1
|
Palluzzi F, Ferrari R, Graziano F, Novelli V, Rossi G, Galimberti D, Rainero I, Benussi L, Nacmias B, Bruni AC, Cusi D, Salvi E, Borroni B, Grassi M. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia. PLoS One 2017; 12:e0185797. [PMID: 29020091 PMCID: PMC5636111 DOI: 10.1371/journal.pone.0185797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/19/2017] [Indexed: 01/04/2023] Open
Abstract
Frontotemporal Dementia (FTD) is the form of neurodegenerative dementia with the highest prevalence after Alzheimer’s disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72) have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM) analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies.
Collapse
Affiliation(s)
- Fernando Palluzzi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
- * E-mail:
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Francesca Graziano
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Valeria Novelli
- Department of Genetics, Fondazione Policlinico A. Gemelli, Roma, Italy
| | - Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Daniela Galimberti
- Department of Neurological Sciences, Dino Ferrari Institute, University of Milan, Milano, Italy
| | - Innocenzo Rainero
- Department of Neuroscience, Neurology I, University of Torino and Città della Salute e della Scienza di Torino, Torino, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy
| | - Amalia C. Bruni
- Neurogenetic Regional Centre ASPCZ Lamezia Terme, Lamezia Terme (CZ), Italy
| | - Daniele Cusi
- Department of Health Sciences, University of Milan at San Paolo Hospital, Milano, Italy
- Institute of Biomedical Technologies, Italian National Research Council, Milano, Italy
| | - Erika Salvi
- Institute of Biomedical Technologies, Italian National Research Council, Milano, Italy
| | - Barbara Borroni
- Department of Medical Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Yagi H, Nagano T, Xie MJ, Ikeda H, Kuroda K, Komada M, Iguchi T, Tariqur RM, Morikubo S, Noguchi K, Murase K, Okabe M, Sato M. Filamin A-interacting protein (FILIP) is a region-specific modulator of myosin 2b and controls spine morphology and NMDA receptor accumulation. Sci Rep 2014; 4:6353. [PMID: 25220605 PMCID: PMC4163676 DOI: 10.1038/srep06353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/26/2014] [Indexed: 12/14/2022] Open
Abstract
Learning and memory depend on morphological and functional changes to neural spines. Non-muscle myosin 2b regulates actin dynamics downstream of long-term potentiation induction. However, the mechanism by which myosin 2b is regulated in the spine has not been fully elucidated. Here, we show that filamin A-interacting protein (FILIP) is involved in the control of neural spine morphology and is limitedly expressed in the brain. FILIP bound near the ATPase domain of non-muscle myosin heavy chain IIb, an essential component of myosin 2b, and modified the function of myosin 2b by interfering with its actin-binding activity. In addition, FILIP altered the subcellular distribution of myosin 2b in spines. Moreover, subunits of the NMDA receptor were differently distributed in FILIP-expressing neurons, and excitation propagation was altered in FILIP-knockout mice. These results indicate that FILIP is a novel, region-specific modulator of myosin 2b.
