1
|
Koo H, Hwang JY, Jung S, Park H, Bok J, Park JW. Position Specific Alternative Splicing and Gene Expression Profiles Along the Tonotopic Axis of Chick Cochlea. Front Mol Biosci 2021; 8:726976. [PMID: 34568429 PMCID: PMC8456117 DOI: 10.3389/fmolb.2021.726976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative splicing (AS) refers to the production of multiple mRNA isoforms from a single gene due to alternative selection of exons or splice sites during pre-mRNA splicing. It is a primary mechanism of gene regulation in higher eukaryotes and significantly expands the functional complexity of eukaryotic organisms, contributing to animal development and disease. Recent studies have shown that AS also influences functional diversity by affecting the transcriptomic and proteomic profiles in a position-dependent manner in a single organ. The peripheral hearing organ, the cochlea, is organized to detect sounds at different frequencies depending on its location along the longitudinal axis. This unique functional configuration, the tonotopy, is known to be facilitated by differential gene expression along the cochlear duct. We profiled transcriptome-wide gene expression and AS changes that occur within the different positions of chick cochlea. These analyses revealed distinct gene expression profiles and AS, including a splicing program that is unique to tonotopy. Changes in the expression of splicing factors PTBP3, ESRP1, and ESRP2 were demonstrated to contribute to position-specific AS. RNA-binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS at different positions by different RNA-binding proteins. These data, along with gene ontology (GO) analysis, represent a comprehensive analysis of the dynamic regulation of AS at different positions in chick cochlea.
Collapse
Affiliation(s)
- Heiyeun Koo
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, United States
| | - Sungbo Jung
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, United States
| | - Hyeyoung Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Juw Won Park
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, United States
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, United States
| |
Collapse
|
2
|
Klotz L, Wendler O, Frischknecht R, Shigemoto R, Schulze H, Enz R. Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses. FASEB J 2019; 33:13734-13746. [PMID: 31585509 DOI: 10.1096/fj.201901543r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the CNS binding to a variety of glutamate receptors. Metabotropic glutamate receptors (mGluR1 to mGluR8) can act excitatory or inhibitory, depending on associated signal cascades. Expression and localization of inhibitory acting mGluRs at inner hair cells (IHCs) in the cochlea are largely unknown. Here, we analyzed expression of mGluR2, mGluR3, mGluR4, mGluR6, mGluR7, and mGluR8 and investigated their localization with respect to the presynaptic ribbon of IHC synapses. We detected transcripts for mGluR2, mGluR3, and mGluR4 as well as for mGluR7a, mGluR7b, mGluR8a, and mGluR8b splice variants. Using receptor-specific antibodies in cochlear wholemounts, we found expression of mGluR2, mGluR4, and mGluR8b close to presynaptic ribbons. Super resolution and confocal microscopy in combination with 3-dimensional reconstructions indicated a postsynaptic localization of mGluR2 that overlaps with postsynaptic density protein 95 on dendrites of afferent type I spiral ganglion neurons. In contrast, mGluR4 and mGluR8b were expressed at the presynapse close to IHC ribbons. In summary, we localized in detail 3 mGluR types at IHC ribbon synapses, providing a fundament for new therapeutical strategies that could protect the cochlea against noxious stimuli and excitotoxicity.-Klotz, L., Wendler, O., Frischknecht, R., Shigemoto, R., Schulze, H., Enz, R. Localization of group II and III metabotropic glutamate receptors at pre- and postsynaptic sites of inner hair cell ribbon synapses.
