1
|
Liu R, Zhang Z, Chen Y, Liao J, Wang Y, Liu J, Lin Z, Xiao G. Choroid plexus epithelium and its role in neurological diseases. Front Mol Neurosci 2022; 15:949231. [PMID: 36340696 PMCID: PMC9633854 DOI: 10.3389/fnmol.2022.949231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 02/16/2024] Open
Abstract
Choroid plexus epithelial cells can secrete cerebrospinal fluid into the ventricles, serving as the major structural basis of the selective barrier between the neurological system and blood in the brain. In fact, choroid plexus epithelial cells release the majority of cerebrospinal fluid, which is connected with particular ion channels in choroid plexus epithelial cells. Choroid plexus epithelial cells also produce and secrete a number of essential growth factors and peptides that help the injured cerebrovascular system heal. The pathophysiology of major neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, as well as minor brain damage diseases like hydrocephalus and stroke is still unknown. Few studies have previously connected choroid plexus epithelial cells to the etiology of these serious brain disorders. Therefore, in the hopes of discovering novel treatment options for linked conditions, this review extensively analyzes the association between choroid plexus epithelial cells and the etiology of neurological diseases such as Alzheimer's disease and hydrocephalus. Finally, we review CPE based immunotherapy, choroid plexus cauterization, choroid plexus transplantation, and gene therapy.
Collapse
Affiliation(s)
- Ruizhen Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yibing Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junbo Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuchang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Lin
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Jang A, Lehtinen MK. Experimental approaches for manipulating choroid plexus epithelial cells. Fluids Barriers CNS 2022; 19:36. [PMID: 35619113 PMCID: PMC9134666 DOI: 10.1186/s12987-022-00330-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/14/2022] [Indexed: 12/26/2022] Open
Abstract
Choroid plexus (ChP) epithelial cells are crucial for the function of the blood-cerebrospinal fluid barrier (BCSFB) in the developing and mature brain. The ChP is considered the primary source and regulator of CSF, secreting many important factors that nourish the brain. It also performs CSF clearance functions including removing Amyloid beta and potassium. As such, the ChP is a promising target for gene and drug therapy for neurodevelopmental and neurological disorders in the central nervous system (CNS). This review describes the current successful and emerging experimental approaches for targeting ChP epithelial cells. We highlight methodological strategies to specifically target these cells for gain or loss of function in vivo. We cover both genetic models and viral gene delivery systems. Additionally, several lines of reporters to access the ChP epithelia are reviewed. Finally, we discuss exciting new approaches, such as chemical activation and transplantation of engineered ChP epithelial cells. We elaborate on fundamental functions of the ChP in secretion and clearance and outline experimental approaches paving the way to clinical applications.
Collapse
Affiliation(s)
- Ahram Jang
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Shende P, Trivedi R. Biofluidic material-based carriers: Potential systems for crossing cellular barriers. J Control Release 2021; 329:858-870. [PMID: 33053397 DOI: 10.1016/j.jconrel.2020.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/24/2022]
Abstract
Biofluids act as a repository for disease biomarkers and are excellent diagnostic tools applied in establishing a disease profile based on clinical testing, evaluation and monitoring the progression of patients suffering from various conditions. Furthermore, biofluids and their derived components such proteins, pigments, enzymes, hormones and cells carry a potential in the development of therapeutic drug delivery systems or as cargo materials for targeting the drug to the site of action. The presence of biofluids with respect to their specific location reveals the information of disease progression and mechanism, delivery aspects such as routes of administration as well as pharmacological factors such as binding affinity, rate of kinetics, efficacy, bioavailability and patient compliance. This review focuses on the properties and functional benefits of some biofluids, namely blood, saliva, bile, urine, amniotic fluid, synovial fluid and cerebrospinal fluid. It also covers the therapeutic and targeting action of fluid-derived substances in various micro- or nano-systems like nanohybrids, nanoparticles, self-assembled micelles, microparticles, cell-based systems, etc. The formulation of such biologically-oriented systems demonstrate the advantages of natural origin, biocompatibility and biodegradability and offer new techniques for overcoming the challenges experienced in conventional therapies.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India..
