1
|
He Y, Li R, Yu Y, Huang C, Xu Z, Wang T, Chen M, Huang H, Qi Z. Human neural stem cells promote mitochondrial genesis to alleviate neuronal damage in MPTP-induced cynomolgus monkey models. Neurochem Int 2024; 175:105700. [PMID: 38417589 DOI: 10.1016/j.neuint.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Currently, there is no effective treatment for Parkinson's disease (PD), and the regenerative treatment of neural stem cells (NSCs) is considered the most promising method. This study aimed to investigate the protective effect and mechanism of NSCs on neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cynomolgus monkey (Macaca fascicularis) model of PD. We first found that injecting NSCs into the subarachnoid space relieved motor dysfunction in PD cynomolgus monkeys, as well as reduced dopaminergic neuron loss and neuronal damage in the substantia nigra (SN) and striatum. Besides, NSCs decreased 17-estradiol (E2) level, an estrogen, in the cerebrospinal fluid (CSF) of PD cynomolgus monkeys, which shows NSCs may provide neuro-protection by controlling estrogen levels in the CSF. Furthermore, NSCs elevated proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1) expression, three genes mediating mitochondrial biogenesis, in the SN and striatum of PD monkeys. In addition, NSCs suppress reactive oxygen species (ROS) production caused by MPTP, as well as mitochondrial autophagy, therefore preserving dopaminergic neurons. In summary, our findings show that NSCs may preserve dopaminergic and neuronal cells in an MPTP-induced PD cynomolgus monkey model. These protective benefits might be attributed to NSCs' ability of modulating estrogen balance, increasing mitochondrial biogenesis, and limiting oxidative stress and mitochondrial autophagy. These findings add to our understanding of the mechanism of NSC treatment and shed light on further clinical treatment options.
Collapse
Affiliation(s)
- Ying He
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China; The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545007, China
| | - Ruicheng Li
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yuxi Yu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chusheng Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530004, China
| | - Zhiran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Tianbao Wang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ming Chen
- Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian Campus), Quanzhou, Fujian, 362200, China
| | - Hongri Huang
- Guangxi Taimei Rensheng Biotechnology Co., Ltd., Nanning, Guangxi, 530011, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
2
|
Zhu B, Zhou W, Chen C, Cao A, Luo W, Huang C, Wang J. AQP4 is an Emerging Regulator of Pathological Pain: A Narrative Review. Cell Mol Neurobiol 2023; 43:3997-4005. [PMID: 37864629 DOI: 10.1007/s10571-023-01422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/27/2023] [Indexed: 10/23/2023]
Abstract
Pathological pain presents significant challenges in clinical practice and research. Aquaporin-4 (AQP4), which is primarily found in astrocytes, is being considered as a prospective modulator of pathological pain. This review examines the association between AQP4 and pain-related diseases, including cancer pain, neuropathic pain, and inflammatory pain. In cancer pain, upregulated AQP4 expression in tumor cells is linked to increased pain severity, potentially through tumor-induced inflammation and edema. Targeting AQP4 may offer therapeutic strategies for managing cancer pain. AQP4 has also been found to play a role in nerve damage. Changes in AQP4 expression have been detected in pain-related regions of the brain and spinal cord; thus, modulating AQP4 expression or function may provide new avenues for treating neuropathic pain. Of note, AQP4-deficient mice exhibit reduced chronic pain responses, suggesting potential involvement of AQP4 in chronic pain modulation, and AQP4 is involved in pain modulation during inflammation, so understanding AQP4-mediated pain modulation may lead to novel anti-inflammatory and analgesic therapies. Recent advancements in magnetic resonance imaging (MRI) techniques enable assessment of AQP4 expression and localization, contributing to our understanding of its involvement in brain edema and clearance pathways related to pathological pain. Furthermore, targeting AQP4 through gene therapies and small-molecule modulators shows promise as a potential therapeutic intervention. Future research should focus on utilizing advanced MRI techniques to observe glymphatic system changes and the exchange of cerebrospinal fluid and interstitial fluid. Additionally, investigating the regulation of AQP4 by non-coding RNAs and exploring novel small-molecule medicines are important directions for future research. This review shed light on AQP4-based innovative therapeutic strategies for the treatment of pathological pain. Dark blue cells represent astrocytes, green cells represent microglia, and red ones represent brain microvasculature.