Collapse
Affiliation(s)
- Lisa Klotz
- Institute for Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Olaf Wendler
- Division of Phoniatrics and Pediatric Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Holger Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf Enz
- Institute for Biochemistry (Emil-Fischer-Zentrum), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Saifetiarova J, Bhat MA. Ablation of cytoskeletal scaffolding proteins, Band 4.1B and Whirlin, leads to cerebellar purkinje axon pathology and motor dysfunction. J Neurosci Res 2018; 97:313-331. [PMID: 30447021 DOI: 10.1002/jnr.24352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022]
Abstract
The cerebellar cortex receives neural information from other brain regions to allow fine motor coordination and motor learning. The primary output neurons from the cerebellum are the Purkinje neurons that transmit inhibitory responses to deep cerebellar nuclei through their myelinated axons. Altered morphological organization and electrical properties of the Purkinje axons lead to detrimental changes in locomotor activity often leading to cerebellar ataxias. Two cytoskeletal scaffolding proteins Band 4.1B (4.1B) and Whirlin (Whrn) have been previously shown to play independent roles in axonal domain organization and maintenance in myelinated axons in the spinal cord and sciatic nerves. Immunoblot analysis had indicated cerebellar expression for both 4.1B and Whrn; however, their subcellular localization and cerebellum-specific functions have not been characterized. Using 4.1B and Whrn single and double mutant animals, we show that both proteins are expressed in common cellular compartments of the cerebellum and play cooperative roles in preservation of the integrity of Purkinje neuron myelinated axons. We demonstrate that both 4.1B and Whrn are required for the maintenance of axonal ultrastructure and health. Loss of 4.1B and Whrn leads to axonal transport defects manifested by formation of swellings containing cytoskeletal components, membranous organelles, and vesicles. Moreover, ablation of both proteins progressively affects cerebellar function with impairment in locomotor performance detected by altered gait parameters. Together, our data indicate that 4.1B and Whrn are required for maintaining proper axonal cytoskeletal organization and axonal domains, which is necessary for cerebellum-controlled fine motor coordination.
Collapse
Affiliation(s)
- Julia Saifetiarova
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Long School of Medicine, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
4
|
Cheng CL, Molday RS. Interaction of 4.1G and cGMP-gated channels in rod photoreceptor outer segments. J Cell Sci 2013; 126:5725-34. [PMID: 24144699 DOI: 10.1242/jcs.137679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In photoreceptors, the assembly of signaling molecules into macromolecular complexes is important for phototransduction and maintaining the structural integrity of rod outer segments (ROSs). However, the molecular composition and formation of these complexes are poorly understood. Using immunoprecipitation and mass spectrometry, 4.1G was identified as a new interacting partner for the cyclic-nucleotide gated (CNG) channels in ROSs. 4.1G is a widely expressed multifunctional protein that plays a role in the assembly and stability of membrane protein complexes. Multiple splice variants of 4.1G were cloned from bovine retina. A smaller splice variant of 4.1G selectively interacted with CNG channels not associated with peripherin-2-CNG channel complex. A combination of truncation studies and domain-binding assays demonstrated that CNG channels selectively interacted with 4.1G through their FERM and CTD domains. Using immunofluorescence, labeling of 4.1G was seen to be punctate and partially colocalized with CNG channels in the ROS. Our studies indicate that 4.1G interacts with a subset of CNG channels in the ROS and implicate this protein-protein interaction in organizing the spatial arrangement of CNG channels in the plasma membrane of outer segments.
Collapse
Affiliation(s)
- Christiana L Cheng
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
5
|
Green JA, Yang J, Grati M, Kachar B, Bhat MA. Whirlin, a cytoskeletal scaffolding protein, stabilizes the paranodal region and axonal cytoskeleton in myelinated axons. BMC Neurosci 2013; 14:96. [PMID: 24011083 PMCID: PMC3844453 DOI: 10.1186/1471-2202-14-96] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022] Open
Abstract
Background Myelinated axons are organized into distinct subcellular and molecular regions. Without proper organization, electrical nerve conduction is delayed, resulting in detrimental physiological outcomes. One such region is the paranode where axo-glial septate junctions act as a molecular fence to separate the sodium (Na+) channel-enriched node from the potassium (K+) channel-enriched juxtaparanode. A significant lack of knowledge remains as to cytoskeletal proteins which stabilize paranodal domains and underlying cytoskeleton. Whirlin (Whrn) is a PDZ domain-containing cytoskeletal scaffold whose absence in humans results in Usher Syndromes or variable deafness-blindness syndromes. Mutant Whirlin (Whrn) mouse model studies have linked such behavioral deficits to improper localization of critical transmembrane protein complexes in the ear and eye. Until now, no reports exist about the function of Whrn in myelinated axons. Results RT-PCR and immunoblot analyses revealed expression of Whrn mRNA and Whrn full-length protein, respectively, in several stages of central and peripheral nervous system development. Comparing wild-type mice to Whrn knockout (Whrn−/−) mice, we observed no significant differences in the expression of standard axonal domain markers by immunoblot analysis but observed and quantified a novel paranodal compaction phenotype in 4 to 8 week-old Whrn−/− nerves. The paranodal compaction phenotype and associated cytoskeletal disruption was observed in Whrn−/− mutant sciatic nerves and spinal cord fibers from early (2 week-old) to late (1 year-old) stages of development. Light and electron microscopic analyses of Whrn knockout mice reveal bead-like swellings in cerebellar Purkinje axons containing mitochondria and vesicles by both. These data suggest that Whrn plays a role in proper cytoskeletal organization in myelinated axons. Conclusions Domain organization in myelinated axons remains a complex developmental process. Here we demonstrate that loss of Whrn disrupts proper axonal domain organization. Whrn likely contributes to the stabilization of paranodal myelin loops and axonal cytoskeleton through yet unconfirmed cytoskeletal proteins. Paranodal abnormalities are consistently observed throughout development (2 wk-1 yr) and similar between central and peripheral nervous systems. In conclusion, our observations suggest that Whrn is not required for the organization of axonal domains, but once organized, Whrn acts as a cytoskeletal linker to ensure proper paranodal compaction and stabilization of the axonal cytoskeleton in myelinated axons.
