1
|
Gazzin S, Bellarosa C, Tiribelli C. Molecular events in brain bilirubin toxicity revisited. Pediatr Res 2024; 95:1734-1740. [PMID: 38378754 DOI: 10.1038/s41390-024-03084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
The mechanisms involved in bilirubin neurotoxicity are still far from being fully elucidated. Several different events concur to damage mainly the neurons among which inflammation and alteration of the redox state play a major role. An imbalance of cellular calcium homeostasis has been recently described to be associated with toxic concentrations of bilirubin, and this disequilibrium may in turn elicit an inflammatory reaction. The different and age-dependent sensitivity to bilirubin damage must also be considered in describing the dramatic clinical picture of bilirubin-induced neurological damage (BIND) formerly known as kernicterus spectrum disorder (KSD). This review aims to critically address what is known and what is not in the molecular events of bilirubin neurotoxicity to provide hints for a better diagnosis and more successful treatments. Part of these concepts have been presented at the 38th Annual Audrey K. Brown Kernicterus Symposium of Pediatric American Society, Washington DC, May 1, 2023.
Collapse
Affiliation(s)
- Silvia Gazzin
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Cristina Bellarosa
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Claudio Tiribelli
- Liver-Brain Unit "Rita Moretti", Fondazione Italiana Fegato-Onlus, Bldg. Q, AREA Science Park, ss14, Km 163.5, Basovizza, 34149, Trieste, Italy.
| |
Collapse
|
2
|
Pranty AI, Wruck W, Adjaye J. Free Bilirubin Induces Neuro-Inflammation in an Induced Pluripotent Stem Cell-Derived Cortical Organoid Model of Crigler-Najjar Syndrome. Cells 2023; 12:2277. [PMID: 37759499 PMCID: PMC10527749 DOI: 10.3390/cells12182277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bilirubin-induced neurological damage (BIND), which might progress to kernicterus, occurs as a consequence of defects in the bilirubin conjugation machinery, thus enabling albumin-unbound free bilirubin (BF) to cross the blood-brain barrier and accumulate within. A defect in the UGT1A1 enzyme-encoding gene, which is directly responsible for bilirubin conjugation, can cause Crigler-Najjar syndrome (CNS) and Gilbert's syndrome. We used human-induced pluripotent stem cell (hiPSC)-derived 3D brain organoids to model BIND in vitro and unveil the molecular basis of the detrimental effects of BF in the developing human brain. Healthy and patient-derived iPSCs were differentiated into day-20 brain organoids, and then stimulated with 200 nM BF. Analyses at 24 and 72 h post-treatment point to BF-induced neuro-inflammation in both cell lines. Transcriptome, associated KEGG, and Gene Ontology analyses unveiled the activation of distinct inflammatory pathways, such as cytokine-cytokine receptor interaction, MAPK signaling, and NFκB activation. Furthermore, the mRNA expression and secretome analysis confirmed an upregulation of pro-inflammatory cytokines such as IL-6 and IL-8 upon BF stimulation. This novel study has provided insights into how a human iPSC-derived 3D brain organoid model can serve as a prospective platform for studying the etiology of BIND kernicterus.
Collapse
Affiliation(s)
- Abida Islam Pranty
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.I.P.); (W.W.)
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.I.P.); (W.W.)
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.I.P.); (W.W.)
- Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL)—EGA Institute for Women’s Health, 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
3
|
Mueed Z, Mehta D, Rai PK, Kamal MA, Poddar NK. Cross-Interplay between Osmolytes and mTOR in Alzheimer's Disease Pathogenesis. Curr Pharm Des 2021; 26:4699-4711. [PMID: 32418522 DOI: 10.2174/1381612826666200518112355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease, categorized by the piling of amyloid-β (Aβ), hyperphosphorylated tau, PHFs, NFTs and mTOR hyperactivity, is a neurodegenerative disorder, affecting people across the globe. Osmolytes are known for osmoprotectants and play a pivotal role in protein folding, function and protein stability, thus, preventing proteins aggregation, and counteracting effects of denaturing solutes on proteins. Osmolytes (viz., sorbitol, inositol, and betaine) perform a pivotal function of maintaining homeostasis during hyperosmotic stress. The selective advantage of utilising osmolytes over inorganic ions by cells is in maintaining cell volume without compromising cell function, which is important for organs such as the brain. Osmolytes have been documented not only as neuroprotectors but they also seem to act as neurodegenerators. Betaine, sucrose and trehalose supplementation has been seen to induce autophagy thereby inhibiting the accumulation of Aβ. In contrast, sucrose has also been associated with mTOR hyperactivity, a hallmark of AD pathology. The neuroprotective action of taurine is revealed when taurine supplementation is seen to inhibit neural damage, apoptosis and oxidative damage. Inositol stereoisomers (viz., scyllo-inositol and myo-inositol) have also been seen to inhibit Aβ production and plaque formation in the brain, inhibiting AD pathogenesis. However, TMAO affects the aging process adversely by deregulating the mTOR signalling pathway and then kindling cognitive dysfunction via degradation of chemical synapses and synaptic plasticity. Thus, it can be concluded that osmolytes may act as a probable therapeutic approach for neurodevelopmental disorders. Here, we have reviewed and focussed upon the impact of osmolytes on mTOR signalling pathway and thereby its role in AD pathogenesis.
