alpha or beta band for either response execution (Go) or response inhibition (NoGo) condition showed prominent small-world property. Furthermore, small-world property of brain networks showed significant differences between different task conditions. Further analyses of node degree suggested that frontal-central theta band phase synchrony was enhanced during response inhibition, whereas during response execution, increased phase synchrony was observed in beta band over central-parietal regions. More interestingly, these task-related modulations on brain networks were well preserved and even more robust in older adults compared with younger adults. Taken together, our findings not only suggest that response control involves synchronous brain networks in functionally-distinct frequency bands, but also indicate an increase in the recruitment of brain network resources due to normal aging.
Collapse
Affiliation(s)
- Xiangfei Hong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of MedicineShanghai, China; School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Yuelu Liu
- Center for Mind and Brain, University of California Davis, CA, USA
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
11
|
Cooper PS, Wong AS, Fulham W, Thienel R, Mansfield E, Michie PT, Karayanidis F. Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. Neuroimage 2015; 108:354-63. [DOI: 10.1016/j.neuroimage.2014.12.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/07/2014] [Accepted: 12/10/2014] [Indexed: 12/01/2022] Open
|
12
|
Understanding bimanual coordination across small time scales from an electrophysiological perspective. Neurosci Biobehav Rev 2014; 47:614-35. [DOI: 10.1016/j.neubiorev.2014.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 01/20/2023]
|
13
|
Huster RJ, Plis SM, Lavallee CF, Calhoun VD, Herrmann CS. Functional and effective connectivity of stopping. Neuroimage 2014; 94:120-128. [DOI: 10.1016/j.neuroimage.2014.02.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 11/26/2022] Open
|
14
|
Hayes DJ, Jupp B, Sawiak SJ, Merlo E, Caprioli D, Dalley JW. Brain γ-aminobutyric acid: a neglected role in impulsivity. Eur J Neurosci 2014; 39:1921-32. [DOI: 10.1111/ejn.12485] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Dave J. Hayes
- Toronto Western Research Institute; Toronto Western Hospital and Division of Neurosurgery; University of Toronto; Toronto ON Canada
- Mind, Brain Imaging and Neuroethics; Institute of Mental Health Research; University of Ottawa; Ottawa ON Canada
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | - Bianca Jupp
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | - Steve J. Sawiak
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Wolfson Brain Imaging Centre; Department of Clinical Neurosciences; Addenbrooke's Hospital; University of Cambridge; Cambridge UK
| | - Emiliano Merlo
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | | | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychiatry; Addenbrooke's Hospital; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| |
Collapse
|
15
|
Anguera JA, Lyman K, Zanto TP, Bollinger J, Gazzaley A. Reconciling the influence of task-set switching and motor inhibition processes on stop signal after-effects. Front Psychol 2013; 4:649. [PMID: 24069010 PMCID: PMC3781352 DOI: 10.3389/fpsyg.2013.00649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/30/2013] [Indexed: 11/13/2022] Open
Abstract
Executive response functions can be affected by preceding events, even if they are no longer associated with the current task at hand. For example, studies utilizing the stop signal task have reported slower response times to “GO” stimuli when the preceding trial involved the presentation of a “STOP” signal. However, the neural mechanisms that underlie this behavioral after-effect are unclear. To address this, behavioral and electroencephalography (EEG) measures were examined in 18 young adults (18–30 years) on “GO” trials following a previously “Successful Inhibition” trial (pSI), a previously “Failed Inhibition” trial (pFI), and a previous “GO” trial (pGO). Like previous research, slower response times were observed during both pSI and pFI trials (i.e., “GO” trials that were preceded by a successful and unsuccessful inhibition trial, respectively) compared to pGO trials (i.e., “GO” trials that were preceded by another “GO” trial). Interestingly, response time slowing was greater during pSI trials compared to pFI trials, suggesting executive control is influenced by both task set switching and persisting motor inhibition processes. Follow-up behavioral analyses indicated that these effects resulted from between-trial control adjustments rather than repetition priming effects. Analyses of inter-electrode coherence (IEC) and inter-trial coherence (ITC) indicated that both pSI and pFI trials showed greater phase synchrony during the inter-trial interval compared to pGO trials. Unlike the IEC findings, differential ITC was present within the beta and alpha frequency bands in line with the observed behavior (pSI > pFI > pGO), suggestive of more consistent phase synchrony involving motor inhibition processes during the ITI at a regional level. These findings suggest that between-trial control adjustments involved with task-set switching and motor inhibition processes influence subsequent performance, providing new insights into the dynamic nature of executive control.
