1
|
Berger A, Carapancea E, Vespa S, Danthine V, Doguet P, Delbeke J, Nonclercq A, El Tahry R. Vagus nerve stimulation-induced laryngeal motor evoked potentials for response prediction and intensity titration in drug-resistant epilepsy. Clin Neurophysiol 2023; 147:99-107. [PMID: 36764043 DOI: 10.1016/j.clinph.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/07/2022] [Accepted: 01/19/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The objective of the study was to record Laryngeal Motor Evoked Potentials (LMEPs) in Vagus Nerve Stimulation (VNS)-implanted patients suffering from Drug-Resistant Epilepsy (DRE). Based on these recordings, LMEPs characteristics were evaluated and compared between responders (R) and non-responders (NR). Finally, possible under- or over-stimulation was assessed based on a physiological indicator of fiber engagement. METHODS Mean dose-response curves were compared between R and NR. A Support Vector Machine (SVM) model was built based on both LMEP and dose-response curves features, to discriminate R from NR. For the exploration of possible under- or over-stimulation, a ratio between the clinically applied stimulation intensity and the intensity yielding to LMEP saturation was computed for each patient. RESULTS A trend towards a greater excitability of the nerve was observed in R compared to NR. The SVM classifier discriminated R and NR with an accuracy of 80%. An ineffective attempt to overstimulate at current levels above what is usually necessary to obtain clinical benefits was suggested in NR. CONCLUSIONS The SVM model built emphasizes a possible link between vagus nerve recruitment characteristics and treatment effectiveness. Most of the clinically responding patients receive VNS at a stimulation intensity 1-fold and 2-fold the intensity inducing LMEP saturation. SIGNIFICANCE LMEP saturation could be a practical help in guiding the titration of the stimulation parameters using a physiological indicator of fiber engagement.
Collapse
Affiliation(s)
- Alexandre Berger
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain, Brussels, Belgium; Synergia Medical SA, Mont-Saint-Guibert, Belgium; Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège, Liège, Belgium.
| | - Evelina Carapancea
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Simone Vespa
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Venethia Danthine
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | - Jean Delbeke
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain, Brussels, Belgium; Institute of Neuroscience, LCEN3, Department of Neurology, Ghent University, Ghent, Belgium
| | - Antoine Nonclercq
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain, Brussels, Belgium; Bio, Electro and Mechanical Systems Department (BEAMS), Ecole Polytechnique de Bruxelles, Brussels, Belgium
| | - Riëm El Tahry
- Institute of Neuroscience (IoNS), Department of Clinical Neuroscience, Université Catholique de Louvain, Brussels, Belgium; Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
2
|
Broncel A, Bocian R, Konopacki J. Vagal Nerve Stimulation: The Effect on the Brain Oscillatory Field Potential. Neuroscience 2021; 483:127-138. [PMID: 34952159 DOI: 10.1016/j.neuroscience.2021.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
More than thirty years of medical treatment with the use of vagal nerve stimulation (VNS) has shown that this therapeutic procedure works in a number of homeostatic disturbances. Although the clinical usage of VNS has a long history, our knowledge about the central mechanisms underlying this treatment is still limited. In the present paper we review the effects of VNS on brain oscillations as a possible electrophysiological bio-marker of VNS efficacy. The review was prepared mainly on the basis of data delivered from clinical observations and the outcomes of electrophysiological experiments conducted on laboratory animals that are available in PubMed. We consciously did not focus on epileptiform activity understood as a pathologic oscillatory activity, which was widely discussed in the numerous previously published reviews. The main conclusion of the present paper is that further, well-designed experiments on laboratory animals are absolutely necessary to address the electrophysiological issues. These will fill a number of gaps in our present knowledge of the central mechanisms underlying VNS therapy.