Collapse
Affiliation(s)
- Zeba Mueed
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Pankaj K Rai
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Nitesh K Poddar
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Lu Z, Ding S, Wang F, Lv H. Analysis on the MRI and BAEP Results of Neonatal Brain With Different Levels of Bilirubin. Front Pediatr 2021; 9:719370. [PMID: 35174111 PMCID: PMC8842724 DOI: 10.3389/fped.2021.719370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To explore whether there is abnormality of neonatal brains' MRI and BAEP with different bilirubin levels, and to provide an objective basis for early diagnosis on the bilirubin induced subclinical damage on brains. METHODS To retrospectively analyze the clinical data of 103 neonatal patients, to conduct routine brain MRI examination and BAEP testing, and to analyze BAEP and MRI image results of the neonatal patients, who were divided into three groups based on the levels of total serum bilirubin concentration (TSB): 16 cases in mild group (TSB: 0.0-229.0 ěmol/L), 49 cases in moderate group (TSB: 229.0-342.0 ěmol/L), and 38 cases in severe group (TSB ≥ 342.0 ěmol/L). RESULTS We found the following: A. Comparison of the bilirubin value of the different group: The bilirubin value of the mild group is 171.99 ± 33.50 ěmol/L, the moderate group is 293.98 ± 32.09 ěmol/L, and the severe group is 375.59 ± 34.25 ěmol/L. The comparison of bilirubin values of the three groups of neonates (p < 0.01) indicates the difference is statistically significant (p < 0.01). B. The weight value of the <2,500 g group is 2.04 ± 0.21 and the ≥2,500 g group is 3.39 ± 0.46; the weight comparison of the two groups indicates that the difference is statistically significant (p < 0.01). C. Comparison of the abnormal MRI of the different groups: The brain MRI result's abnormal ratio of the mild group is 31.25%, the moderate group is 16.33%, and the severe group is 21.05%, but the comparison of brain MRI results of the three neonates groups indicates that the difference is not statistically significant (p > 0.05). D. Comparison of abnormal MRI signal values of globus pallidus on T1WI in different groups: 1. The comparison of normal group signal values with that of mild group (p < 0.05), with that of moderate group, and with that of severe group (p < 0.01) indicates that the difference is statistically significant. CONCLUSION At low level of bilirubin, central nervous system damage may also occur and can be detected as abnormality by MRI and BAEP. Meanwhile, MRI and BAEP can also provide early abnormal information for the judgment of central nervous system damage of the children with NHB who have no acute bilirubin encephalopathy (ABE) clinical features, and provide clues for early treatment and early intervention.
Collapse
Affiliation(s)
- Zhongxing Lu
- Neonatology Department, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Shouling Ding
- Pediatrics Department, Taicang First People's Hospital, Changzhou, China
| | - Fen Wang
- Pediatrics Department, Taicang First People's Hospital, Changzhou, China
| | - Haitao Lv
- Children's Hospital, Soochow University, Changzhou, China
| |
Collapse
|
5
|
Li Y, Bouza M, Wu C, Guo H, Huang D, Doron G, Temenoff JS, Stecenko AA, Wang ZL, Fernández FM. Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples. Nat Commun 2020; 11:5625. [PMID: 33159052 PMCID: PMC7648103 DOI: 10.1038/s41467-020-19444-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023] Open
Abstract
The human metabolome provides a window into the mechanisms and biomarkers of various diseases. However, because of limited availability, many sample types are still difficult to study by metabolomic analyses. Here, we present a mass spectrometry (MS)-based metabolomics strategy that only consumes sub-nanoliter sample volumes. The approach consists of combining a customized metabolomics workflow with a pulsed MS ion generation method, known as triboelectric nanogenerator inductive nanoelectrospray ionization (TENGi nanoESI) MS. Samples tested with this approach include exhaled breath condensate collected from cystic fibrosis patients as well as in vitro-cultured human mesenchymal stromal cells. Both test samples are only available in minimum amounts. Experiments show that picoliter-volume spray pulses suffice to generate high-quality spectral fingerprints, which increase the information density produced per unit sample volume. This TENGi nanoESI strategy has the potential to fill in the gap in metabolomics where liquid chromatography-MS-based analyses cannot be applied. Our method opens up avenues for future investigations into understanding metabolic changes caused by diseases or external stimuli.
