1
|
Clark AS, Huayta J, Morton KS, Meyer JN, San-Miguel A. Morphological hallmarks of dopaminergic neurodegeneration are associated with altered neuron function in Caenorhabditis elegans. Neurotoxicology 2024; 100:100-106. [PMID: 38070655 PMCID: PMC10872346 DOI: 10.1016/j.neuro.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Caenorhabditis elegans (C. elegans) is an excellent model system to study neurodegenerative diseases, such as Parkinson's disease, as it enables analysis of both neuron morphology and function in live animals. Multiple structural changes in neurons, such as cephalic dendrite morphological abnormalities, have been considered hallmarks of neurodegeneration in this model, but their relevance to changes in neuron function are not entirely clear. We sought to test whether hallmark morphological changes associated with chemically induced dopaminergic neuron degeneration, such as dendrite blebbing, breakage, and loss, are indicative of neuronal malfunction and result in changes in behavior. We adapted an established dopaminergic neuronal function assay by measuring paralysis in the presence of exogenous dopamine, which revealed clear differences between cat-2 dopamine deficient mutants, wildtype worms, and dat-1 dopamine abundant mutants. Next, we integrated an automated image processing algorithm and a microfluidic device to segregate worm populations by their cephalic dendrite morphologies. We show that nematodes with dopaminergic dendrite degeneration markers, such as blebbing or breakage, paralyze at higher rates in a dopamine solution, providing evidence that dopaminergic neurodegeneration morphologies are correlated with functional neuronal outputs.
Collapse
Affiliation(s)
- Andrew S Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Clark AS, Huayta J, Morton KS, Meyer JN, San-Miguel A. Morphological hallmarks of dopaminergic neurodegeneration are associated with altered neuron function in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554364. [PMID: 37662210 PMCID: PMC10473754 DOI: 10.1101/2023.08.22.554364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Caenorhabditis elegans (C. elegans) is an excellent model system to study neurodegenerative diseases, such as Parkinson's disease, as it enables analysis of both neuron morphology and function in live animals. Multiple structural changes in neurons, such as cephalic dendrite morphological abnormalities, have been considered hallmarks of neurodegeneration in this model, but their relevance to changes in neuron function are not entirely clear. We sought to test whether hallmark morphological changes associated with chemically induced dopaminergic neuron degeneration, such as dendrite blebbing, breakage, and loss, are indicative of neuronal malfunction and result in changes in behavior. We adapted an established dopaminergic neuronal function assay by measuring paralysis in the presence of exogenous dopamine, which revealed clear differences between cat-2 dopamine deficient mutants, wildtype worms, and dat-1 dopamine abundant mutants. Next, we integrated an automated image processing algorithm and a microfluidic device to segregate worm populations by their cephalic dendrite morphologies. We show that nematodes with dopaminergic dendrite degeneration markers, such as blebbing or breakage, paralyze at higher rates in a dopamine solution, providing evidence that dopaminergic neurodegeneration morphologies are correlated with functional neuronal outputs.
