1
|
Malacrida S, De Lazzari F, Mrakic-Sposta S, Vezzoli A, Zordan MA, Bisaglia M, Menti GM, Meda N, Frighetto G, Bosco G, Dal Cappello T, Strapazzon G, Reggiani C, Gussoni M, Megighian A. Lifespan and ROS levels in different Drosophila melanogaster strains after 24 h hypoxia exposure. Biol Open 2022; 11:275522. [PMID: 35616023 PMCID: PMC9253781 DOI: 10.1242/bio.059386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
During recent decades, model organisms such as Drosophila melanogaster have made it possible to study the effects of different environmental oxygen conditions on lifespan and oxidative stress. However, many studies have often yielded controversial results usually assigned to variations in Drosophila genetic background and differences in study design. In this study, we compared longevity and ROS levels in young, unmated males of three laboratory wild-type lines (Canton-S, Oregon-R and Berlin-K) and one mutant line (Sod1n1) as a positive control of redox imbalance, under both normoxic and hypoxic (2% oxygen for 24 h) conditions. Lifespan was used to detect the effects of hypoxic treatment and differences were analysed by means of Kaplan–Meier survival curves and log-rank tests. Electron paramagnetic resonance spectroscopy was used to measure ROS levels and analysis of variance was used to estimate the effects of hypoxic treatment and to assess ROS differences between strains. We observed that the genetic background is a relevant factor involved in D. melanogaster longevity and ROS levels. Indeed, as expected, in normoxia Sod1n1 are the shortest-lived, while the wild-type strains, despite a longer lifespan, show some differences, with the Canton-S line displaying the lowest mortality rate. After hypoxic stress these variances are amplified, with Berlin-K flies showing the highest mortality rate and most evident reduction of lifespan. Moreover, our analysis highlighted differential effects of hypoxia on redox balance/unbalance. Canton-S flies had the lowest increase of ROS level compared to all the other strains, confirming it to be the less sensitive to hypoxic stress. Sod1n1 flies displayed the highest ROS levels in normoxia and after hypoxia. These results should be used to further standardize future Drosophila research models designed to investigate genes and pathways that may be involved in lifespan and/or ROS, as well as comparative studies on specific mutant strains. Summary: In our study Drosophila melanogaster was used to evaluate the effects of different environmental oxygen conditions on survival and ROS levels in three wild-type and one mutant strain.
Collapse
Affiliation(s)
- Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Federica De Lazzari
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.,Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Mauro A Zordan
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Marco Bisaglia
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Giulio Maria Menti
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Nicola Meda
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Giovanni Frighetto
- Department of Integrative Biology and Physiology, University of California, 610 Charles Young Drive East, Los Angeles, CA 90095-7239, USA
| | - Gerardo Bosco
- Department of Biomedical Science, University of Padova, Via Marzolo 3, 35121 Padova, Italy
| | - Tomas Dal Cappello
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, Via Marzolo 3, 35121 Padova, Italy
| | - Maristella Gussoni
- Institute of Chemical Sciences and Technologies "G. Natta"-SCITEC, National Research Council, CNR-SCITEC, Via A. Corti 12, 20133 Milan, Italy
| | - Aram Megighian
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| |
Collapse
|
2
|
Anoar S, Woodling NS, Niccoli T. Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Front Neurosci 2021; 15:786076. [PMID: 34899176 PMCID: PMC8652125 DOI: 10.3389/fnins.2021.786076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by declining motor and cognitive functions. Even though these diseases present with distinct sets of symptoms, FTD and ALS are two extremes of the same disease spectrum, as they show considerable overlap in genetic, clinical and neuropathological features. Among these overlapping features, mitochondrial dysfunction is associated with both FTD and ALS. Recent studies have shown that cells derived from patients' induced pluripotent stem cells (iPSC)s display mitochondrial abnormalities, and similar abnormalities have been observed in a number of animal disease models. Drosophila models have been widely used to study FTD and ALS because of their rapid generation time and extensive set of genetic tools. A wide array of fly models have been developed to elucidate the molecular mechanisms of toxicity for mutations associated with FTD/ALS. Fly models have been often instrumental in understanding the role of disease associated mutations in mitochondria biology. In this review, we discuss how mutations associated with FTD/ALS disrupt mitochondrial function, and we review how the use of Drosophila models has been pivotal to our current knowledge in this field.