Collapse
Affiliation(s)
- Binbin Zhu
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Weijian Zhou
- Health Science Center, Ningbo University, Ningbo, China
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chunqu Chen
- Health Science Center, Ningbo University, Ningbo, China
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Angyang Cao
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Wenjun Luo
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Changshun Huang
- Anesthesiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Jianhua Wang
- Health Science Center, Ningbo University, Ningbo, China.
- Radiology Department, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Garcia TA, Jonak CR, Binder DK. The Role of Aquaporins in Spinal Cord Injury. Cells 2023; 12:1701. [PMID: 37443735 PMCID: PMC10340765 DOI: 10.3390/cells12131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Edema formation following traumatic spinal cord injury (SCI) exacerbates secondary injury, and the severity of edema correlates with worse neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on plasma membranes of astrocytic endfeet in direct contact with blood vessels, the glia limitans in contact with the cerebrospinal fluid, and ependyma around the central canal. Local expression at these tissue-fluid interfaces allows AQP4 channels to play an important role in the bidirectional regulation of water homeostasis under normal conditions and following trauma. In this review, we consider the available evidence regarding the potential role of AQP4 in edema after SCI. Although more work remains to be carried out, the overall evidence indicates a critical role for AQP4 channels in edema formation and resolution following SCI and the therapeutic potential of AQP4 modulation in edema resolution and functional recovery. Further work to elucidate the expression and subcellular localization of AQP4 during specific phases after SCI will inform the therapeutic modulation of AQP4 for the optimization of histological and neurological outcomes.
Collapse
Affiliation(s)
- Terese A. Garcia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Carrie R. Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for Glial-Neuronal Interactions, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Yao R, Ren L, Wang S, Zhang M, Yang K. Euxanthone inhibits traumatic spinal cord injury via anti-oxidative stress and suppression of p38 and PI3K/Akt signaling pathway in a rat model. Transl Neurosci 2021; 12:114-126. [PMID: 33777443 PMCID: PMC7969821 DOI: 10.1515/tnsci-2021-0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Owing to neurite promoting, antioxidant and anti-inflammatory effects of Euxanthone (Eux), the investigation was aimed to probe the neuroprotective efficacy of Eux against traumatic spinal cord injury (t-SCI) in rats and whether Eux can improve neuropathic function in t-SCI. METHOD Sprague-Dawley (SD) rats were randomized in - Sham, t-SCI, Eux30, and Eux60 (t-SCI + 30 and 60 mg/kg respectively). Animals with compression force-induced t-SCI were subjected to estimation of locomotor functions. Spinal cord water content and Evans blue (EB) effusion were determined for quantifying edema and intactness of the spinal cord. Oxidative stress and immunochemical markers were quantified by ELISA and western blotting. RESULTS Findings revealed that Eux60 group animals had greater Basso, Beattie, and Bresnahan (BBB) and (incline plane test) IPT score indicating improved locomotor functions. There was a reduction in the spinal edema and water content after Eux treatment, together with lowering of oxidative stress markers. The expression of IL-6, IL-12, IL-1β, caspase-3, RANKL, TLR4, NF-κB, p-38, PI3K, and Akt in spinal cord tissues of t-SCI-induced rats was lowered after Eux treatment. CONCLUSION Overall, the investigation advocates that Eux attenuates t-SCI and associated inflammation, oxidative damage, and resulting apoptosis via modulation of TLR4/NF-κB/p38 and PI3K/Akt signaling cascade.
Collapse
Affiliation(s)
- Rubin Yao
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, No. 32 Carlsberg Avenue, Yunnan, 671000, China
| | - Lirong Ren
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, No. 32 Carlsberg Avenue, Yunnan, 671000, China
| | - Shiyong Wang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, No. 32 Carlsberg Avenue, Yunnan, 671000, China
| | - Ming Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, No. 32 Carlsberg Avenue, Yunnan, 671000, China
| | - Kaishun Yang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, No. 32 Carlsberg Avenue, Yunnan, 671000, China
| |
Collapse
|
5
|
Abstract
Aquaporins (AQPs) are transmembrane channel proteins that mainly facilitate the water translocation through the plasma cell membrane. For several years these proteins have been extensively examined for their biologic role in health and their potential implication in different diseases. Technological improvements associated with the methods employed to evaluate the functions of the AQPs have provided us with significant new knowledge. In this chapter, we will examine the role of AQPs in health and disease based on the latest currently available evidence.