Collapse
Affiliation(s)
- James A Green
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
6
|
Kikkawa Y, Seki Y, Okumura K, Ohshiba Y, Miyasaka Y, Suzuki S, Ozaki M, Matsuoka K, Noguchi Y, Yonekawa H. Advantages of a mouse model for human hearing impairment. Exp Anim 2012; 61:85-98. [PMID: 22531723 DOI: 10.1538/expanim.61.85] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Hearing is a major factor in human quality of life. Mouse models are important tools for discovering the genes that are responsible for genetic hearing loss, and these models often allow the processes that regulate the onset of deafness in humans to be analyzed. Thus far, in the study of hearing and deafness, at least 400 mutants with hearing impairments have been identified in laboratory mouse populations. Analysis of through a combination of genetic, morphological, and physiological studies is revealing valuable insights into the ontogenesis, morphogenesis, and function of the mammalian ear. This review discusses the advantages of the mouse models of human hearing impairment and highlights the identification of the molecules required for stereocilia development in the inner ear hair cells by analysis of various mouse mutants.
Collapse
Affiliation(s)
- Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jung Y, McCarty JH. Band 4.1 proteins regulate integrin-dependent cell spreading. Biochem Biophys Res Commun 2012; 426:578-84. [PMID: 22982319 DOI: 10.1016/j.bbrc.2012.08.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 08/25/2012] [Indexed: 11/30/2022]
Abstract
Integrins link the extracellular matrix (ECM) to the cytoskeleton to control cell behaviors including adhesion, spreading and migration. Band 4.1 proteins contain 4.1, ezrin, radixin, moesin (FERM) domains that likely mediate signaling events and cytoskeletal reorganization via integrins. However, the mechanisms by which Band 4.1 proteins and integrins are functionally interconnected remain enigmatic. Here we have investigated roles for Band 4.1 proteins in integrin-mediated cell spreading using primary astrocytes as a model system. We demonstrate that Proteins 4.1B and 4.1G show dynamic patterns of sub-cellular localization in astrocytes spreading on fibronectin. During early stages of cell spreading Proteins 4.1B and 4.1G are enriched in ECM adhesion sites but become more diffusely localized at later stages of spreading. Combinatorial inactivation of Protein 4.1B and 4.1G expression leads to impaired astrocyte spreading. Furthermore, in exogenous expression systems we show that the isolated Protein 4.1 FERM domain significantly enhances integrin-mediated cell spreading. Protein 4.1B is dispensable for reactive astrogliosis in experimental models of cortical injury, likely due to functional compensation by related Protein 4.1 family members. Collectively, these findings reveal that Band 4.1 proteins are important intracellular components for integrin-mediated cell spreading.