Collapse
Affiliation(s)
- Andrew S Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Clark AS, Kalmanson Z, Morton K, Hartman J, Meyer J, San-Miguel A. An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans. PLoS One 2023; 18:e0281797. [PMID: 37418455 PMCID: PMC10328331 DOI: 10.1371/journal.pone.0281797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Caenorhabditis elegans (C. elegans) has served as a simple model organism to study dopaminergic neurodegeneration, as it enables quantitative analysis of cellular and sub-cellular morphologies in live animals. These isogenic nematodes have a rapid life cycle and transparent body, making high-throughput imaging and evaluation of fluorescently tagged neurons possible. However, the current state-of-the-art method for quantifying dopaminergic degeneration requires researchers to manually examine images and score dendrites into groups of varying levels of neurodegeneration severity, which is time consuming, subject to bias, and limited in data sensitivity. We aim to overcome the pitfalls of manual neuron scoring by developing an automated, unbiased image processing algorithm to quantify dopaminergic neurodegeneration in C. elegans. The algorithm can be used on images acquired with different microscopy setups and only requires two inputs: a maximum projection image of the four cephalic neurons in the C. elegans head and the pixel size of the user's camera. We validate the platform by detecting and quantifying neurodegeneration in nematodes exposed to rotenone, cold shock, and 6-hydroxydopamine using 63x epifluorescence, 63x confocal, and 40x epifluorescence microscopy, respectively. Analysis of tubby mutant worms with altered fat storage showed that, contrary to our hypothesis, increased adiposity did not sensitize to stressor-induced neurodegeneration. We further verify the accuracy of the algorithm by comparing code-generated, categorical degeneration results with manually scored dendrites of the same experiments. The platform, which detects 20 different metrics of neurodegeneration, can provide comparative insight into how each exposure affects dopaminergic neurodegeneration patterns.
Collapse
Affiliation(s)
- Andrew S. Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Zachary Kalmanson
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Katherine Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Jessica Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
4
|
Clark AS, Kalmanson Z, Morton K, Hartman J, Meyer J, San-Miguel A. An unbiased, automated platform for scoring dopaminergic neurodegeneration in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526781. [PMID: 36778421 PMCID: PMC9915681 DOI: 10.1101/2023.02.02.526781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Caenorhabditis elegans ( C. elegans ) has served as a simple model organism to study dopaminergic neurodegeneration, as it enables quantitative analysis of cellular and sub-cellular morphologies in live animals. These isogenic nematodes have a rapid life cycle and transparent body, making high-throughput imaging and evaluation of fluorescently tagged neurons possible. However, the current state-of-the-art method for quantifying dopaminergic degeneration requires researchers to manually examine images and score dendrites into groups of varying levels of neurodegeneration severity, which is time consuming, subject to bias, and limited in data sensitivity. We aim to overcome the pitfalls of manual neuron scoring by developing an automated, unbiased image processing algorithm to quantify dopaminergic neurodegeneration in C. elegans . The algorithm can be used on images acquired with different microscopy setups and only requires two inputs: a maximum projection image of the four cephalic neurons in the C. elegans head and the pixel size of the user’s camera. We validate the platform by detecting and quantifying neurodegeneration in nematodes exposed to rotenone, cold shock, and 6-hydroxydopamine using 63x epifluorescence, 63x confocal, and 40x epifluorescence microscopy, respectively. Analysis of tubby mutant worms with altered fat storage showed that, contrary to our hypothesis, increased adiposity did not sensitize to stressor-induced neurodegeneration. We further verify the accuracy of the algorithm by comparing code-generated, categorical degeneration results with manually scored dendrites of the same experiments. The platform, which detects 19 different metrics of neurodegeneration, can provide comparative insight into how each exposure affects dopaminergic neurodegeneration patterns.
Collapse
Affiliation(s)
- Andrew S Clark
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Zachary Kalmanson
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Katherine Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Jessica Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Adriana San-Miguel
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Ramachandra VH, Sivanesan S, Koppal A, Anandakumar S, Howell MD, Sukumar E, Vijayaraghavan R. Embelin and levodopa combination therapy for improved Parkinson's disease treatment. Transl Neurosci 2022; 13:145-162. [PMID: 35855085 PMCID: PMC9245559 DOI: 10.1515/tnsci-2022-0224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD), a progressive neurodegenerative disorder, affects dopaminergic neurons. Oxidative stress and gut damage play critical roles in PD pathogenesis. Inhibition of oxidative stress and gut damage can prevent neuronal death and delay PD progression. The objective of this study was to evaluate the therapeutic effect of embelin or the combination with levodopa (LD) in a rotenone-induced PD mouse model. At the end of experimentation, the mice were sacrificed and the midbrain was used to evaluate various biochemical parameters, such as nitric oxide, peroxynitrite, urea, and lipid peroxidation. In the substantia nigra (midbrain), tyrosine hydroxylase (TH) expression was examined by immunohistochemistry, and Nurr1 expression was evaluated by western blotting. Gut histopathology was evaluated on tissue sections stained with hematoxylin and eosin. In silico molecular docking studies of embelin and α-synuclein (α-syn) fibrils were also performed. Embelin alone or in combination with LD ameliorated oxidative stress and gut damage. TH and Nurr1 protein levels were also significantly restored. Docking studies confirmed the affinity of embelin toward α-syn. Taken together, embelin could be a promising drug for the treatment of PD, especially when combined with LD.