Collapse
Affiliation(s)
- Dimitrios E Magouliotis
- Division of Surgery and Interventional Sciences, UCL, London, United Kingdom; Department of Surgery, University of Thessaly, Biopolis, Larissa, Greece.
| | | | - Alexis A Svokos
- Geisinger Lewisburg-Women's Health, Lewisburg, PA, United States
| | - Konstantina A Svokos
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
6
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Li J, Jia M, Chen G, Nie S, Zheng C, Zeng W, Xu Y, Wang C, Cao X, Liu Q. Involvement of p38 mitogen‐activated protein kinase in altered expressions of AQP1 and AQP4 after carbon monoxide poisoning in rat astrocytes. Basic Clin Pharmacol Toxicol 2019; 125:394-404. [PMID: 31063681 DOI: 10.1111/bcpt.13247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jinlan Li
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| | - Min Jia
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| | - Guiqin Chen
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Shuke Nie
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Cong Zheng
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Congping Wang
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Qunhui Liu
- Department of Neurology Enshi Tujia and Miao Autonomous Prefecture Center Hospital Enshi China
| |
Collapse
|
8
|
Gao L, Zhang Z, Xu W, Li T, Ying G, Qin B, Li J, Zheng J, Zhao T, Yan F, Zhu Y, Chen G. Natrium Benzoate Alleviates Neuronal Apoptosis via the DJ-1-Related Anti-oxidative Stress Pathway Involving Akt Phosphorylation in a Rat Model of Traumatic Spinal Cord Injury. Front Mol Neurosci 2019; 12:42. [PMID: 30853891 PMCID: PMC6395451 DOI: 10.3389/fnmol.2019.00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
This study aimed to explore the neuroprotective effects and mechanisms of natrium benzoate (NaB) and DJ-1 in attenuating reactive oxygen species (ROS)-induced neuronal apoptosis in traumatic spinal cord injury (t-SCI) in rats. T-SCI was induced by clip compression. The protein expression and neuronal apoptosis was evaluated by Western blotting, double immunofluorescence staining and transmission electron microscope (TEM). ROS level, spinal cord water content (SCWC) and Evans blue (EB) extravasation was also examined. Locomotor function was evaluated by Basso, Beattie, and Bresnahan (BBB) and inclined plane test (IPT) scores. We found that DJ-1 is expressed in spinal cord neurons and increased after t-SCI. At 24 h post-injury, the levels of DJ-1, p-Akt, SOD2, ROS, p-p38 MAPK/p38 MAPK ratio, and CC-3 increased, while the Bcl-2/Bax ratio decreased. NaB upregulated DJ-1, p-Akt, and SOD2, decreased ROS, p-p38 MAPK/p38 MAPK ratio, and CC-3, and increased the Bcl-2/Bax ratio, which were reversed by DJ-1 siRNA. The proportion of CC-3- and TUNEL-positive neurons also increased after t-SCI and was reduced by NaB. These effects were reversed by MK2206. Moreover, the level of oxDJ-1 increased after t-SCI, which was decreased by DJ-1 siRNA, NaB or the combination of them. NaB also reduced mitochondrial vacuolization, SCWC and EB extravasation, and improved locomotor function assessed by the BBB and IPT scores. In conclusion, NaB increased DJ-1, and thus reduced ROS and ROS-induced neuronal apoptosis by promoting Akt phosphorylation in t-SCI rats. NaB shows potential as a therapeutic agent for t-SCI, with DJ-1 as its main target.
Collapse
Affiliation(s)
- Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongyuan Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangyu Ying
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Qin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tengfei Zhao
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjian Zhu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
|
10
|
Li Y, Hu H, Liu J, Zhu Q, Gu R. Effects of aquaporin 4 and inward rectifier potassium channel 4.1 on medullospinal edema after methylprednisolone treatment to suppress acute spinal cord injury in rats. Acta Cir Bras 2018. [PMID: 29513816 DOI: 10.1590/s0102-865020180020000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the effects of aquaporin 4 (AQP4) and inward rectifier potassium channel 4.1 (Kir4.1) on medullospinal edema after treatment with methylprednisolone (MP) to suppress acute spinal cord injury (ASCI) in rats. METHODS Sprague Dawley rats were randomly divided into control, sham, ASCI, and MP-treated ASCI groups. After the induction of ASCI, we injected 30 mg/kg MP via the tail vein at various time points. The Tarlov scoring method was applied to evaluate neurological symptoms, and the wet-dry weights method was applied to measure the water content of the spinal cord. RESULTS The motor function score of the ASCI group was significantly lower than that of the sham group, and the spinal water content was significantly increased. In addition, the levels of AQP4 and Kir4.1 were significantly increased, as was their degree of coexpression. Compared with that in the ASCI group, the motor function score and the water content were significantly increased in the MP group; in addition, the expression and coexpression of AQP4 and Kir4.1 were significantly reduced. CONCLUSION Methylprednisolone inhibited medullospinal edema in rats with acute spinal cord injury, possibly by reducing the coexpression of aquaporin 4 and Kir4.1 in medullospinal tissues.
