1
|
Aceves M, Tucker A, Chen J, Vo K, Moses J, Amar Kumar P, Thomas H, Miranda D, Dampf G, Dietz V, Chang M, Lukose A, Jang J, Nadella S, Gillespie T, Trevino C, Buxton A, Pritchard AL, Green P, McCreedy DA, Dulin JN. Developmental stage of transplanted neural progenitor cells influences anatomical and functional outcomes after spinal cord injury in mice. Commun Biol 2023; 6:544. [PMID: 37208439 PMCID: PMC10199026 DOI: 10.1038/s42003-023-04893-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for replacing lost neurons following spinal cord injury (SCI). However, how graft cellular composition influences regeneration and synaptogenesis of host axon populations, or recovery of motor and sensory functions after SCI, is poorly understood. We transplanted developmentally-restricted spinal cord NPCs, isolated from E11.5-E13.5 mouse embryos, into sites of adult mouse SCI and analyzed graft axon outgrowth, cellular composition, host axon regeneration, and behavior. Earlier-stage grafts exhibited greater axon outgrowth, enrichment for ventral spinal cord interneurons and Group-Z spinal interneurons, and enhanced host 5-HT+ axon regeneration. Later-stage grafts were enriched for late-born dorsal horn interneuronal subtypes and Group-N spinal interneurons, supported more extensive host CGRP+ axon ingrowth, and exacerbated thermal hypersensitivity. Locomotor function was not affected by any type of NPC graft. These findings showcase the role of spinal cord graft cellular composition in determining anatomical and functional outcomes following SCI.
Collapse
Affiliation(s)
- Miriam Aceves
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ashley Tucker
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph Chen
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Katie Vo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Joshua Moses
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Hannah Thomas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Diego Miranda
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Gabrielle Dampf
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew Chang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Aleena Lukose
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Julius Jang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Sneha Nadella
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Tucker Gillespie
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Trevino
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Buxton
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Anna L Pritchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Dylan A McCreedy
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Zhao X, Gu R, Zhao Y, Wei F, Gao X, Zhuang Y, Xiao Z, Shen H, Dai J. Adult spinal cord tissue transplantation combined with local tacrolimus sustained-release collagen hydrogel promotes complete spinal cord injury repair. Cell Prolif 2023; 56:e13451. [PMID: 36916024 DOI: 10.1111/cpr.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
The strategy of replacing a completely damaged spinal cord with allogenic adult spinal cord tissues (aSCs) can potentially repair complete spinal cord injury (SCI) in combination with immunosuppressive drugs, such as tacrolimus (Tac), which suppress transplant rejection and improve graft survival. However, daily systemic administration of immunosuppressive agents may cause harsh side effects. Herein, a localized, sustained Tac-release collagen hydrogel (Col/Tac) was developed to maximize the immune regulatory efficacy but minimize the side effects of Tac after aSC transplantation in complete SCI recipients. Thoracic aSCs of rat donors were transplanted into the complete thoracic spinal cord transection rat recipients, after which Col/Tac hydrogel was implanted. The Tac-encapsulated collagen hydrogel exhibited suitable mechanical properties and long-term sustained Tac release behaviour. After Col/Tac hydrogel implantation in SCI rats with aSC transplantation, the recipients' survival rate significantly improved and the side effects on tissues were reduced compared with those with conventional Tac medication. Moreover, treatment with the Col/Tac hydrogel exhibited similarly reduced immune rejection levels by regulating immune responses and promoted neurogenesis compared to daily Tac injections, and thus improved functional restoration. Localized delivery of immunosuppressive agents by the Col/Tac hydrogel may be a promising strategy for overcoming immune rejection of transplants, with significant potential for clinical application in the future.