Collapse
Affiliation(s)
- Vagdevi Hangarakatte Ramachandra
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamilnadu, India.,Department of Pharmacology, Subbaiah Institute of Medical Sciences and Research Centre, Shivamogga 577222, Karnataka, India
| | - Senthilkumar Sivanesan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamilnadu, India
| | - Anand Koppal
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamilnadu, India.,Department of Pharmacology, Subbaiah Institute of Medical Sciences and Research Centre, Shivamogga 577222, Karnataka, India
| | - Shanmugam Anandakumar
- Department of Phytoinformatics, Yukai Care Solutions LLP, Chennai 600011, Tamilnadu, India.,Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamilnadu, India
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, United States of America
| | - Ethirajan Sukumar
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamilnadu, India
| | - Rajagopalan Vijayaraghavan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamilnadu, India
| |
Collapse
|
6
|
Malovic E, Ealy A, Kanthasamy A, Kanthasamy AG. Emerging Roles of N6-Methyladenosine (m6A) Epitranscriptomics in Toxicology. Toxicol Sci 2021; 181:13-22. [PMID: 33616673 PMCID: PMC8599717 DOI: 10.1093/toxsci/kfab021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Epitranscriptomics, the study of chemically modified RNAs, is a burgeoning field being explored in a variety of scientific disciplines. Of the currently known epitranscriptomic modifications, N6-methyladenosine (m6A) methylation is the most abundant. The m6A modification is predominantly regulated by 3 tiers of protein modulators classified as writers, erasers, and readers. Depending upon cellular needs, these proteins function to deposit, remove, or read the methyl modifications on cognate mRNAs. Many environmental chemicals including heavy metals, pesticides, and other toxic pollutants, are all known to perturb transcription and translation machinery to exert their toxic responses. As such, we herein review how the m6A modification may be affected under different toxicological paradigms. Furthermore, we discuss how toxicants can affect the 3 tiers of regulation directly, and how these effects influence the m6A-modified mRNAs. Lastly, we highlight the disparities between published findings and theories, especially those concerning the m6A reader tier of regulation. In the far-reaching field of toxicology, m6A epitranscriptomics provides another enticing avenue to explore new mechanisms and therapies for a diverse range of environmentally linked disorders and diseases.
Collapse
Affiliation(s)
- Emir Malovic
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, Iowa 50011
| | - Alyssa Ealy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, Iowa 50011
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, Iowa 50011
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson's Disorder Research Program, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
7
|
Parkinson's Disease-Induced Zebrafish Models: Focussing on Oxidative Stress Implications and Sleep Processes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1370837. [PMID: 32908622 PMCID: PMC7450359 DOI: 10.1155/2020/1370837] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The complex yet not fully understood pathophysiology of Parkinson's disease includes an important molecular component consisting of oxidative status changes, thus leading to oxidative stress occurrence. While no particular evidence has been reported that describes the relationship between oxidative stress and the molecular mechanisms behind Parkinson's disease development, animal model studies has shown that oxidative stress induction could modulate Parkinson's disease symptomatology. Despite the inability to perfectly replicate human disease in animals and despite that Parkinson's disease has not been reported in any animal species, animal modeling is one of the most important tools in understanding the complex mechanisms of human disorders. In this way, this study is aimed at detailing this particular relationship and describing the molecular mechanisms underlying Parkinson's disease in animal models, focusing on the potential advantages and disadvantages of zebrafish in this context. The information relevant to this topic was gathered using major scientific database research (PubMed, Google Scholar, Web of Science, and Scopus) based on related keywords and inclusion criteria. Thus, it was observed that oxidative stress possesses an important role in Parkinson's disease as shown by numerous animal model studies, many of which are based on rodent experimental models. However, an emerging impact of the zebrafish model was observed in the research of Parkinson's disease pathological mechanisms with regard to disease development factors and the cause-effect relationship between oxidative stress and comorbidities (such as depression, hyposmia, fatigue, sleep disturbances, and cognitive deficits) and also with regard to the pharmacological potential of antioxidant molecules in Parkinson's disease treatment.