Collapse
Affiliation(s)
- Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Nathaniel S Woodling
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
3
|
Fernandes MJS, Carletti CO, Sierra de Araújo LF, Santos RC, Reis J. Respiratory gases, air pollution and epilepsy. Rev Neurol (Paris) 2019; 175:604-613. [PMID: 31519304 DOI: 10.1016/j.neurol.2019.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
A growing number of studies have shown that exposure to air pollutants such as particulate matter and gases can cause cardiovascular, neurodegenerative and psychiatric diseases. The severity of the changes depends on several factors such as exposure time, age and gender. Inflammation has been considered as one of the main factors associated with the generation of these diseases. Here we present some cellular mechanisms activated by air pollution that may represent risk factors for epilepsy and drug resistance associated to epilepsy.
Collapse
Affiliation(s)
- M J S Fernandes
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - C O Carletti
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - L F Sierra de Araújo
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R C Santos
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J Reis
- Service de Neurologie, Centre Hospitalier Universitaire, Hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg, France
| |
Collapse
|
4
|
Radlicz C, Chambers A, Olis E, Kuebler D. The addition of a lipid-rich dietary supplement eliminates seizure-like activity and paralysis in the drosophila bang sensitive mutants. Epilepsy Res 2019; 155:106153. [PMID: 31260938 DOI: 10.1016/j.eplepsyres.2019.106153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the effect that a diet supplemented with KetoCal 4:1, a commercially available dietary formula consisting of a 4:1 ratio of fats to carbohydrates plus proteins, had on the seizure-like activity (SLA) and paralysis normally exhibited by the Drosophila Bang-sensitive (BS) paralytic mutants following mechanical shock. METHODS Given that dietary changes are known to reduce seizures in humans and animal models, three BS mutants, easily-shocked (eas), bang-senseless (parabss), and technical knockout (tko), were fed a standard cornmeal/yeast/sugar diet supplemented with 10% KetoCal 4:1 (KetoCal-sup diet). Newly eclosed BS flies were fed this diet for 3-7 days and the effect this had on SLA, paralysis, locomotor activity, triglyceride levels, and glucose levels was examined. RESULTS All three genotypes displayed significant reductions in SLA and BS sensitivity following mechanical shock. After only 3 days on the diet, 95% of tko flies no longer exhibited SLA or paralysis, and near complete suppression of the BS phenotype was seen by day 7. In the case of eas, there was a 78% reduction of SLA after 3 days on the diet and SLA was completely suppressed by day 7. The parabss flies showed a similar but less robust reduction of SLA on the diet as there was only a 68% reduction of SLA and paralysis following 7 days on the diet. The diet did not suppress activity globally as tko flies had increased basal locomotor activity on the diet while the parabss and eas flies showed no significant change in basal activity. The KetoCal-sup diet did not significantly alter the triglyceride levels or the total glucose levels in the BS mutants. In addition, the SLA and BS suppression was maintained even when the BS mutants were transitioned back to a standard fly diet. CONCLUSIONS The SLA and paralysis associated with the Drosophila BS phenotype can be effectively suppressed by transient exposure to a KetoCal-sup diet. This suppression was not dependent upon long term maintenance of the diet and it was not associated with alterations in total glucose or triglyceride levels in these flies.