Collapse
Affiliation(s)
- Youngsin Jung
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston TX 77030, United States
| | | |
Collapse
|
8
|
Wada K, Maeda YY, Watanabe K, Oshio T, Ueda T, Takahashi G, Yokohama M, Saito J, Seki Y, Takahama S, Ishii R, Shitara H, Taya C, Yonekawa H, Kikkawa Y. A deletion in a cis element of Foxe3 causes cataracts and microphthalmia in rct mice. Mamm Genome 2011; 22:693-702. [PMID: 22002806 DOI: 10.1007/s00335-011-9358-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/23/2011] [Indexed: 01/25/2023]
Abstract
The Rinshoken cataract (rct) mutation, which causes congenital cataracts, is a recessive mutation found in SJL/J mice. All mutants present with opacity in the lens by 2 months of age. The rct locus was mapped to a 1.6-Mb region in Chr 4 that contains the Foxe3 gene. This gene is responsible for cataracts in humans and mice, and it plays a crucial role in the development of the lens. Furthermore, mutation of Foxe3 causes various ocular defects. We sequenced the genomic region of Foxe3, including the coding exons and UTRs; however, no mutations were discovered in these regions. Because there were no differences in Foxe3 sequences between the rct/rct and wild-type mice, we inferred that a mutation was located in the regulatory regions of the Foxe3 gene. To test this possibility, we sequenced a 5' noncoding region that is highly conserved among vertebrates and is predicted to be the major enhancer of Foxe3. This analysis revealed a deletion of 22-bp located approximately 3.2-kb upstream of the start codon of Foxe3 in rct mice. Moreover, we demonstrated by RT-PCR and in situ hybridization that the rct mutant has reduced expression of Foxe3 in the lens during development. We therefore suggest that cataracts in rct mice are caused by reduced Foxe3 expression in the lens and that this decreased expression is a result of a deletion in a cis-acting regulatory element.
Collapse
Affiliation(s)
- Kenta Wada
- Department of Bioproduction, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Quintana AM, Liu F, O'Rourke JP, Ness SA. Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer 2011; 11:30. [PMID: 21205319 PMCID: PMC3038977 DOI: 10.1186/1471-2407-11-30] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/25/2011] [Indexed: 12/18/2022] Open
Abstract
Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer cells.
Collapse
Affiliation(s)
- Anita M Quintana
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | | | | | |
Collapse
|
10
|
Matsushima Y, Kikkawa Y, Takada T, Matsuoka K, Seki Y, Yoshida H, Minegishi Y, Karasuyama H, Yonekawa H. An atopic dermatitis-like skin disease with hyper-IgE-emia develops in mice carrying a spontaneous recessive point mutation in the Traf3ip2 (Act1/CIKS) gene. THE JOURNAL OF IMMUNOLOGY 2010; 185:2340-9. [PMID: 20660351 DOI: 10.4049/jimmunol.0900694] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Spontaneous mutant mice that showed high levels of serum IgE and an atopic dermatitis (AD)-like skin disease were found in a colony of the KOR inbred strain that was derived from Japanese wild mice. No segregation was observed between hyper-IgE-emia and dermatitis in (BALB/c x KOR mutant) N(2) mice, suggesting that the mutation can be attributed to a single recessive locus, which we designated adjm (atopic dermatitis from Japanese mice). All four adjm congenic strains in different genetic backgrounds showed both hyper-IgE-emia and dermatitis, although the disease severity varied among strains. Linkage analysis using (BALB/c x KOR-adjm/adjm) N(2) mice restricted the potential adjm locus to the 940 kb between D10Stm216 and D10Stm238 on chromosome 10. Sequence analysis of genes located in this region revealed that the gene AI429613, which encodes the mouse homologue of the human TNFR-associated factor 3-interacting protein 2 (TRAF3IP2) protein (formerly known as NF-kappaB activator 1/connection to IkappaB kinase and stress-activated protein kinase/Jun kinase), carried a single point mutation leading to the substitution of a stop codon for glutamine at amino acid position 214. TRAF3IP2 has been shown to function as an adaptor protein in signaling pathways mediated by the TNFR superfamily members CD40 and B cell-activating factor in epithelial cells and B cells as well as in the IL-17-mediated signaling pathway. Our results suggest that malfunction of the TRAF3IP2 protein causes hyper-IgE-emia through the CD40- and B cell-activating factor-mediated pathway in B cells and causes skin inflammation through the IL-17-mediated pathway. This study demonstrates that the TRAF3IP2 protein plays an important role in AD and suggests the protein as a therapeutic target to treat AD.
Collapse
|