Collapse
|
8
|
Docosahexaenoic acid protection in a rotenone induced Parkinson's model: Prevention of tubulin and synaptophysin loss, but no association with mitochondrial function. Neurochem Int 2018; 121:26-37. [DOI: 10.1016/j.neuint.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
|
9
|
Yuan J, Zhang S, Zhang Y. Nrf1 is paved as a new strategic avenue to prevent and treat cancer, neurodegenerative and other diseases. Toxicol Appl Pharmacol 2018; 360:273-283. [PMID: 30267745 DOI: 10.1016/j.taap.2018.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Transcription factor Nrf1 acts as a unique vital player in maintaining cellular homeostasis and organ integrity during normal development and growth throughout the life process. Loss-of-function of Nrf1 results in severe oxidative stress, genomic instability, embryonic lethality, developmental disorders, and adult diseases such as non-alcoholic steatohepatitis, hepatocellular carcinoma, diabetes and neurogenerative diseases. Thereby, Nrf1 is critically implicated in a variety of important physio-pathological processes by governing robust target genes in order to reinforce antioxidant, detoxification and cytoprotective responses to cellular stress. Notably, there also exists a proteasomal 'bounce-back' response mediated by Nrf1, insofar as to enhance the drug resistance to proteasomal inhibitors in clinical treatment of neuroblastoma, multiple myeloma and triple-negative breast cancers. Recently, several drugs or chemicals are found or re-found in new ways to block the proteasomal compensatory process through inhibiting the multistep processing of Nrf1. Conversely, activation of Nrf1 induced by some drugs or chemicals leads to cytoprotection from cell apoptosis and promotes cell viability. This is the start of constructive and meaningful studies, approaching to explore the mechanism(s) by which Nrf1 is activated to protect neurons and other cells from malignant and degenerative diseases. Overall, Nrf1 has appealed attentions as a new attractive therapeutic strategy for human diseases including cancers.