| | - Riddhi Trivedi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
4
|
Branston SD, Wright J, Keshavarz-Moore E. A non-chromatographic method for the removal of endotoxins from bacteriophages. Biotechnol Bioeng 2015; 112:1714-9. [DOI: 10.1002/bit.25571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/08/2015] [Accepted: 02/12/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Steven D. Branston
- Department of Biochemical Engineering; The Advanced Centre for Biochemical Engineering; Department of Biochemical Engineering; University College London, Bernard Katz Building, Gordon Street; London WC1H 0AH UK
| | - Jason Wright
- NeuroPhage Pharmaceuticals, 222 Third Street, Suite 3120; Cambridge Massachusetts 02142
| | - Eli Keshavarz-Moore
- Department of Biochemical Engineering; The Advanced Centre for Biochemical Engineering; Department of Biochemical Engineering; University College London, Bernard Katz Building, Gordon Street; London WC1H 0AH UK
| |
Collapse
|
6
|
Gonzalez AM, Leadbeater WE, Burg M, Sims K, Terasaki T, Johanson CE, Stopa EG, Eliceiri BP, Baird A. Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system. BMC Neurosci 2011; 12:4. [PMID: 21214926 PMCID: PMC3025905 DOI: 10.1186/1471-2202-12-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/07/2011] [Indexed: 01/30/2023] Open
Abstract
Background Because the choroid plexus (CP) is uniquely suited to control the composition of cerebrospinal fluid (CSF), there may be therapeutic benefits to increasing the levels of biologically active proteins in CSF to modulate central nervous system (CNS) functions. To this end, we sought to identify peptides capable of ligand-mediated targeting to CP epithelial cells reasoning that they could be exploited to deliver drugs, biotherapeutics and genes to the CNS. Methods A peptide library displayed on M13 bacteriophage was screened for ligands capable of internalizing into CP epithelial cells by incubating phage with CP explants for 2 hours at 37C and recovering particles with targeting capacity. Results Three peptides, identified after four rounds of screening, were analyzed for specific and dose dependant binding and internalization. Binding was deemed specific because internalization was prevented by co-incubation with cognate synthetic peptides. Furthermore, after i.c.v. injection into rat brains, each peptide was found to target phage to epithelial cells in CP and to ependyma lining the ventricles. Conclusion These data demonstrate that ligand-mediated targeting can be used as a strategy for drug delivery to the central nervous system and opens the possibility of using the choroid plexus as a portal of entry into the brain.
Collapse
Affiliation(s)
- Ana Maria Gonzalez
- School of Experimental Medicine and Dentistry, University of Birmingham, Edgbaston, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Johanson C, Stopa E, Baird A, Sharma H. Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J Neural Transm (Vienna) 2011; 118:115-33. [PMID: 20936524 PMCID: PMC3026679 DOI: 10.1007/s00702-010-0498-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 09/24/2010] [Indexed: 01/26/2023]
Abstract
In traumatic brain injury (TBI), severe disruptions occur in the choroid plexus (CP)-cerebrospinal fluid (CSF) nexus that destabilize the nearby hippocampal and subventricular neurogenic regions. Following invasive and non-invasive injuries to cortex, several adverse sequelae harm the brain interior: (i) structural damage to CP epithelium that opens the blood-CSF barrier (BCSFB) to protein, (ii) altered CSF dynamics and intracranial pressure (ICP), (iii) augmentation of leukocyte traffic across CP into the CSF-brain, (iv) reduction in CSF sink action and clearance of debris from ventricles, and (v) less efficient provision of micronutritional and hormonal support for the CNS. However, gradual post-TBI restitution of the injured CP epithelium and ependyma, and CSF homeostatic mechanisms, help to restore subventricular/subgranular neurogenesis and the cognitive abilities diminished by CNS damage. Recovery from TBI is facilitated by upregulated choroidal/ependymal growth factors and neurotrophins, and their secretion into ventricular CSF. There, by an endocrine-like mechanism, CSF bulk flow convects the neuropeptides to target cells in injured cortex for aiding repair processes; and to neurogenic niches for enhancing conversion of stem cells to new neurons. In the recovery from TBI and associated ischemia, the modulating neuropeptides include FGF2, EGF, VEGF, NGF, IGF, GDNF, BDNF, and PACAP. Homeostatic correction of TBI-induced neuropathology can be accelerated or amplified by exogenously boosting the CSF concentration of these growth factors and neurotrophins. Such intraventricular supplementation via the CSF route promotes neural restoration through enhanced neurogenesis, angiogenesis, and neuroprotective effects. CSF translational research presents opportunities that involve CP and ependymal manipulations to expedite recovery from TBI.
Collapse
Affiliation(s)
- Conrad Johanson
- Department of Neurosurgery, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA.
| | | | | | | |
Collapse
|