Collapse
Affiliation(s)
- Chris Radlicz
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States
| | - Andrew Chambers
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States
| | - Emily Olis
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States
| | - Daniel Kuebler
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States.
| |
Collapse
|
5
|
Johan Arief MF, Choo BKM, Yap JL, Kumari Y, Shaikh MF. A Systematic Review on Non-mammalian Models in Epilepsy Research. Front Pharmacol 2018; 9:655. [PMID: 29997502 PMCID: PMC6030834 DOI: 10.3389/fphar.2018.00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/31/2018] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by seizures which result in distinctive neurobiological and behavioral impairments. Not much is known about the causes of epilepsy, making it difficult to devise an effective cure for epilepsy. Moreover, clinical studies involving epileptogenesis and ictogenesis cannot be conducted in humans due to ethical reasons. As a result, animal models play a crucial role in the replication of epileptic seizures. In recent years, non-mammalian models have been given a primary focus in epilepsy research due to their advantages. This systematic review aims to summarize the importance of non-mammalian models in epilepsy research, such as in the screening of anti-convulsive compounds. The reason for this review is to integrate currently available information on the use and importance of non-mammalian models in epilepsy testing to aid in the planning of future studies as well as to provide an overview of the current state of this field. A PRISMA model was utilized and PubMed, Springer, ScienceDirect and SCOPUS were searched for articles published between January 2007 and November 2017. Fifty-one articles were finalized based on the inclusion/exclusion criteria and were discussed in this review. The results of this review demonstrated the current use of non-mammalian models in epilepsy research and reaffirmed their potential to supplement the typical rodent models of epilepsy in future research into both epileptogenesis and the treatment of epilepsy. This review also revealed a preference for zebrafish and fruit flies in lieu of other non-mammalian models, which is a shortcoming that should be corrected in future studies due to the great potential of these underutilized animal models.
Collapse
Affiliation(s)
- Muhammad Faiz Johan Arief
- MBBS Young Scholars Program, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jia Ling Yap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
6
|
Craddock EM. Profuse evolutionary diversification and speciation on volcanic islands: transposon instability and amplification bursts explain the genetic paradox. Biol Direct 2016; 11:44. [PMID: 27600528 PMCID: PMC5012101 DOI: 10.1186/s13062-016-0146-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/26/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Species-rich adaptive radiations arising from rare plant and animal colonizers are common on remote volcanic archipelagoes. However, they present a paradox. The severe genetic bottleneck of founder events and effects of inbreeding depression, coupled with the inherently stressful volcanic environment, would seem to predict reduced evolutionary potential and increased risk of extinction, rather than rapid adaptive divergence and speciation. Significantly, eukaryotic genomes harbor many families of transposable elements (TEs) that are mobilized by genome shock; these elements may be the primary drivers of genetic reorganization and speciation on volcanic islands. PRESENTATION OF THE HYPOTHESIS Here I propose that a central factor in the spectacular radiation and diversification of the endemic Hawaiian Drosophila and other terrestrial lineages on the Hawaiian and other oceanic islands has been repeated bursts of transposition of multiple TEs induced by the unique ecological features of volcanic habitats. Founder individuals and populations on remote volcanic islands experience significant levels of physiological and genomic stress as a consequence of both biotic and abiotic factors. This results in disruption of the usual epigenetic suppression of TEs, unleashing them to proliferate and spread, which in turn gives rise to novel genetic variation and remodels genomic regulatory circuits, facilitating rapid morphological, ecological and behavioral change, and adaptive radiation. TESTING THE HYPOTHESIS To obtain empirical support for the hypothesis, test organisms should be exposed to prolonged heat stress, high levels of carbon dioxide and other volcanic gases, along with inbreeding. Data from subsequent whole genome sequencing and bioinformatics screening for TE numbers and locations would then be compared with initial pre-exposure TE information for the test strains, a labor-intensive project. Several predicted outcomes arising from the hypothesis are discussed. Currently available data are consistent with the proposed concept of stress-induced TE mobilization as a trigger of evolutionary diversification and speciation on volcanic islands. IMPLICATIONS OF THE HYPOTHESIS The main implication is that both TEs and species should proliferate at a much higher rate on volcanic islands than elsewhere. Second, the evolvability of a lineage may correlate with the abundance and distribution of TEs in the genome. Successful colonizers of volcanic habitats with high genomic proportions of TEs may be best poised to found a speciose lineage that gives rise to a dramatic adaptive radiation. Colonizers that are depauperate in TEs are likely to be evolutionarily constrained and diversify little, if at all. REVIEWERS This article was reviewed by Dr. James Shapiro and Dr. Wolfgang Miller (nominated by Editorial Board member Dr. I. King Jordan).