Collapse
Affiliation(s)
- Joaquin A Anguera
- Departments of Neurology, Physiology and Psychiatry, Center for Integrative Neurosciences, University of California San Francisco San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
16
|
Tallet J, Albaret JM, Barral J. Developmental changes in lateralized inhibition of symmetric movements in children with and without Developmental Coordination Disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:2523-2532. [PMID: 23751298 DOI: 10.1016/j.ridd.2013.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
The present study investigates developmental changes in selective inhibition of symmetric movements with a lateralized switching task from bimanual to unimanual tapping in typically developing (TD) children and with Developmental Coordination Disorder (DCD) from 7 to 10 years old. Twelve right-handed TD children and twelve gender-matched children with DCD and probable DCD produce a motor switching task in which they have (1) to synchronize with the beat of an auditory metronome to produce bimanual symmetrical tapping and (2) to selectively inhibit their left finger's tapping while continuing their right finger's tapping and conversely. We assess (1) the development of the capacity to inhibit the stopping finger (number of supplementary taps after the stopping instruction) and (2) the development of the capacity to maintain the continuing finger (changes in the mean tempo and its variability for the continuing finger's tapping) and (3) the evolution of performance through trials. Results indicate that (1) TD children present an age-related increase in the capacity to inhibit and to maintain the left finger's tapping, (2) DCD exhibits persistent difficulties to inhibit the left finger's tapping, and (3) both groups improve their capacity to inhibit the left finger's movements through trials. In conclusion, the lateralized switching task provides a simple and fine tool to reveal differences in selective inhibition of symmetric movements in TD children and children with DCD. More theoretically, the specific improvement in selective inhibition of the left finger suggests a progressive development of inter-hemispheric communication during typical development that is absent or delayed in children with DCD.
Collapse
Affiliation(s)
- Jessica Tallet
- Université de Toulouse, UPS, PRISSMH-LAPMA, Toulouse, France.
| | | | | |
Collapse
|
17
|
Two brakes are better than one: The neural bases of inhibitory control of motor memory traces. Neuroimage 2013; 65:52-8. [DOI: 10.1016/j.neuroimage.2012.09.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 09/18/2012] [Accepted: 09/22/2012] [Indexed: 11/19/2022] Open
|
18
|
Tallet J, Barral J, James C, Hauert CA. Stability-dependent behavioural and electro-cortical reorganizations during intentional switching between bimanual tapping modes. Neurosci Lett 2010; 483:118-22. [PMID: 20678541 DOI: 10.1016/j.neulet.2010.07.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/21/2010] [Accepted: 07/26/2010] [Indexed: 11/16/2022]
Abstract
This study investigated behavioural and electro-cortical reorganizations accompanying intentional switching between two distinct bimanual coordination tapping modes (In-phase and Anti-phase) that differ in stability when produced at the same movement rate. We expected that switching to a less stable tapping mode (In-to-Anti switching) would lead to larger behavioural perturbations and require supplementary neural resources than switching to a more stable tapping mode (Anti-to-In switching). Behavioural results confirmed that the In-to-Anti switching lasted longer than the Anti-to-In switching. A general increase in attention-related neural activity was found at the moment of switching for both conditions. Additionally, two condition-dependent EEG reorganizations were observed. First, a specific increase in cortico-cortical coherence appeared exclusively during the In-to-Anti switching. This result may reflect a strengthening in inter-regional communication in order to engage in the subsequent, less stable, tapping mode. Second, a decrease in motor-related neural activity (increased beta spectral power) was found for the Anti-to-In switching only. The latter effect may reflect the interruption of the previous, less stable, tapping mode. Given that previous results on spontaneous Anti-to-In switching revealing an inverse pattern of EEG reorganization (decreased beta spectral power), present findings give new insight on the stability-dependent neural correlates of intentional motor switching.
Collapse
|