Collapse
Affiliation(s)
- Yafeng Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Changsheng Wu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hengyu Guo
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Danning Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gilad Doron
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Arlene A Stecenko
- Emory + Children's Center for Cystic Fibrosis and Airways Disease Research and Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
6
|
Bilirubin disrupts calcium homeostasis in neonatal hippocampal neurons: a new pathway of neurotoxicity. Arch Toxicol 2020; 94:845-855. [DOI: 10.1007/s00204-020-02659-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
|
7
|
Experimental models assessing bilirubin neurotoxicity. Pediatr Res 2020; 87:17-25. [PMID: 31493769 DOI: 10.1038/s41390-019-0570-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023]
Abstract
The molecular and cellular events leading to bilirubin-induced neurotoxicity, the mechanisms regulating liver and intestine expression in neonates, and alternative pathways of bilirubin catabolism remain incompletely defined. To answer these questions, researchers have developed a number of model systems to closely recapitulate the main characteristics of the disease, ranging from tissue cultures to engineered mouse models. In the present review we describe in vitro, ex vivo, and in vivo models developed to study bilirubin metabolism and neurotoxicity, with a special focus on the use of engineered animal models. In addition, we discussed the most recent studies related to potential therapeutic approaches to treat neonatal hyperbilirubinemia, ranging from anti-inflammatory drugs, activation of nuclear receptor pathways, blockade of bilirubin catabolism, and stimulation of alternative bilirubin-disposal pathways.
Collapse
|
8
|
Li K, Shi X, Luo M, Inam-U-Llah, Wu P, Zhang M, Zhang C, Li Q, Wang Y, Piao F. Taurine protects against myelin damage of sciatic nerve in diabetic peripheral neuropathy rats by controlling apoptosis of schwann cells via NGF/Akt/GSK3β pathway. Exp Cell Res 2019; 383:111557. [PMID: 31415759 DOI: 10.1016/j.yexcr.2019.111557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/30/2019] [Accepted: 08/10/2019] [Indexed: 12/19/2022]
Abstract
Diabetic peripheral neuropathy is a common complications of Type 2 Diabetes and its main pathological feature is myelin sheath damage of peripheral nerve that was induced by Schwann cells (SCs) apoptosis. Increasing evidence suggested that taurine might play a role in improving DPN because of its ability to prevent SCs apoptosis. In this study, we explore the effect of taurine on preventing SCs apoptosis and its underlying mechanism. Sprague Dawley rats were treated with streptozotocin to establish the diabetes model. Rats were randomly divided into control, diabetes, taurine treatment (as giving 0.5%, 1% and 2% taurine in drinking water) groups. RSC96 cell (a rat SCs line) was used for intervention experiments in vitro. Results showed that taurine significantly corrected morphology of damaged myelin sheath and inhibited SCs apoptosis in sciatic nerve of diabetic rats. Moreover, taurine prevented apoptosis of RSC96 cells exposed to high glucose. Mechanistically, taurine up-regulated NGF expression and phosphorylation levels of Akt and GSK3β, while, blocking activation of NGF and phosphorylation of Akt and GSK3β increased apoptosis of high glucose-exposed RSC96 cells with taurine supplement. These results revealed taurine improved the myelin sheath damage of sciatic nerve in diabetic rats by controlling SCs apoptosis via NGF/Akt/GSK3β signaling pathways, which provides some clues that taurine might be effective and feasible candidate for the treatment of DPN.
Collapse
Affiliation(s)
- Kaixin Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengxin Luo
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Inam-U-Llah
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Pingan Wu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Mengren Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, China
| | - Qiujuan Li
- Department of Experimental Teaching Center of Public Health, Dalian Medical University, Dalian, China
| | - Yachen Wang
- Department of Regenerative Medicine Center and Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China; Comprehensive Laboratory, Affiliated Zhong Shan Hospital of Dalian University, Dalian, 116001, China.
| |
Collapse
|
9
|
Jakaria M, Azam S, Haque ME, Jo SH, Uddin MS, Kim IS, Choi DK. Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox Biol 2019; 24:101223. [PMID: 31141786 PMCID: PMC6536745 DOI: 10.1016/j.redox.2019.101223] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/21/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Taurine is a sulfur-containing amino acid and known as semi-essential in mammals and is produced chiefly by the liver and kidney. It presents in different organs, including retina, brain, heart and placenta and demonstrates extensive physiological activities within the body. In the several disease models, it attenuates inflammation- and oxidative stress-mediated injuries. Taurine also modulates ER stress, Ca2+ homeostasis and neuronal activity at the molecular level as part of its broader roles. Different cellular processes such as energy metabolism, gene expression, osmosis and quality control of protein are regulated by taurine. In addition, taurine displays potential ameliorating effects against different neurological disorders such as neurodegenerative diseases, stroke, epilepsy and diabetic neuropathy and protects against injuries and toxicities of the nervous system. Several findings demonstrate its therapeutic role against neurodevelopmental disorders, including Angelman syndrome, Fragile X syndrome, sleep-wake disorders, neural tube defects and attention-deficit hyperactivity disorder. Considering current biopharmaceutical limitations, developing novel delivery approaches and new derivatives and precursors of taurine may be an attractive option for treating neurological disorders. Herein, we present an overview on the therapeutic potential of taurine against neurological disorders and highlight clinical studies and its molecular mechanistic roles. This article also addresses the neuropharmacological potential of taurine analogs.