Collapse
Affiliation(s)
- Ye Li
- Associate Professor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Conception, design, intellectual and scientific content of the study; acquisition of data; manuscript writing; critical revision
| | - Haifeng Hu
- Attending Doctor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Acquisition of data, manuscript writing
| | - Jingchen Liu
- Professor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Scientific content of the study, acquisition of data, manuscript writing
| | - Qingsan Zhu
- Professor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Acquisition of data
| | - Rui Gu
- Professor, Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, China. Intellectual, scientific, conception and design of the study; critical revision
| |
Collapse
|
11
|
Yan S, Zhang L, Wang S, Wu T, Gong Z. Inhibition of the Ras/Raf/extracellular signal-regulated kinase 1/2 signaling pathway by compounds of natural origin for possible treatment of spinal cord injury: An in silico approach. Exp Ther Med 2018; 15:2860-2868. [PMID: 29456689 PMCID: PMC5795380 DOI: 10.3892/etm.2018.5734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) is a severe disease associated with permanent neurological deficit. Recent studies in the treatment of SCI have demonstrated that the Ras/Raf/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway serves an important role in the disease etiology, and that upregulation of this signaling pathway is associated with the development of SCI. In the present study, inhibition of Ras protein was employed in order to downregulate the Ras/Raf/ERK1/2 signaling pathway using compounds of natural origin from the Interbioscreen natural compound database. To the best of our knowledge, this is the first study using a chemical-computational approach in order to identify novel small molecule inhibitors for Ras. A database of ~50,000 compounds was selected for virtual screening, setting a free energy binding bias of −7 kcal/mol to limit the number of compounds. The subset of compounds generated by virtual screening was further limited by subjecting these to the Lipinski's rule of five parameters. A total of five shortlisted compounds were subjected to molecular docking simulation. The compounds were docked into the GTP binding site of Ras, and the inhibition of this site was examined as a promising strategy for the downregulation of Ras/Raf/ERK1/2 signaling pathway. The compounds bound to the GTP binding site through hydrogen bonds and hydrophobic interactions. The identified lead compound was then subjected to molecular dynamics simulation, and the results revealed that GLY60 in the GTP binding site of Ras protein was the optimal binding site during a 100 nsec run.
Collapse
Affiliation(s)
- Shilei Yan
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Li Zhang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Shuai Wang
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Tianhao Wu
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhixin Gong
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
12
|
Raghava N, Das BC, Ray SK. Neuroprotective effects of estrogen in CNS injuries: insights from animal models. ACTA ACUST UNITED AC 2017; 6:15-29. [PMID: 28845391 PMCID: PMC5567743 DOI: 10.2147/nan.s105134] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among the estrogens that are biosynthesized in the human body, 17β-estradiol (estradiol or E2) is the most common and the best estrogen for neuroprotection in animal models of the central nervous system (CNS) injuries such as spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic brain injury (IBI). These CNS injuries are not only serious health problems, but also enormous economic burden on the patients, their families, and the society at large. Studies from animal models of these CNS injuries provide insights into the multiple neuroprotective mechanisms of E2 and also suggest the possibility of translating the therapeutic efficacy of E2 in the treatment SCI, TBI, and IBI in humans in the near future. The pathophysiology of these injuries includes loss of motor function in the limbs, arms and their extremities, cognitive deficit, and many other serious consequences including life-threatening paralysis, infection, and even death. The potential application of E2 therapy to treat the CNS injuries may become a trend as the results are showing significant therapeutic benefits of E2 for neuroprotection when administered into the animal models of SCI, TBI, and IBI. This article describes the plausible mechanisms how E2 works with or without the involvement of estrogen receptors and provides an overview of the known neuroprotective effects of E2 in these three CNS injuries in different animal models. Because activation of estrogen receptors has profound implications in maintaining and also affecting normal physiology, there are notable impediments in translating E2 therapy to the clinics for neuroprotection in CNS injuries in humans. While E2 may not yet be the sole molecule for the treatment of CNS injuries due to the controversies surrounding it, the neuroprotective effects of its metabolite and derivative or combination of E2 with another therapeutic agent are showing significant impacts in animal models that can potentially shape the new treatment strategies for these CNS injuries in humans.