Collapse
Affiliation(s)
- Elysse M Craddock
- School of Natural and Social Sciences, Purchase College, State University of New York, 735 Anderson Hill Road, Purchase, NY, 10577-1400, USA.
| |
Collapse
|
7
|
Burman JL, Itsara LS, Kayser EB, Suthammarak W, Wang AM, Kaeberlein M, Sedensky MM, Morgan PG, Pallanck LJ. A Drosophila model of mitochondrial disease caused by a complex I mutation that uncouples proton pumping from electron transfer. Dis Model Mech 2014; 7:1165-74. [PMID: 25085991 PMCID: PMC4174527 DOI: 10.1242/dmm.015321] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mutations affecting mitochondrial complex I, a multi-subunit assembly that couples electron transfer to proton pumping, are the most frequent cause of heritable mitochondrial diseases. However, the mechanisms by which complex I dysfunction results in disease remain unclear. Here, we describe a Drosophila model of complex I deficiency caused by a homoplasmic mutation in the mitochondrial-DNA-encoded NADH dehydrogenase subunit 2 (ND2) gene. We show that ND2 mutants exhibit phenotypes that resemble symptoms of mitochondrial disease, including shortened lifespan, progressive neurodegeneration, diminished neural mitochondrial membrane potential and lower levels of neural ATP. Our biochemical studies of ND2 mutants reveal that complex I is unable to efficiently couple electron transfer to proton pumping. Thus, our study provides evidence that the ND2 subunit participates directly in the proton pumping mechanism of complex I. Together, our findings support the model that diminished respiratory chain activity, and consequent energy deficiency, are responsible for the pathogenesis of complex-I-associated neurodegeneration.
Collapse
Affiliation(s)
- Jonathon L Burman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Leslie S Itsara
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Ernst-Bernhard Kayser
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Wichit Suthammarak
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Adrienne M Wang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Margaret M Sedensky
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Philip G Morgan
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Leo J Pallanck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Giordano D, Panini A, Pernice C, Raso MG, Barbieri V. Neurologic toxicity of lidocaine during awake intubation in a patient with tongue base abscess. Case report. Am J Otolaryngol 2014; 35:62-5. [PMID: 24120692 DOI: 10.1016/j.amjoto.2013.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 11/27/2022]
Abstract
Lidocaine is commonly used for topical anesthesia of the upper airway in patient with anticipated difficult tracheal intubation undergoing awake fiberoptic intubation. Lidocaine toxicity is dose related and proportional to its plasma level. Although neurologic toxicity has been frequently observed with intravenous use, it has also been reported for topical use. We report on a case of a patient with base tongue abscess who developed sudden seizures and coma during application of topical anesthesia with lidocaine for awake fiberoptic intubation. The presence of a deep neck infection that causes hyperemia and edema of the pharyngolaryngeal mucosa may enhance transmucosal systemic absorption of local anesthetic. Moreover, conditions such as hypercarbia, dysphagia, or hepatic diseases are known to facilitate onset of lidocaine neurologic toxicity with serum concentration lower than normal. These findings should be kept in mind before administering topical anesthesia of the upper airway. In the presence of any of these conditions above, either the total dose of local anesthetic or its concentration should be reduced as much as possible.
Collapse
Affiliation(s)
- Davide Giordano
- Otolaryngology Unit, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia, Italy.
| | | | | | | | | |
Collapse
|