Collapse
Affiliation(s)
- Md Jakaria
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - Shofiul Azam
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - Md Ezazul Haque
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - Song-Hee Jo
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - In-Su Kim
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea; Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, and Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea; Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences, and Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea.
| |
Collapse
|
10
|
Sun G, Qu S, Wang S, Shao Y, Sun J. Taurine attenuates acrylamide-induced axonal and myelinated damage through the Akt/GSK3β-dependent pathway. Int J Immunopathol Pharmacol 2019; 32:2058738418805322. [PMID: 30354842 PMCID: PMC6202743 DOI: 10.1177/2058738418805322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acrylamide (ACR), formed during the Maillard reaction induced by high temperature
in food processing, is one of the main causes of neurodegenerative diseases.
Taurine, a free intracellular β-amino acid, is characterized by many functions,
including antioxidation, anti-inflammatory, and neuroprotective properties. This
promotes its application in the treatment of neurodegenerative diseases. In this
study, the neuroprotective effects of taurine against ACR-induced neurotoxicity
and the potential underlying mechanisms were explored. Rats were intoxicated
with ACR and injected with taurine in different groups for totally 2 weeks
between January and July 2017. Electron microscopic analysis was used to observe
the changes in tissues of the rats. Meanwhile, the levels of proteins including
p-Akt, p-GSK3β, SIM312, and MBP were detected by Western blot. Furthermore, the
GSK3β phosphorylation in taurine-treated dorsal root ganglion (DRG) with ACR was
examined in the presence of the Akt inhibitor, MK-2206. The analysis of
behavioral performances and electron micrographs indicated that taurine
treatment significantly attenuated the toxic manifestations induced by ACR and
stimulated the growth of axons and the medullary sheath, which was associated
with the activation of the Akt/GSK3β signaling pathway. Mechanistically, it was
found that taurine activated GSK3β, leading to significant recovery of the
damage in ACR-induced sciatic nerves. Furthermore, MK-2206, an inhibitor of Akt,
was applied in DRG cells, suggesting that taurine-induced GSK3β phosphorylation
was Akt dependent. Our findings demonstrated that taurine attenuated ACR-induced
neuropathy in vivo, in an Akt/GSK3β-dependent manner. This confirmed the
treatment with taurine to be a novel strategy against ACR-induced
neurotoxicity.
Collapse
Affiliation(s)
- Guohua Sun
- The First Affiliated Hospital of Dalian
Medical University, Liaoning, China
| | - Shuxian Qu
- Institute of Cancer Stem Cell, Dalian
Medical University, Dalian, Liaoning, China
| | - Siyi Wang
- The First Affiliated Hospital of Dalian
Medical University, Liaoning, China
| | - Ying Shao
- The First Affiliated Hospital of Dalian
Medical University, Liaoning, China
| | - Jingsong Sun
- The First Affiliated Hospital of Dalian
Medical University, Liaoning, China
- Jingsong Sun, The First Affiliated Hospital
of Dalian Medical University, Liaoning 116011, China.