Collapse
Affiliation(s)
- Xinhao Zhao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,China-Japan Union Hospital of Jilin University, Changchun, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Gu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Feng Wei
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Xu Gao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Allotransplantation of adult spinal cord tissues after complete transected spinal cord injury: Long-term survival and functional recovery in canines. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1879-1886. [PMID: 32382980 DOI: 10.1007/s11427-019-1623-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI), especially complete transected SCI, leads to loss of cells and extracellular matrix and functional impairments. In a previous study, we transplanted adult spinal cord tissues (aSCTs) to replace lost tissues and facilitate recovery in a rat SCI model. However, rodents display considerable differences from human patients in the scale, anatomy and functions of spinal cord systems, and responses after injury. Thus, use of a large animal SCI model is required to examine the repair efficiency of potential therapeutic approaches. In this study, we transplanted allogenic aSCTs from adult dogs to the lesion area of canines after complete transection of the thoracic spinal cord, and investigated the long-term cell survival and functional recovery. To enhance repair efficiency, a growth factor cocktail was added during aSCT transplantation, providing a favorable microenvironment. The results showed that transplantation of aSCTs, in particular with the addition of growth factors, significantly improves locomotor function restoration and increases the number of neurofilament-, microtubule-associated protein 2-, 5-hydroxytryptamine-, choline acetyltransferase- and tyrosine hydroxylase-positive neurons in the lesion area at 6 months post-surgery. In addition, we demonstrated that donor neurons in aSCTs can survive for a long period after transplantation. This study showed for the first time that transplanting aSCTs combined with growth factor supplementation facilitates reconstruction of injured spinal cords, and consequently promotes long lasting motor function recovery in a large animal complete transected SCI model, and therefore could be considered as a possible therapeutic strategy in humans.
Collapse
|
4
|
Giusto E, Codrich M, Leo G, Francardo V, Coradazzi M, Parenti R, Gulisano M, Vicario N, Gulino R, Leanza G. Compensatory changes in degenerating spinal motoneurons sustain functional sparing in the SOD1‐G93A mouse model of amyotrophic lateral sclerosis. J Comp Neurol 2019; 528:231-243. [DOI: 10.1002/cne.24751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/07/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Elena Giusto
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
| | - Marta Codrich
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
| | - Gioacchino Leo
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
| | - Veronica Francardo
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
| | - Marino Coradazzi
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section University of Catania Catania Italy
- Molecular Preclinical and Translational Imaging Research Centre ‐ IMPRonTE University of Catania Italy
| | - Massimo Gulisano
- Molecular Preclinical and Translational Imaging Research Centre ‐ IMPRonTE University of Catania Italy
- Department of Drug Sciences University of Catania Catania Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Physiology Section University of Catania Catania Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section University of Catania Catania Italy
- Molecular Preclinical and Translational Imaging Research Centre ‐ IMPRonTE University of Catania Italy
| | - Giampiero Leanza
- B.R.A.I.N. Laboratory for Neurogenesis and Repair, Department of Life Sciences University of Trieste Trieste Italy
- Molecular Preclinical and Translational Imaging Research Centre ‐ IMPRonTE University of Catania Italy
- Department of Drug Sciences University of Catania Catania Italy
| |
Collapse
|
5
|
Transplantation of adult spinal cord tissue: Transection spinal cord repair and potential clinical translation. SCIENCE CHINA-LIFE SCIENCES 2019; 62:870-872. [PMID: 31124004 DOI: 10.1007/s11427-019-9534-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
|
6
|
Gulino R, Vicario N, Giunta MAS, Spoto G, Calabrese G, Vecchio M, Gulisano M, Leanza G, Parenti R. Neuromuscular Plasticity in a Mouse Neurotoxic Model of Spinal Motoneuronal Loss. Int J Mol Sci 2019; 20:ijms20061500. [PMID: 30917493 PMCID: PMC6471664 DOI: 10.3390/ijms20061500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022] Open
Abstract
Despite the relevant research efforts, the causes of amyotrophic lateral sclerosis (ALS) are still unknown and no effective cure is available. Many authors suggest that ALS is a multi-system disease caused by a network failure instead of a cell-autonomous pathology restricted to motoneurons. Although motoneuronal loss is the critical hallmark of ALS given their specific vulnerability, other cell populations, including muscle and glial cells, are involved in disease onset and progression, but unraveling their specific role and crosstalk requires further investigation. In particular, little is known about the plastic changes of the degenerating motor system. These spontaneous compensatory processes are unable to halt the disease progression, but their elucidation and possible use as a therapeutic target represents an important aim of ALS research. Genetic animal models of disease represent useful tools to validate proven hypotheses or to test potential therapies, and the conception of novel hypotheses about ALS causes or the study of pathogenic mechanisms may be advantaged by the use of relatively simple in vivo models recapitulating specific aspects of the disease, thus avoiding the inclusion of too many confounding factors in an experimental setting. Here, we used a neurotoxic model of spinal motoneuron depletion induced by injection of cholera toxin-B saporin in the gastrocnemius muscle to investigate the possible occurrence of compensatory changes in both the muscle and spinal cord. The results showed that, following the lesion, the skeletal muscle became atrophic and displayed electromyographic activity similar to that observed in ALS patients. Moreover, the changes in muscle fiber morphology were different from that observed in ALS models, thus suggesting that some muscular effects of disease may be primary effects instead of being simply caused by denervation. Notably, we found plastic changes in the surviving motoneurons that can produce a functional restoration probably similar to the compensatory changes occurring in disease. These changes could be at least partially driven by glutamatergic signaling, and astrocytes contacting the surviving motoneurons may support this process.