Collapse
Affiliation(s)
- Jianxin Yuan
- Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shuwei Zhang
- Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yiguo Zhang
- Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
10
|
Mouhape C, Costa G, Ferreira M, Abin-Carriquiry JA, Dajas F, Prunell G. Nicotine-Induced Neuroprotection in Rotenone In Vivo and In Vitro Models of Parkinson’s Disease: Evidences for the Involvement of the Labile Iron Pool Level as the Underlying Mechanism. Neurotox Res 2018; 35:71-82. [DOI: 10.1007/s12640-018-9931-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 11/29/2022]
|
11
|
Sotzny F, Schormann E, Kühlewindt I, Koch A, Brehm A, Goldbach-Mansky R, Gilling KE, Krüger E. TCF11/Nrf1-Mediated Induction of Proteasome Expression Prevents Cytotoxicity by Rotenone. Antioxid Redox Signal 2016; 25:870-885. [PMID: 27345029 PMCID: PMC6445217 DOI: 10.1089/ars.2015.6539] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Precise regulation of cellular protein degradation is essential for maintaining protein and redox homeostasis. The ubiquitin proteasome system (UPS) represents one of the major degradation machineries, and UPS disturbances are strongly associated with neurodegeneration. We have previously shown that the transcription factor TCF11/Nrf1 induces antioxidant response element-mediated upregulation of UPS components in response to proteotoxic stress. Knockout of TCF11/Nrf1 is embryonically lethal, and therefore, the present investigation describes the role of oxidative stress in regulating TCF11/Nrf1-dependent proteasome expression in a model system relevant to Parkinson's disease. RESULTS Using the human dopaminergic neuroblastoma cell line SH-SY5Y and mouse nigrostriatal organotypic slice cultures, gene and protein expression analysis and functional assays revealed oxidative stress is induced by the proteasome inhibitor epoxomicin or the mitochondrial complex I inhibitor rotenone and promotes the upregulation of proteasome expression and function mediated by TCF11/Nrf1 activation. In addition, we show that these stress conditions induce the unfolded protein response. TCF11/Nrf1, thus, has a cytoprotective function in response to oxidative and proteotoxic stress. Innovation and Conclusion: We here demonstrate that adaption of the proteasome system in response to oxidative stress is dependent on TCF11/Nrf1 in this model system. We conclude that TCF11/Nrf1, therefore, plays a vital role in maintaining redox and protein homeostasis. This work provides a vital insight into the molecular mechanisms of neurodegeneration due to oxidative stress by rotenone, and further studies investigating the role of TCF11/Nrf1 in the human condition would be of considerable interest. Antioxid. Redox Signal. 25, 870-885.
Collapse
Affiliation(s)
- Franziska Sotzny
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | - Eileen Schormann
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | - Ina Kühlewindt
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | - Annett Koch
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | - Anja Brehm
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | | | - Kate E Gilling
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| | - Elke Krüger
- 1 Charité-Universitätsmedizin Berlin, Institut für Biochemie , Berlin, Germany
| |
Collapse
|
12
|
Alpha-synuclein aggregates are excluded from calbindin-D28k-positive neurons in dementia with Lewy bodies and a unilateral rotenone mouse model. Mol Cell Neurosci 2016; 77:65-75. [PMID: 27746320 DOI: 10.1016/j.mcn.2016.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/14/2016] [Accepted: 10/13/2016] [Indexed: 12/11/2022] Open
Abstract
α-Synuclein (α-syn) aggregates (Lewy bodies) in Dementia with Lewy Bodies (DLB) may be associated with disturbed calcium homeostasis and oxidative stress. We investigated the interplay between α-syn aggregation, expression of the calbindin-D28k (CB) neuronal calcium-buffering protein and oxidative stress, combining immunofluorescence double labelling and Western analysis, and examining DLB and normal human cases and a unilateral oxidative stress lesion model of α-syn disease (rotenone mouse). DLB cases showed a greater proportion of CB+ cells in affected brain regions compared to normal cases with Lewy bodies largely present in CB- neurons and virtually undetected in CB+ neurons. The unilateral rotenone-lesioned mouse model showed a greater proportion of CB+ cells and α-syn aggregates within the lesioned hemisphere than the control hemisphere, especially proximal to the lesion site, and α-syn inclusions occurred primarily in CB- cells and were almost completely absent in CB+ cells. Consistent with the immunofluorescence data, Western analysis showed the total CB level was 25% higher in lesioned compared to control hemisphere in aged animals that are more sensitive to lesion and 20% higher in aged compared to young mice in lesioned hemisphere, but not significantly different between young and aged in the control hemisphere. Taken together, the findings show α-syn aggregation is excluded from CB+ neurons, although the increased sensitivity of aged animals to lesion was not related to differential CB expression.