| |
Collapse
|
11
|
Heidari R, Jamshidzadeh A, Ghanbarinejad V, Ommati MM, Niknahad H. Taurine supplementation abates cirrhosis-associated locomotor dysfunction. Clin Exp Hepatol 2018; 4:72-82. [PMID: 29904723 PMCID: PMC6000746 DOI: 10.5114/ceh.2018.75956] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/26/2017] [Indexed: 01/04/2023] Open
Abstract
AIM OF THE STUDY Hepatic encephalopathy and hyperammonemia is a clinical complication associated with liver cirrhosis. The brain is the target organ for ammonia toxicity. Ammonia-induced brain injury is related to oxidative stress, locomotor activity dysfunction, and cognitive deficit, which could lead to permanent brain injury, coma and death if not appropriately managed. There is no promising pharmacological intervention against cirrhosis-associated brain injury. Taurine (TAU) is one of the most abundant amino acids in the human body. Several physiological and pharmacological roles have been attributed to TAU. TAU may act as an antioxidant and is an excellent neuroprotective agent. This study aimed to evaluate the effect of TAU supplementation on cirrhosis-associated locomotor activity disturbances and oxidative stress in the brain. MATERIAL AND METHODS Rats underwent bile duct ligation (BDL) surgery, and plasma and brain ammonia level, plasma biochemical parameters, and rats' locomotor function were monitored. Furthermore, brain tissue markers of oxidative stress were assessed. RESULTS It was found that plasma and brain ammonia was increased, and markers of liver injury were significantly elevated in the cirrhotic group. Impaired locomotor activity was also evident in BDL rats. Moreover, an increase in brain tissue markers of oxidative stress was detected in the brain of cirrhotic animals. It was found that TAU supplementation (50, 100, and 200 mg/kg, gavage) alleviated brain tissue markers of oxidative stress and improved animals' locomotor activity. CONCLUSIONS These data suggest that TAU is a potential protective agent against cirrhosis-associated brain injury.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Department of Animal Sciences, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Wobma HM, Tamargo MA, Goeta S, Brown LM, Duran-Struuck R, Vunjak-Novakovic G. The influence of hypoxia and IFN-γ on the proteome and metabolome of therapeutic mesenchymal stem cells. Biomaterials 2018; 167:226-234. [PMID: 29574308 PMCID: PMC5894357 DOI: 10.1016/j.biomaterials.2018.03.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
Over the past 15 years, mesenchymal stem cells (MSCs) have been assessed for their capacity to suppress inflammation and promote tissue repair. Regardless of whether the cells are primed (exposed to instructive cues) before administration, their phenotype will respond to environmental signals present in the pathophysiological setting being treated. Since hypoxia and inflammation coexist in the settings of acute injury and chronic disease we sought to explore how the proteome and metabolome of MSCs changes when cells were exposed to 48 h of 1% oxygen, interferon gamma (IFN-γ), or both cues together. We specifically focused on changes in cell metabolism, immune modulation, extracellular matrix secretion and modification, and survival capacity. IFN-γ promoted expression of anti-pathogenic proteins and induced MSCs to limit inflammation and fibrosis while promoting their own survival. Hypoxia instead led to cell adaptation to low oxygen, including upregulation of proteins involved in anaerobic metabolism, autophagy, angiogenesis, and cell migration. While dual priming resulted in additive effects, we also found many instances of synergy. These data lend insight to how MSCs may behave after administration to a patient and suggest how priming cells beforehand could improve their therapeutic capacity.
Collapse
Affiliation(s)
- Holly M Wobma
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel A Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY, USA
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY, USA
| | | | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Kuter N, Aysit-Altuncu N, Ozturk G, Ozek E. The Neuroprotective Effects of Hypothermia on Bilirubin-Induced Neurotoxicity in vitro. Neonatology 2018; 113:360-365. [PMID: 29510380 DOI: 10.1159/000487221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/27/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND In high-risk newborns indirect hyperbilirubinemia can lead to acute bilirubin encephalopathy and kernicterus. Despite the current therapeutic modalities, preventing or reversing the neurotoxicity cannot be achieved in all infants. OBJECTIVE To investigate the neuroprotective effects of hypothermia on bilirubin-induced toxicity in primary mouse neuronal cell cultures. METHODS Hippocampal cell cultures, isolated from newborn mouse brains, were incubated with unconjugated bilirubin (UCB) at 3 days in vitro (DIV) and immediately exposed to varying degrees of hypothermia. Neuronal viability and mitochondrial health were compared between the normothermia (37°C), mild (34°C), moderate (32°C) and severe (29°C) hypothermia groups. Confocal microscopy and fluorescent dyes (propidium iodide and JC-1) were used for cell evaluation. To determine the late effects of hypothermia, the cultures were also examined at 7 DIV after returning to normothermic conditions. RESULTS Induction of any degree of hypothermia increased the neuronal survival after 24 h of UCB treatment. Neuronal death rate and mitochondrial membrane potential loss were lowest in the neurons exposed to moderate hypothermia. We also observed that mild to moderate hypothermia had late protective effects on neuronal cell viability, whereas deep hypothermia did not improve neuronal survival. CONCLUSIONS We conclude that hypothermia reduces the cell death induced by bilirubin toxicity in neuronal cells. Although moderate hypothermia has a better outcome than mild hypothermia, deep hypothermia as low as 29°C has adverse effects on neuronal cell viability.