Collapse
Affiliation(s)
- Hideshi Yagi
- 1] Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan [2] Research and Education Program for Life Science, University of Fukui, Fukui 910-8507, Japan [3] Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Takashi Nagano
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Min-Jue Xie
- 1] Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan [2] Research and Education Program for Life Science, University of Fukui, Fukui 910-8507, Japan
| | - Hiroshi Ikeda
- 1] Research and Education Program for Life Science, University of Fukui, Fukui 910-8507, Japan [2] Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Kazuki Kuroda
- 1] Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan [2] Research and Education Program for Life Science, University of Fukui, Fukui 910-8507, Japan
| | - Munekazu Komada
- 1] Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan [2] Research and Education Program for Life Science, University of Fukui, Fukui 910-8507, Japan
| | - Tokuichi Iguchi
- 1] Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan [2] Research and Education Program for Life Science, University of Fukui, Fukui 910-8507, Japan [3] Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Rahman M Tariqur
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Soichi Morikubo
- 1] Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan [2] Division of Ophthalmology, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Kazuyuki Murase
- 1] Research and Education Program for Life Science, University of Fukui, Fukui 910-8507, Japan [2] Department of Human and Artificial Intelligence Systems, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Masaru Okabe
- Department of Experimental Genome Research, Genome Information Research Center, Osaka University, Osaka 565-0871, Japan
| | - Makoto Sato
- 1] Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan [2] Research and Education Program for Life Science, University of Fukui, Fukui 910-8507, Japan [3] Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan [4] United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka 565-0871, Japan [5] Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Development of a neural circuit in the superior colliculus: analysis of the propagation of neuronal excitation from intermediate to superficial layers. Neuroreport 2014; 25:242-7. [PMID: 24488028 DOI: 10.1097/wnr.0000000000000081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The superior colliculus is important for orientation behaviors, in which visuomotor transformation is performed by the pathway from the superficial layer (SGS) to the intermediate layers (SGI). The opposite pathway (from the SGI to the SGS) also exists, raising the possibility of a feedback circuit, although it could be either negative (inhibitory) or positive (excitatory). In this study, we focused on the development of the feedback circuit. We used optical imaging methods that can measure neuronal population responses directly, as the orientation behaviors are determined by large population activities of superior colliculus neurons. We examined the postnatal development of the propagation pattern of neuronal excitation from the SGI to the SGS using a GABAA receptor antagonist. The optical response propagated within the SGI, but not to the SGS in infant mice that have not opened their eyes. In contrast, in young mice after eye opening, the optical response propagated initially in the SGI and then to the SGS. The GABAA receptor antagonist increased the optical response in the SGS in young mice, as well as that in the SGI in infant mice. Together, these results suggest that axons of SGI neurons terminate to the SGS during development after eye opening.
Collapse
|
4
|
Li J, O W, Li W, Jiang ZG, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 2013; 14:24438-75. [PMID: 24351827 PMCID: PMC3876121 DOI: 10.3390/ijms141224438] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/27/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs.
Collapse
Affiliation(s)
- Jie Li
- Department of Geratology, First Hospital of Jilin University, Changchun, Jilin 130021, China; E-Mail:
| | - Wuliji O
- College of Pharmacology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028000, China; E-Mail:
| | - Wei Li
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130021, China; E-Mail:
| | - Zhi-Gang Jiang
- Panacea Pharmaceuticals, Inc., Gaithersburg, MD 20877, USA; E-Mail:
| | | |
Collapse
|
5
|
Ikeda H, Mochizuki K, Murase K. Astrocytes are involved in long-term facilitation of neuronal excitation in the anterior cingulate cortex of mice with inflammatory pain. Pain 2013; 154:2836-2843. [PMID: 23988365 DOI: 10.1016/j.pain.2013.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 12/23/2022]
Abstract
Neuronal plasticity in the pain-processing pathway is thought to be a mechanism underlying pain hypersensitivity and negative emotions occurring during a pain state. Recent evidence suggests that the activation of astrocytes in the anterior cingulate cortex (ACC) contributes to the development of negative emotions during pain hypersensitivity after peripheral inflammation. However, it is unknown whether these activated astrocytes contribute to neuronal plasticity in the ACC. In this study, by using optical imaging with voltage- and Ca(2+)-sensitive dyes, we examined the long-term facilitation of neuronal excitation induced by high-frequency conditioning stimulation (HFS) in ACC slices of control mice and mice with peripheral inflammation induced by the injection of complete Freund adjuvant (CFA) to the hind paw. Immunoreactivity of glial fibrillary acidic protein in laminae II-III of the ACC in the CFA-injected mice was higher than in the control mice. Neuronal excitation in ACC slices from the CFA-injected mice was gradually increased by HFS, and the magnitude of this long-term facilitation was greater than in the control mice. The long-term facilitation in the CFA-injected mice was inhibited by the astroglial toxin, the N-methyl-d-aspartate (NMDA) receptor antagonist and NMDA receptor glycine binding site antagonist. The increase of intracellular Ca(2+) concentration in astrocytes during HFS was higher in the CFA-injected mice than in the control mice and was inhibited by l-α-aminoadipate (l-α-AA). These results suggest that the activation of astrocytes in the ACC plays a crucial role in the development of negative emotions and LTP during pain hypersensitivity after peripheral inflammation.
Collapse
Affiliation(s)
- Hiroshi Ikeda
- Department of Human and Artificial Intelligence Systems, Graduate School of Engineering, Research and Education Program for Life Science, University of Fukui, Fukui, Japan
| | | | | |
Collapse
|