Collapse
|
13
|
Carriere CH, Kang NH, Niles LP. Neuroprotection by valproic acid in an intrastriatal rotenone model of Parkinson's disease. Neuroscience 2014; 267:114-21. [PMID: 24613722 DOI: 10.1016/j.neuroscience.2014.02.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 11/28/2022]
Abstract
Rotenone, which is used as a pesticide and insecticide, has been shown to cause systemic inhibition of mitochondrial complex I activity, with consequent degeneration of dopaminergic neurons within the substantia nigra and striatum, as observed in Parkinson's disease. A novel intrastriatal rotenone model of Parkinson's disease was used to examine the neuroprotective effects of valproic acid (VPA), which is known to upregulate neurotrophic factors and other protective proteins in the brain. Sham or lesioned rats were treated with either vehicle or VPA at a dose of 4mg/mL in drinking water. The right striatum was lesioned by infusion of rotenone at three sites (2μg/site) along its rostro-caudal axis. A forelimb asymmetry (cylinder) test indicated a significant (p<0.01) decrease in use of the contralateral forelimb in rotenone-lesioned animals, in the third week post-lesioning, which was abolished by VPA treatment. Similarly, a significant (p<0.01) and persistent increase in use of the ipsilateral forelimb in lesioned animals over the 4weeks of testing, was not seen in animals treated with VPA. Results of the asymmetry test illustrate that intrastriatal infusion of rotenone causes contralateral motor dysfunction, which is blocked by VPA. The significant increase in ipsilateral forelimb use has not been documented previously, and presumably represents a compensatory response in lesioned animals. Six weeks post-surgery, animals were sacrificed by transcardial perfusion. Subsequent immunohistochemical examination revealed a decrease in tyrosine hydroxylase immunoreactivity within the striatum and substantia nigra of rotenone-lesioned animals. VPA treatment attenuated the decrease in tyrosine hydroxylase in the striatum and abolished it in the substantia nigra. Stereological cell counting indicated a significant (p<0.05) decrease in tyrosine hydroxylase-positive dopamine neurons in the substantia nigra of rotenone-lesioned animals, which was confirmed by Nissl staining. Importantly, this loss of dopamine neurons in rotenone-lesioned animals, was blocked by chronic VPA treatment. These findings strongly support the therapeutic potential of VPA in Parkinson's disease.
Collapse
Affiliation(s)
- C H Carriere
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - N H Kang
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - L P Niles
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
14
|
Increased SUMO-1 expression in the unilateral rotenone-lesioned mouse model of Parkinson's disease. Neurosci Lett 2013; 544:119-24. [PMID: 23583339 DOI: 10.1016/j.neulet.2013.03.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 02/12/2013] [Accepted: 03/31/2013] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease resulting from progressive loss of dopaminergic nigrostriatal neurons. α-Synuclein protein conformational changes, resulting in cytotoxic/aggregated proteins, have been linked to PD pathogenesis. We investigated a unilateral rotenone-lesioned mouse PD model. Unilateral lesion of the medial forebrain bundle for two groups of male C57 black mice (n=5); adult (6-12 months) group and aged (1.75-2 years) group, was via stereotactic rotenone injection. After 2 weeks post-lesion, phenotypic Parkinsonian symptoms, resting tremor, postural instability, left-handed bias, ipsiversive rotation and bradykinesia were observed and were more severe in the aged group. We investigated protein expression profiles of the post-translational modifier, SUMO-1, and α-synuclein between the treated and control hemisphere, and between adult and aged groups. Western analysis of the brain homogenates indicated that there were statistically significant (p<0.05) increases in several specific molecular weight species (ranging 12-190 kDa) of both SUMO-1 (0.75-4.3-fold increased) and α-synuclein (1.6-19-fold increase) in the lesioned compared to un-lesioned hemisphere, with the adult mice showing proportionately greater increases in SUMO-1 than the aged group.