Collapse
Affiliation(s)
- Nazli Kuter
- Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nese Aysit-Altuncu
- Department of Physiology, School of Medicine, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medicine Research Center (REMER), Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Eren Ozek
- Division of Neonatology, Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
14
|
Gou P, Qi X, Yuan R, Li H, Gao X, Wang J, Zhang B. Tet1-mediated DNA demethylation involves in neuron damage induced by bilirubin in vitro. Toxicol Mech Methods 2017; 28:55-61. [DOI: 10.1080/15376516.2017.1357775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Panhong Gou
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoling Qi
- Institute of Occupational Health and Environment Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Rui Yuan
- Institute of Occupational Health and Environment Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haojie Li
- Institute of Occupational Health and Environment Health, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoling Gao
- Clinical Research and Translational Medicine Institute, Gansu Provincial People’s Hospital, Lanzhou, China
| | - Junling Wang
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Benzhong Zhang
- Institute of Occupational Health and Environment Health, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Qaisiya M, Brischetto C, Jašprová J, Vitek L, Tiribelli C, Bellarosa C. Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch Toxicol 2016; 91:1847-1858. [PMID: 27578021 DOI: 10.1007/s00204-016-1835-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Unconjugated bilirubin (UCB) in newborns may lead to bilirubin neurotoxicity. Few studies investigated the activation of endoplasmic reticulum stress (ER stress) by UCB. We performed an in vitro comparative study using undifferentiated SH-SY5Y, differentiated GI-ME-N neuronal cells and human U87 astrocytoma cells. ER stress and its contribution to inflammation and apoptosis induced by UCB were analyzed. Cytotoxicity, ER stress and inflammation were observed only in neuronal cells, despite intracellular UCB accumulation in all three cell types. UCB toxicity was enhanced in undifferentiated SH-SY5Y cells and correlated with a higher mRNA expression of pro-apoptotic CHOP. Mouse embryonic fibroblast knockout for CHOP and CHOP siRNA-silenced SH-SY5Y increased cells viability upon UCB exposure. In SH-SY5Y, ER stress inhibition by 4-phenylbutyric acid reduced UCB-induced apoptosis and decreased the cleaved forms of caspase-3 and PARP proteins. Reporter gene assay and PERK siRNA showed that IL-8 induction by UCB is transcriptionally regulated by NFкB and PERK signaling. These data suggest that ER stress has an important role in the UCB-induced inflammation and apoptosis, and that targeting ER stress may represent a potential therapeutic approach to decrease UCB-induced neurotoxicity.
Collapse
Affiliation(s)
- Mohammed Qaisiya
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy.
| | - Cristina Brischetto
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy
| | - Jana Jašprová
- Institute of Medical Biochemistry and Laboratory Medicine, 1st Faculty of Medicine, Charles University in Prague, 12000, Prague, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Medicine, 1st Faculty of Medicine, Charles University in Prague, 12000, Prague, Czech Republic.,4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague, 12000, Prague, Czech Republic
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy.,Department of Medical Sciences, University of Trieste, 34149, Trieste, Italy
| | - Cristina Bellarosa
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy
| |
Collapse
|
16
|
Aly HA, Khafagy RM. Taurine reverses endosulfan-induced oxidative stress and apoptosis in adult rat testis. Food Chem Toxicol 2014; 64:1-9. [DOI: 10.1016/j.fct.2013.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/26/2013] [Accepted: 11/11/2013] [Indexed: 12/25/2022]
|
17
|
Song NY, Li CY, Yin XL, Liang M, Shi HB, Han GY, Yin SK. Taurine protects against bilirubin-induced hyperexcitation in rat anteroventral cochlear nucleus neurons. Exp Neurol 2014; 254:216-23. [PMID: 24382452 DOI: 10.1016/j.expneurol.2013.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/24/2013] [Accepted: 12/20/2013] [Indexed: 02/05/2023]
Abstract
No effective medication for hyperbilirubinemia yet exists. Taurine is believed to exert a neuroprotective action. The aim of the present study was to determine whether taurine protected neurons of the rat anteroventral cochlear nucleus (AVCN) against bilirubin-induced neuronal hyperexcitation. AVCN neurons were isolated from 13 to 15-day-old Sprague-Dawley rats. The effects of bilirubin on the spontaneous excitatory postsynaptic currents (sEPSCs) and action potential currents were compared with those exerted by bilirubin and taurine together. Bilirubin dramatically increased the frequencies of sEPSCs and action potential currents, but not sEPSC amplitude. Taurine suppressed the enhanced frequency of action potentials induced by bilirubin, in a dose-dependent manner. In addition, taurine decreased the amplitude of voltage-dependent calcium channel currents that were enhanced upon addition of bilirubin. We explored the mechanism of the protective effects exerted by taurine using GABAA and glycine receptor antagonists, bicuculline and strychnine, respectively. Addition of bicuculline and strychnine eliminated the protective effects of taurine. Neither bilirubin nor taurine affected the sensitivity of the glutamate receptor. Our findings thus indicate that taurine protected AVCN neurons against bilirubin-induced neuronal hyperexcitation by activating the GABAA and glycine receptors and inhibiting calcium flow through voltage-gated channels. Thus, taurine may be effective in treatment of neonatal hyperbilirubinemia.