Collapse
Affiliation(s)
- Adam Broncel
- Medical Technology Centre, Natolin 15, 92-701 Lodz, Poland.
| | - Renata Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No. 141/143, 90-236 Lodz, Poland.
| | - Jan Konopacki
- Department of Neurobiology, Faculty of Biology and Environmental Protection, The University of Lodz, Pomorska St. No. 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
3
|
Identification of vagus nerve stimulation parameters affecting rat hippocampal electrophysiology without temperature effects. Brain Stimul 2020; 13:1198-1206. [PMID: 32454214 DOI: 10.1016/j.brs.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Recent experiments in rats have demonstrated significant effects of VNS on hippocampal excitability but were partially attributed to hypothermia, induced by the applied VNS parameters. OBJECTIVE To allow meaningful preclinical research on the mechanisms of VNS and translation of rodent results to clinical VNS trials, we aimed to identify non-hypothermia inducing VNS parameters that significantly affect hippocampal excitability. METHODS VNS was administered in cycles of 30 s including either 0.1, 0.16, 0.25, 0.5, 1.5, 3 or 7 s of VNS ON time (biphasic pulses, 250μs/phase, 1 mA, 30 Hz) and the effect of different VNS ON times on brain temperature was evaluated. VNS paradigms with and without hypothermia were compared for their effects on hippocampal neurophysiology in freely moving rats. RESULTS Using VNS parameters with an ON time/OFF time of up to 0.5 s/30 s did not cause hypothermia, while clear hypothermia was detected with ON times of 1.5, 3 and 7 s/30 s. Relative to SHAM VNS, the normothermic 0.5 s VNS condition significantly decreased hippocampal EEG power and changed dentate gyrus evoked potentials with an increased field excitatory postsynaptic potential slope and a decreased population spike amplitude. CONCLUSION VNS can be administered in freely moving rats without causing hypothermia, while profoundly affecting hippocampal neurophysiology suggestive of reduced excitability of hippocampal neurons despite increased synaptic transmission efficiency.
Collapse
|
4
|
Dibué-Adjei M, Brigo F, Yamamoto T, Vonck K, Trinka E. Vagus nerve stimulation in refractory and super-refractory status epilepticus - A systematic review. Brain Stimul 2019; 12:1101-1110. [PMID: 31126871 DOI: 10.1016/j.brs.2019.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Refractory status epilepticus (RSE) is the persistence of status epilepticus despite second-line treatment. Super-refractory SE (SRSE) is characterized by ongoing status despite 48 h of anaesthetic treatment. Due to the high case fatality in RSE of 16-39%, off label treatments without strong evidence of efficacy in RSE are often administered. In single case-reports and small case series totalling 28 patients, acute implantation of VNS in RSE was associated with 76% and 26% success rate in generalized and focal RSE respectively. We performed an updated systematic review of the literature on efficacy of VNS in RSE/SRSE by including all reported patients. METHODS We systematically searched EMBASE, CENTRAL, Opengre.eu, and ClinicalTrials.gov, and PubMed databases to identify studies reporting the use of VNS for RSE and/or SRSE. We also searched conference abstracts from AES and ILAE meetings. RESULTS 45 patients were identified in total of which 38 were acute implantations of VNS in RSE/SRSE. Five cases had VNS implantation for epilepsia partialis continua, one for refractory electrical status epilepticus in sleep and one for acute encephalitis with refractory repetitive focal seizures. Acute VNS implantation was associated with cessation of RSE/SRSE in 74% (28/38) of acute cases. Cessation did not occur in 18% (7/38) of cases and four deaths were reported (11%); all of them due to the underlying disease and unlikely related to VNS implantation. Median duration of the RSE/SRSE episode pre and post VNS implantation was 18 days (range: 3-1680 days) and 8 days (range: 3-84 days) respectively. Positive outcomes occurred in 82% (31/38) of cases. CONCLUSION VNS can interrupt RSE and SRSE in 74% of patients; data originate from reported studies classified as level IV and the risk for reporting bias is high. Further prospective studies are warranted to investigate acute VNS in RSE and SRSE.
Collapse
Affiliation(s)
- Maxine Dibué-Adjei
- LivaNova Deutschland GmbH, LivaNova PLC-owned Subsidiary, Lindberghstraße 25, 80939, Munich, Germany; Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, D-40225, Düsseldorf, Germany.