Collapse
|
15
|
Norazit A, Nguyen M, Dickson C, Cavanagh B, Mackay‐Sim A, Meedeniya A. ISDN2012_0251: Induced nigrostriatal degeneration in rodents, as models for neuroprotective and regenerative strategies for Parkinson's disease. Int J Dev Neurosci 2012. [DOI: 10.1016/j.ijdevneu.2012.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Anwar Norazit
- National Centre for Adult Stem Cell ResearchAustralia
- Dept. of Molecular MedicineFaculty of MedicineUniversity of MalayaMalaysia
| | - Maria Nguyen
- National Centre for Adult Stem Cell ResearchAustralia
- Health InstituteGriffith UniversityAustralia
| | | | | | | | - Adrian Meedeniya
- Eskitis Institute for Cell and Molecular TherapiesAustralia
- Health InstituteGriffith UniversityAustralia
| |
Collapse
|
16
|
SUMO-1 is Associated with a Subset of Lysosomes in Glial Protein Aggregate Diseases. Neurotox Res 2012; 23:1-21. [DOI: 10.1007/s12640-012-9358-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
17
|
Cabezas R, El-Bachá RS, González J, Barreto GE. Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci Res 2012; 74:80-90. [PMID: 22902554 DOI: 10.1016/j.neures.2012.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 12/21/2022]
Abstract
Mitochondria are critical for cell survival and normal development, as they provide energy to the cell, buffer intracellular calcium, and regulate apoptosis. They are also major targets of oxidative stress, which causes bioenergetics failure in astrocytes through the activation of different mechanisms and production of oxidative molecules. This review provides an insightful overview of the recent discoveries and strategies for mitochondrial protection in astrocytes. We also discuss the importance of rotenone as an experimental approach for assessing oxidative stress in the brain and delineate some molecular strategies that enhance mitochondrial function in astrocytes as a promising strategy against brain damage.
Collapse
Affiliation(s)
- Ricardo Cabezas
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia
| | | | | | | |
Collapse
|
18
|
Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, Ghoorah D, Kong X, Lin Z, Wang T. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models. Crit Rev Toxicol 2012; 42:613-32. [PMID: 22574684 DOI: 10.3109/10408444.2012.680431] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The etiology of Parkinson's disease (PD) is attributed to both environmental and genetic factors. The development of PD reportedly involves mitochondrial impairment, oxidative stress, α-synuclein aggregation, dysfunctional protein degradation, glutamate toxicity, calcium overloading, inflammation and loss of neurotrophic factors. Based on a link between mitochondrial dysfunction and pesticide exposure, many laboratories, including ours, have recently developed parkinsonian models by utilization of rotenone, a well-known mitochondrial complex I inhibitor. Rotenone models for PD appear to mimic most clinical features of idiopathic PD and recapitulate the slow and progressive loss of dopaminergic (DA) neurons and the Lewy body formation in the nigral-striatal system. Notably, potential human parkinsonian pathogenetic and pathophysiological mechanisms have been revealed through these models. In this review, we summarized various rotenone-based models for PD and discussed the implied etiology of and treatment for PD.
Collapse
Affiliation(s)
- Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430022, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tufekci KU, Meuwissen R, Genc S, Genc K. Inflammation in Parkinson's disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 88:69-132. [PMID: 22814707 DOI: 10.1016/b978-0-12-398314-5.00004-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration.