Collapse
Affiliation(s)
- Rosario Gulino
- Laboratory of Neurophysiology, Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Nunzio Vicario
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Maria A S Giunta
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Graziana Spoto
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Giovanna Calabrese
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Michele Vecchio
- Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele" and Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy.
| | - Massimo Gulisano
- Laboratory of Synthetic and Systems Biology, Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Giampiero Leanza
- Laboratory of Neurogenesis and Repair, Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Rosalba Parenti
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| |
Collapse
|
7
|
Human adipose-derived mesenchymal stem cells seeded into a collagen-hydroxyapatite scaffold promote bone augmentation after implantation in the mouse. Sci Rep 2017; 7:7110. [PMID: 28769083 PMCID: PMC5541101 DOI: 10.1038/s41598-017-07672-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022] Open
Abstract
Traumatic injury or surgical excision of diseased bone tissue usually require the reconstruction of large bone defects unable to heal spontaneously, especially in older individuals. This is a big challenge requiring the development of biomaterials mimicking the bone structure and capable of inducing the right commitment of cells seeded within the scaffold. In particular, given their properties and large availability, the human adipose-derived stem cells are considered as the better candidate for autologous cell transplantation. In order to evaluate the regenerative potential of these cells along with an osteoinductive biomaterial, we have used collagen/hydroxyapatite scaffolds to test ectopic bone formation after subcutaneous implantation in mice. The process was analysed both in vivo, by Fluorescent Molecular Tomography (FMT), and ex vivo, to evaluate the formation of bone and vascular structures. The results have shown that the biomaterial could itself be able of promoting differentiation of host cells and bone formation, probably by means of its intrinsic chemical and structural properties, namely the microenvironment. However, when charged with human mesenchymal stem cells, the ectopic bone formation within the scaffold was increased. We believe that these results represent an important advancement in the field of bone physiology, as well as in regenerative medicine.
Collapse
|
8
|
Neuroplasticity and Repair in Rodent Neurotoxic Models of Spinal Motoneuron Disease. Neural Plast 2016; 2016:2769735. [PMID: 26862439 PMCID: PMC4735933 DOI: 10.1155/2016/2769735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/12/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Retrogradely transported toxins are widely used to set up protocols for selective lesioning of the nervous system. These methods could be collectively named "molecular neurosurgery" because they are able to destroy specific types of neurons by using targeted neurotoxins. Lectins such as ricin, volkensin, or modeccin and neuropeptide- or antibody-conjugated saporin represent the most effective toxins used for neuronal lesioning. Some of these specific neurotoxins could be used to induce selective depletion of spinal motoneurons. In this review, we extensively describe two rodent models of motoneuron degeneration induced by volkensin or cholera toxin-B saporin. In particular, we focus on the possible experimental use of these models to mimic neurodegenerative diseases, to dissect the molecular mechanisms of neuroplastic changes underlying the spontaneous functional recovery after motoneuron death, and finally to test different strategies of neural repair. The potential clinical applications of these approaches are also discussed.