Collapse
Affiliation(s)
- Ning-ying Song
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China; Department of Otorhinolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Chun-yan Li
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China.
| | - Xin-lu Yin
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Min Liang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Hai-bo Shi
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Guo-ying Han
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | - Shan-kai Yin
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
18
|
Lidong Z, Xiaoquan W, Tao C, Weiwei G, Chang L, Shiming Y. Hyperbilirubinemia and Auditory Neuropathy. J Otol 2013. [DOI: 10.1016/s1672-2930(13)50001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
19
|
Ye HB, Wang J, Zhang WT, Shi HB, Yin SK. Taurine attenuates bilirubin-induced neurotoxicity in the auditory system in neonatal guinea pigs. Int J Pediatr Otorhinolaryngol 2013; 77:647-54. [PMID: 23273639 DOI: 10.1016/j.ijporl.2012.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/17/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Previous work showed that taurine protects neurons against unconjugated bilirubin (UCB)-induced neurotoxicity by maintaining intracellular calcium homeostasis, membrane integrity, and mitochondrial function, thereby preventing apoptosis from occurring, in primary neuron cultures. In this study, we investigated whether taurine could protect the auditory system against the neurotoxicity associated with hyperbilirubinemia in an in vivo model. METHODS Hyperbilirubinemia was established in neonatal guinea pigs by intraperitoneal injection of UCB. Hearing function was observed in electrocochleograms (ECochGs) and auditory brainstem responses (ABRs) recorded before and 1, 8, 24, and 72 h after UCB injection. For morphological evaluations, animals were sacrificed at 8h post-injection, and the afferent terminals beneath the inner hair cells (IHCs), spiral ganglion neurons (SGNs), and their fibers were examined. RESULTS It was found that UCB injection significantly increased latencies and inter-wave intervals, and thresholds of ABR and compound action potentials, and caused marked damage to type I SGNs, their axons, and terminals to cochlear IHCs. When baby guinea pigs were pretreated with taurine for 5 consecutive days and then injected with bilirubin, electrophysiological abnormalities and morphological damage were attenuated significantly in both the peripheral and central auditory system. CONCLUSIONS From these observations, it was concluded that taurine limited bilirubin-induced neural damage in the auditory system. These findings may contribute to the development of taurine as a broad-spectrum agent for preventing and/or treating hearing loss in neonatal jaundice.
Collapse
Affiliation(s)
- Hai-Bo Ye
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiaotong University, 600 Yishan Road, Shanghai 200233, China
| | | | | | | | | |
Collapse
|
20
|
Taurine and Its Neuroprotective Role. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 775:19-27. [DOI: 10.1007/978-1-4614-6130-2_2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Lethality of Taurine and Alcohol Coadministration in Mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 776:29-38. [DOI: 10.1007/978-1-4614-6093-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Taurine attenuates methamphetamine-induced autophagy and apoptosis in PC12 cells through mTOR signaling pathway. Toxicol Lett 2012; 215:1-7. [DOI: 10.1016/j.toxlet.2012.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/18/2012] [Accepted: 09/25/2012] [Indexed: 11/23/2022]
|
23
|
Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 2012; 3:88. [PMID: 22661946 PMCID: PMC3361682 DOI: 10.3389/fphar.2012.00088] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022] Open
Abstract
Unconjugated hyperbilirubinemia is a common condition in the first week of postnatal life. Although generally harmless, some neonates may develop very high levels of unconjugated bilirubin (UCB), which may surpass the protective mechanisms of the brain in preventing UCB accumulation. In this case, both short-term and long-term neurodevelopmental disabilities, such as acute and chronic UCB encephalopathy, known as kernicterus, or more subtle alterations defined as bilirubin-induced neurological dysfunction (BIND) may be produced. There is a tremendous variability in babies' vulnerability toward UCB for reasons not yet explained, but preterm birth, sepsis, hypoxia, and hemolytic disease are comprised as risk factors. Therefore, UCB levels and neurological abnormalities are not strictly correlated. Even nowadays, the mechanisms of UCB neurotoxicity are still unclear, as are specific biomarkers, and little is known about lasting sequelae attributable to hyperbilirubinemia. On autopsy, UCB was shown to be within neurons, neuronal processes, and microglia, and to produce loss of neurons, demyelination, and gliosis. In isolated cell cultures, UCB was shown to impair neuronal arborization and to induce the release of pro-inflammatory cytokines from microglia and astrocytes. However, cell dependent sensitivity to UCB toxicity and the role of each nerve cell type remains not fully understood. This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocytes, and on phenotypic and functional responses of microglia to UCB. Interplay among glia elements and cross-talk with neurons, with a special emphasis in the UCB-induced immunostimulation, and the role of sepsis in BIND pathogenesis are highlighted. New and interesting data on the anti-inflammatory and antioxidant activities of different pharmacological agents are also presented, as novel and promising additional therapeutic approaches to BIND.