Collapse
Affiliation(s)
- Kemal Ugur Tufekci
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | | | | | | |
Collapse
|
20
|
Mulcahy P, O'Doherty A, Paucard A, O'Brien T, Kirik D, Dowd E. Development and characterisation of a novel rat model of Parkinson's disease induced by sequential intranigral administration of AAV-α-synuclein and the pesticide, rotenone. Neuroscience 2011; 203:170-9. [PMID: 22198020 DOI: 10.1016/j.neuroscience.2011.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/05/2011] [Accepted: 12/05/2011] [Indexed: 12/21/2022]
Abstract
Modeling Parkinson's disease remains a major challenge for preclinical researchers, as existing models fail to reliably recapitulate all of the classic features of the disease, namely, the progressive emergence of a bradykinetic motor syndrome with underlying nigrostriatal α-synuclein protein accumulation and nigrostriatal neurodegeneration. One limitation of the existing models is that they are normally induced by a single neuropathological insult, whereas the human disease is thought to be multifactorial with genetic and environmental factors contributing to the disease pathogenesis. Thus, in order to develop a more relevant model, we sought to determine if administration of the Parkinson's disease-associated pesticide, rotenone, into the substantia nigra of rats overexpressing the Parkinson's disease-associated protein, α-synuclein, could reliably model the triad of classic features of the human disease. To do so, rats underwent stereotaxic surgery for unilateral delivery of the adeno-associated virus (AAV)-α-synuclein into the substantia nigra. This was followed 13 weeks later by delivery of rotenone into the same site. The effect of the genetic and environmental insults alone or in combination on lateralised motor performance (Corridor, Stepping, and Whisker Tests), nigrostriatal integrity (tyrosine hydroxylase immunohistochemistry), and α-synucleinopathy (α-synuclein immunohistochemistry) was assessed. We found that rats treated with either AAV-α-synuclein or rotenone developed significant motor dysfunction with underlying nigrostriatal neurodegeneration. However, when the genetic and environmental insults were sequentially administered, the detrimental impact of the combined insults on motor performance and nigrostriatal integrity was significantly greater than the impact of either insult alone. This indicates that sequential exposure to relevant genetic and environmental insults is a valid approach to modeling human Parkinson's disease in the rat.
Collapse
Affiliation(s)
- P Mulcahy
- Department of Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
21
|
Behavioral, neurochemical and histological alterations promoted by bilateral intranigral rotenone administration: a new approach for an old neurotoxin. Neurotox Res 2011; 21:291-301. [PMID: 21953489 DOI: 10.1007/s12640-011-9278-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/06/2011] [Accepted: 09/17/2011] [Indexed: 12/21/2022]
Abstract
Rotenone exposure in rodents provides an interesting model for studying mechanisms of toxin-induced dopaminergic neuronal injury. However, several aspects remain unclear regarding the effects and the accuracy of rotenone as an animal model of Parkinson's disease (PD). In order to counteract these limitations, this study characterized a precise neurotoxin-delivery strategy employing the bilateral intranigral administration protocol of rotenone as a reliable model of PD. We performed bilateral intranigral injections of rotenone (12 μg) and subsequent general activity (1, 10, 20, and 30 days after rotenone) and cognitive (7, 8, 15, and 30 days after rotenone) evaluations followed by neurochemical and immunohistochemical tests. We have observed that rotenone was able to produce a remarkable reduction on the percentage of tyrosine hydroxylase immunoreactive neurons (about 60%) within the substantia nigra pars compacta. Dopamine (DA) was severely depleted at 30 days after rotenone administration, similarly to its metabolites. In addition, an increase in DA turnover was detected at the same time-point. In parallel, striatal serotonin and its metabolite were found to be increased 30 days after the neurotoxic insult, without apparent modification in the serotonin turnover. Besides, motor behavior was impaired, mainly 1 day after rotenone. Furthermore, learning and memory processes were severely disrupted in different time-points, particularly at the training and test session (30 days). We now provide further evidence of a time-dependent neurodegeneration associated to cognitive impairment after the single bilateral intranigral administration of rotenone. Thus, it is proposed that the current rotenone protocol provides an improvement regarding the existing rotenone models of PD.
Collapse
|
22
|
Norazit A, Nguyen M, Dickson C, Tuxworth G, Goss B, Mackay-Sim A, Meedeniya A. Vascular endothelial growth factor and platelet derived growth factor modulates the glial response to a cortical stab injury. Neuroscience 2011; 192:652-60. [DOI: 10.1016/j.neuroscience.2011.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 05/20/2011] [Accepted: 06/11/2011] [Indexed: 12/31/2022]
|