| | - Francesco Brigo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - Takamichi Yamamoto
- Comprehensive Epilepsy Center, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Kristl Vonck
- Brain Research Team, Department of Neurology, Ghent University, Ghent, Belgium
| | - Eugen Trinka
- Department of Neurology, Christian-Doppler University Hospital, Paracelsus Medical University, Centre for Cognitive Neuroscience, Salzburg, Austria; Institute of Public Health, Medical Decision Making and HTA, UMIT, Private University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria
| |
Collapse
|
5
|
|
6
|
Cutsforth-Gregory JK, Benarroch EE. Nucleus of the solitary tract, medullary reflexes, and clinical implications. Neurology 2017; 88:1187-1196. [PMID: 28202704 DOI: 10.1212/wnl.0000000000003751] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
Hendriksen RGF, Schipper S, Hoogland G, Schijns OEMG, Dings JTA, Aalbers MW, Vles JSH. Dystrophin Distribution and Expression in Human and Experimental Temporal Lobe Epilepsy. Front Cell Neurosci 2016; 10:174. [PMID: 27458343 PMCID: PMC4937016 DOI: 10.3389/fncel.2016.00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/21/2016] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Dystrophin is part of a protein complex that connects the cytoskeleton to the extracellular matrix. In addition to its role in muscle tissue, it functions as an anchoring protein within the central nervous system such as in hippocampus and cerebellum. Its presence in the latter regions is illustrated by the cognitive problems seen in Duchenne Muscular Dystrophy (DMD). Since epilepsy is also supposed to constitute a comorbidity of DMD, it is hypothesized that dystrophin plays a role in neuronal excitability. Here, we aimed to study brain dystrophin distribution and expression in both, human and experimental temporal lobe epilepsy (TLE). METHOD Regional and cellular dystrophin distribution was evaluated in both human and rat hippocampi and in rat cerebellar tissue by immunofluorescent colocalization with neuronal (NeuN and calbindin) and glial (GFAP) markers. In addition, hippocampal dystrophin levels were estimated by Western blot analysis in biopsies from TLE patients, post-mortem controls, amygdala kindled (AK)-, and control rats. RESULTS Dystrophin was expressed in all hippocampal pyramidal subfields and in the molecular-, Purkinje-, and granular cell layer of the cerebellum. In these regions it colocalized with GFAP, suggesting expression in astrocytes such as Bergmann glia (BG) and velate protoplasmic astrocytes. In rat hippocampus and cerebellum there were neither differences in dystrophin positive cell types, nor in the regional dystrophin distribution between AK and control animals. Quantitatively, hippocampal full-length dystrophin (Dp427) levels were about 60% higher in human TLE patients than in post-mortem controls (p < 0.05), whereas the level of the shorter Dp71 isoform did not differ. In contrast, AK animals showed similar dystrophin levels as controls. CONCLUSION Dystrophin is ubiquitously expressed by astrocytes in the human and rat hippocampus and in the rat cerebellum. Hippocampal full-length dystrophin (Dp427) levels are upregulated in human TLE, but not in AK rats, possibly indicating a compensatory mechanism in the chronic epileptic human brain.
Collapse
Affiliation(s)
- Ruben G F Hendriksen
- Department of Neurology, Maastricht University Medical Centre Maastricht, Netherlands
| | - Sandra Schipper
- Department of Neurology, Maastricht University Medical CentreMaastricht, Netherlands; School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands
| | - Govert Hoogland
- School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neurosurgery, Maastricht University Medical CentreMaastricht, Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Centre Maastricht, Netherlands
| | - Jim T A Dings
- Department of Neurosurgery, Maastricht University Medical Centre Maastricht, Netherlands
| | - Marlien W Aalbers
- Department of Neurosurgery, Groningen University Medical Centre Groningen, Netherlands
| | - Johan S H Vles
- Department of Neurology, Maastricht University Medical Centre Maastricht, Netherlands
| |
Collapse
|
8
|
Larsen LE, Wadman WJ, van Mierlo P, Delbeke J, Grimonprez A, Van Nieuwenhuyse B, Portelli J, Boon P, Vonck K, Raedt R. Modulation of Hippocampal Activity by Vagus Nerve Stimulation in Freely Moving Rats. Brain Stimul 2016; 9:124-32. [DOI: 10.1016/j.brs.2015.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/25/2015] [Accepted: 09/20/2015] [Indexed: 11/16/2022] Open
|
9
|