Collapse
Affiliation(s)
- Dora Brites
- Neuron Glia Biology in Health and Disease Unit, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon Lisbon, Portugal
| |
Collapse
|
24
|
Becerir C, Kılıç İ, Şahin Ö, Özdemir Ö, Tokgün O, Özdemir B, Akca H. The protective effect of docosahexaenoic acid on the bilirubin neurotoxicity. J Enzyme Inhib Med Chem 2012; 28:801-7. [DOI: 10.3109/14756366.2012.684053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | - Onur Tokgün
- Department of Medical Biology,
Denizli, Turkey
| | - Bülent Özdemir
- Department Anatomy, Pamukkale University Faculty of Medicine,
Denizli, Turkey
| | - Hakan Akca
- Department of Medical Biology,
Denizli, Turkey
| |
Collapse
|
25
|
Zhou J, Li Y, Yan G, Bu Q, Lv L, Yang Y, Zhao J, Shao X, Deng Y, Zhu R, Zhao Y, Cen X. Protective Role of Taurine Against Morphine-Induced Neurotoxicity in C6 Cells via Inhibition of Oxidative Stress. Neurotox Res 2011; 20:334-42. [DOI: 10.1007/s12640-011-9247-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 01/15/2023]
|
26
|
Gao X, Yang X, Zhang B. Neuroprotection of taurine against bilirubin-induced elevation of apoptosis and intracellular free calcium ion in vivo. Toxicol Mech Methods 2011; 21:383-7. [PMID: 21250777 DOI: 10.3109/15376516.2010.546815] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous work has shown that taurine protected neurons against unconjugated bilirubin (UCB)-induced neurotoxicity by preventing cell apoptosis and maintaining intracellular Ca²⁺ homeostasis in primary neuron culture. This study investigates the neurotoxicity of hyperbilirubinemia and neuroprotection of taurine in a clinically relevant murine model in vivo. A hyperbilirubinemia baby mice model was established by intraperitoneal injection with UCB. After 24 h, the neural apoptotic level, transcriptional activity of caspase-3, and iCa²⁺ concentration were detected. It was found that UCB injection significantly increased both intracellular free Ca²⁺ concentrations and the activities of proapoptosis protease caspase-3, which is related to the elevation of neural apoptosis level. When baby mice were pretreated with 7.5 or 15 mg/kg body weight (bw) taurine for 4 h and then exposed to UCB, apoptotic death was significantly attenuated through down-regulation of activity of caspase-3 and i[Ca²⁺] in the brain. From these observations, it was concluded that taurine limits bilirubin-induced neural damage by inhibiting iCa²⁺ overload as well as decreasing activation of proapoptotic proteases caspase-3. This study might contribute to the development of taurine as a broad-spectrum agent for preventing and/or treating neural damage in neonatal jaundice.
Collapse
Affiliation(s)
- Xiaoling Gao
- Molecular Immunology, Center of Clinical laboratory, People's Hospital of Gansu Province, Gansu, P.R. China
| | | | | |
Collapse
|
27
|
Rosemberg DB, Kist LW, Etchart RJ, Rico EP, Langoni AS, Dias RD, Bogo MR, Bonan CD, Souza DO. Evidence that acute taurine treatment alters extracellular AMP hydrolysis and adenosine deaminase activity in zebrafish brain membranes. Neurosci Lett 2010; 481:105-9. [PMID: 20600599 DOI: 10.1016/j.neulet.2010.06.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/30/2010] [Accepted: 06/21/2010] [Indexed: 12/20/2022]
Abstract
Taurine is one of the most abundant free amino acids in excitable tissues. In the brain, extracellular taurine may act as an inhibitory neurotransmitter, neuromodulator, and neuroprotector. Nucleotides are ubiquitous signaling molecules that play crucial roles for brain function. The inactivation of nucleotide-mediated signaling is controlled by ectonucleotidases, which include the nucleoside triphosphate diphosphohydrolase (NTPDase) family and ecto-5'-nucleotidase. These enzymes hydrolyze ATP/GTP to adenosine/guanosine, which exert a modulatory role controlling several neurotransmitter systems. The nucleoside adenosine can be inactivated in extracellular or intracellular milieu by adenosine deaminase (ADA). In this report, we tested whether acute taurine treatment at supra-physiological concentrations alters NTPDase, ecto-5'-nucleotidase, and ADA activities in zebrafish brain. Fish were treated with 42, 150, and 400 mg L(-1) taurine for 1h, the brains were dissected and the enzyme assays were performed. Although the NTPDase activities were not altered, 150 and 400 mg L(-1) taurine increased AMP hydrolysis (128 and 153%, respectively) in zebrafish brain membranes and significantly decreased ecto-ADA activity (29 and 38%, respectively). In vitro assays demonstrated that taurine did not change AMP hydrolysis, whereas it promoted a significant decrease in ecto-ADA activity at 150 and 400 mg L(-1) (24 and 26%, respectively). Altogether, our data provide the first evidence that taurine exposure modulates the ecto-enzymes responsible for controlling extracellular adenosine levels in zebrafish brain. These findings could be relevant to evaluate potential beneficial effects promoted by acute taurine treatment in the central nervous system (CNS) of this species.
Collapse
Affiliation(s)
- Denis Broock Rosemberg
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul., Rua Ramiro Barcelos 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|