Collapse
|
9
|
Novel Mechanisms of Spinal Cord Plasticity in a Mouse Model of Motoneuron Disease. BIOMED RESEARCH INTERNATIONAL 2015; 2015:654637. [PMID: 26064939 PMCID: PMC4433663 DOI: 10.1155/2015/654637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022]
Abstract
A hopeful spinal cord repairing strategy involves the activation of neural precursor cells. Unfortunately, their ability to generate neurons after injury appears limited. Another process promoting functional recovery is synaptic plasticity. We have previously studied some mechanisms of spinal plasticity involving BDNF, Shh, Notch-1, Numb, and Noggin, by using a mouse model of motoneuron depletion induced by cholera toxin-B saporin. TDP-43 is a nuclear RNA/DNA binding protein involved in amyotrophic lateral sclerosis. Interestingly, TDP-43 could be localized at the synapse and affect synaptic strength. Here, we would like to deepen the investigation of this model of spinal plasticity. After lesion, we observed a glial reaction and an activity-dependent modification of Shh, Noggin, and Numb proteins. By using multivariate regression models, we found that Shh and Noggin could affect motor performance and that these proteins could be associated with both TDP-43 and Numb. Our data suggest that TDP-43 is likely an important regulator of synaptic plasticity, probably in collaboration with other proteins involved in both neurogenesis and synaptic plasticity. Moreover, given the rapidly increasing knowledge about spinal cord plasticity, we believe that further efforts to achieve spinal cord repair by stimulating the intrinsic potential of spinal cord will produce interesting results.
Collapse
|
10
|
Gulino R, Gulisano M. Noggin and Sonic hedgehog are involved in compensatory changes within the motoneuron-depleted mouse spinal cord. J Neurol Sci 2013; 332:102-9. [PMID: 23859181 DOI: 10.1016/j.jns.2013.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/22/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Sonic hedgehog and Noggin are morphogenetic factors involved in neural induction and ventralization of the neural tube, but recent findings suggest that they could participate in regeneration and functional recovery after injury. Here, in order to verify if these mechanisms could occur in the spinal cord and involve synaptic plasticity, we measured the expression levels of Sonic hedgehog, Noggin, Choline Acetyltransferase, Synapsin-I and Glutamate receptor subunits (GluR1, GluR2, GluR4), in a motoneuron-depleted mouse spinal cord lesion model obtained by intramuscular injection of Cholera toxin-B saporin. The lesion caused differential expression changes of the analyzed proteins. Moreover, motor performance was found correlated with Sonic hedgehog and Noggin expression in lesioned animals. The results also suggest that Sonic hedgehog could collaborate in modulating synaptic plasticity. Together, these findings confirm that the injured mammalian spinal cord has intrinsic potential for repair and that some proteins classically involved in development, such as Sonic hedgehog and Noggin could have important roles in regeneration and functional restoration, by mechanisms including synaptic plasticity.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Viale Andrea Doria 6, Catania, Italy.
| | | |
Collapse
|
11
|
Gulino R, Gulisano M. Involvement of brain-derived neurotrophic factor and sonic hedgehog in the spinal cord plasticity after neurotoxic partial removal of lumbar motoneurons. Neurosci Res 2012; 73:238-47. [PMID: 22579680 DOI: 10.1016/j.neures.2012.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 01/19/2023]
Abstract
Adult mammals could spontaneously achieve a partial sensory-motor recovery after spinal cord injury, by mechanisms including synaptic plasticity. We previously showed that this recovery is associated to the expression of synapsin-I, and that sonic hedgehog and Notch-1 could be also involved in plasticity. The role of brain-derived neurotrophic factor and glutamate receptors in regulating synaptic efficacy has been explored in the last decade but, although these mechanisms are now well-defined in the brain, the molecular mechanisms underlying the so called "spinal learning" are still less clear. Here, we measured the expression levels of choline acetyltransferase, synapsin-I, sonic hedgehog, Notch-1, glutamate receptor subunits (GluR1, GluR2, GluR4, NMDAR1) and brain-derived neurotrophic factor, in a motoneuron-depleted mouse spinal lesion model obtained by intramuscular injection of cholera toxin-B saporin. The lesion caused the down-regulation of the majority of analysed proteins. Moreover, we found that in lesioned but not in control spinal tissue, synapsin-I expression is associated to that of both brain-derived neurotrophic factor and sonic hedgehog, whereas GluR2 expression is linked to that of Shh. These results suggest that brain-derived neurotrophic factor and sonic hedgehog could collaborate in modulating synaptic plasticity after the removal of motoneurons, by a mechanism involving both pre- and post-synaptic processes. Interestingly, the involvement of sonic hedgehog showed here is novel, and offers new routes to address spinal cord plasticity and repair.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Viale Andrea Doria 6, I95125 Catania, Italy.
| | | |
Collapse
|