Vagus Nerve Stimulation has Antidepressant Effects in the Kainic Acid Model for Temporal Lobe Epilepsy. Brain Stimul 2015; 8:13-20. [DOI: 10.1016/j.brs.2014.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022] Open
|
10
|
Aalbers M, Rijkers K, Majoie H, Dings J, Schijns O, Schipper S, De Baets M, Kessels A, Vles J, Hoogland G. The influence of neuropathology on brain inflammation in human and experimental temporal lobe epilepsy. J Neuroimmunol 2014; 271:36-42. [DOI: 10.1016/j.jneuroim.2014.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 12/31/2022]
|
11
|
Zeef DH, Jahanshahi A, Vlamings R, Casaca-Carreira J, Santegoeds RG, Janssen ML, Oosterloo M, Temel Y. An experimental model for Huntington's chorea? Behav Brain Res 2014; 262:31-4. [DOI: 10.1016/j.bbr.2013.12.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 01/03/2023]
|
12
|
Effect of vagus nerve stimulation on electrical kindling in different stages of seizure severity in freely moving cats. Epilepsy Res 2014; 108:81-9. [DOI: 10.1016/j.eplepsyres.2013.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/19/2013] [Accepted: 10/18/2013] [Indexed: 11/21/2022]
|
13
|
Mollet L, Raedt R, Delbeke J, El Tahry R, Grimonprez A, Dauwe I, DE Herdt V, Meurs A, Wadman W, Boon P, Vonck K. Electrophysiological responses from vagus nerve stimulation in rats. Int J Neural Syst 2013; 23:1350027. [PMID: 24156670 DOI: 10.1142/s0129065713500275] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of action of vagus nerve stimulation (VNS) for pharmacoresistant epilepsy is unknown and the therapeutic outcome is highly variable. We investigated stimulation-induced vagus nerve electrophysiological responses in rats using various stimulation parameters. Conduction velocity, I(50), rheobase and chronaxie were calculated. We identified an early and late component corresponding to an afferent compound action potential (CAP) and a remote laryngeal motor-evoked potential (LMEP), respectively. The conduction velocity (CAP: 26.2 ± 1.4 m/s; LMEP: 32.4 ± 2.4 m/s) and I(50) (CAP: 2.4 ± 0.3 mA; LMEP: 1.8±0.2 mA) were significantly different for both components, the rheobase (CAP: 140±30 μA; LMEP: 110±26 μA) and chronaxie (CAP: 66±7 μs; LMEP: 73±9 μs) were not. Using a pulse of 10 μs, the CAP saturated between 4-5 mA. Our method can be used to record VNS-induced electrophysiological responses in rats and provides an objective biomarker for electrical stimulation with various parameters in an experimental set-up. Our findings are potentially useful for clinical purposes in the sense that combination of VNS and recording of vagal nerve CAPs may help clinicians to determine the individual optimal intensity required to fully activate fast-conducting afferent fibers.
Collapse
Affiliation(s)
- Lies Mollet
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Institute for Neuroscience, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rat vagus nerve stimulation model of seizure suppression: nNOS and ΔFos B changes in the brainstem. J Chem Neuroanat 2012; 46:1-9. [PMID: 23022956 DOI: 10.1016/j.jchemneu.2012.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 11/20/2022]
Abstract
Vagus nerve stimulation (VNS) is a moderately effective treatment for intractable epilepsy. However, the mechanism of action is poorly understood. The effect of left VNS in amygdala kindled rats was investigated by studying changes in nNOS and ΔFos B expression in primary and secondary vagus nerve projection nuclei: the nucleus of the solitary tract (NTS), dorsal motor nucleus of the vagus nerve (DMV), parabrachial nucleus (PBN) and locus coeruleus (LC). Rats were fully kindled by stimulation of the amygdala. Subsequently, when the fully kindled state was reached and then maintained for ten days, rats received a single 3-min train of VNS starting 1min prior to the kindling stimulus and lasting for 2min afterwards. In control animals the vagus nerve was not stimulated. Animals were sacrificed 48h later. The brainstems were stained for neuronal nitric oxide synthase (nNOS) and ΔFos B. VNS decreased seizure duration with more than 25% in 21% of rats. No VNS associated changes in nNOS immunoreactivity were observed in the NTS and no changes in ΔFos B were observed in the NTS, PBN, or LC. High nNOS immunopositive cell densities of >300cells/mm(2) were significantly more frequent in the left DMV than in the right (χ(2)(1)=26.2, p<0.01), independent of whether the vagus nerve was stimulated. We conclude that the observed nNOS immunoreactivity in the DMV suggests surgery-induced axonal damage. A 3-min train of VNS in fully kindled rats does not affect ΔFos B expression in primary and secondary projection nuclei of the vagus nerve.
Collapse
|
15
|
Alexander GM, McNamara JO. Vagus nerve stimulation elevates seizure threshold in the kindling model. Epilepsia 2012; 53:2043-52. [DOI: 10.1111/j.1528-1167.2012.03646.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Fornai F, Ruffoli R, Giorgi FS, Paparelli A. The role of locus coeruleus in the antiepileptic activity induced by vagus nerve stimulation. Eur J Neurosci 2011; 33:2169-78. [DOI: 10.1111/j.1460-9568.2011.07707.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Aalbers M, Vles J, Klinkenberg S, Hoogland G, Majoie M, Rijkers K. Animal models for vagus nerve stimulation in epilepsy. Exp Neurol 2011; 230:167-75. [PMID: 21565191 DOI: 10.1016/j.expneurol.2011.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/15/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Vagus nerve stimulation (VNS) is a moderately effective adjunctive treatment for patients suffering from medically refractory epilepsy and is explored as a treatment option for several other disorders. The present review provides a critical appraisal of the studies on VNS in animal models of seizures and epilepsy. So far, these studies mostly applied short-term VNS in seizure models, demonstrating that VNS can suppress and prevent seizures and affect epileptogenesis. However, the mechanism of action is still largely unknown. Moreover, studies with a clinically more relevant setup where VNS is chronically applied in epilepsy models are scarce. Future directions for research and the application of this technology in animal models of epilepsy are discussed.
Collapse
Affiliation(s)
- Marlien Aalbers
- School for Mental Health & Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Ruffoli R, Giorgi FS, Pizzanelli C, Murri L, Paparelli A, Fornai F. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat 2010; 42:288-96. [PMID: 21167932 DOI: 10.1016/j.jchemneu.2010.12.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/30/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
Abstract
In this short overview a reappraisal of the anatomical connections of vagal afferents is reported. The manuscript moves from classic neuroanatomy to review details of vagus nerve anatomy which are now becoming more and more relevant for clinical outcomes (i.e. the therapeutic use of vagus nerve stimulation). In drawing such an updated odology of central vagal connections the anatomical basis subserving the neurochemical effects of vagal stimulation are addressed. In detail, apart from the thalamic projection of central vagal afferents, the monoaminergic systems appear to play a pivotal role. Stemming from the chemical neuroanatomy of monoamines such as serotonin and norepinephrine the widespread effects of vagal stimulation on cerebral cortical activity are better elucidated. This refers both to the antiepileptic effects and most recently to the beneficial effects of vagal stimulation in mood and cognitive disorders.
Collapse
Affiliation(s)
- Riccardo Ruffoli
- Department of Human Morphology and Applied Biology, University of Pisa, Via Roma 55, 56100 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Rijkers K, Mescheriakova J, Majoie M, Lemmens E, van Wijk X, Philippens M, Van Kranen-Mastenbroek V, Schijns O, Vles J, Hoogland G. Polymorphisms in CACNA1E and Camk2d are associated with seizure susceptibility of Sprague-Dawley rats. Epilepsy Res 2010; 91:28-34. [PMID: 20638246 DOI: 10.1016/j.eplepsyres.2010.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/29/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Seizures are associated with high intracellular calcium levels. However, conditions characterized by high intracellular calcium levels, such as stroke or traumatic brain injury, do not always evoke epilepsy. We hypothesized that polymorphisms in calcium-related genes CACNA1E and Camk2d contribute to the individual variability in seizure susceptibility. The distribution of one single nucleotide polymorphism (SNP) in the CACNA1E and one in the Camk2d gene was determined in Sprague-Dawley rats that were subjected to amygdala kindling or hyperthermia-induced seizures. The pre-kindling afterdischarge threshold was significantly lower in rats with the CACNA1E GG genotype (45.2+/-6.7microA) than in the GT genotyped animals (79.3+/-53.7microA). Among hyperthermia treated rats, the Camk2d G allele was more frequent among rats that did not display behavioral seizures during hyperthermia (67%) than in animals that did show behavioral seizures during hyperthermia (52%, chi(2)(1)=3.847, p=0.05). SNPs in CACNA1E and Camk2d genes are associated with the individual variability in seizure susceptibility in two experimental seizure models.
Collapse
Affiliation(s)
- Kim Rijkers
- Department of Neurosurgery, University Medical Center Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|