Collapse
Affiliation(s)
- Narayan Raghava
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Bhaskar C Das
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
13
|
Oklinski MK, Skowronski MT, Skowronska A, Rützler M, Nørgaard K, Nieland JD, Kwon TH, Nielsen S. Aquaporins in the Spinal Cord. Int J Mol Sci 2016; 17:E2050. [PMID: 27941618 PMCID: PMC5187850 DOI: 10.3390/ijms17122050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are water channel proteins robustly expressed in the central nervous system (CNS). A number of previous studies described the cellular expression sites and investigated their major roles and function in the brain and spinal cord. Among thirteen different mammalian AQPs, AQP1 and AQP4 have been mainly studied in the CNS and evidence has been presented that they play important roles in the pathogenesis of CNS injury, edema and multiple diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, amyotrophic lateral sclerosis, glioblastoma multiforme, Alzheimer's disease and Parkinson's disease. The objective of this review is to highlight the current knowledge about AQPs in the spinal cord and their proposed roles in pathophysiology and pathogenesis related to spinal cord lesions and injury.
Collapse
Affiliation(s)
- Michal K Oklinski
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Mariusz T Skowronski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland.
| | - Agnieszka Skowronska
- Department of Human Physiology, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland.
| | - Michael Rützler
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Kirsten Nørgaard
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - John D Nieland
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu 41944, Korea.
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
14
|
Yonan JM, Binder DK. Aquaporin-4 and spinal cord injury. World J Neurol 2016; 6:1-13. [DOI: 10.5316/wjn.v6.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/25/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Edema formation is a major problem following traumatic spinal cord injury (SCI) that acts to exacerbate secondary damage. Severity of edema correlates with reduced neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on membranes of astrocytic endfeet in direct contact with blood vessels, the glia limitans in contact with the cerebrospinal fluid and ependyma around the central canal. Being so locally expressed at the interface between fluid and tissue allow AQP4 channels to play an important role in the bidirectional regulation of water homeostasis under normal conditions and following trauma. With the need to better understand the pathophysiology underlying the devastating cellular events in SCI, animal models have become an integral part of exploration. Inevitably, several injury models have been developed (contusion, compression, transection) resulting in difficult interpretation between studies with conflicting results. This is true in the case of understanding the role of AQP4 in the progression and resolution of edema following SCI, whose role is still not completely understood and is highly dependent on the type of edema present (vasogenic vs cytotoxic). Here, we discuss regulation of AQP4 in varying injury models and the effects of potential therapeutic interventions on expression, edema formation and functional recovery. Better understanding of the precise role of AQP4 following a wide range of injuries will help to understand optimal treatment timing following human SCI for prime therapeutic benefit and enhanced neurological outcome.
Collapse
|
15
|
Johnson ZI, Gogate SS, Day R, Binch A, Markova DZ, Chiverton N, Cole A, Conner M, Shapiro IM, Le Maitre CL, Risbud MV. Aquaporin 1 and 5 expression decreases during human intervertebral disc degeneration: Novel HIF-1-mediated regulation of aquaporins in NP cells. Oncotarget 2016; 6:11945-58. [PMID: 25844601 PMCID: PMC4494915 DOI: 10.18632/oncotarget.3631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 01/07/2023] Open
Abstract
Objectives of this study were to investigate whether AQP1 and AQP5 expression is altered during intervertebral disc degeneration and if hypoxia and HIF-1 regulate their expression in NP cells. AQP expression was measured in human tissues from different degenerative grades; regulation by hypoxia and HIF-1 was studied using promoter analysis and gain- and loss-of-function experiments. We show that both AQPs are expressed in the disc and that mRNA and protein levels decline with human disease severity. Bioinformatic analyses of AQP promoters showed multiple evolutionarily conserved HREs. Surprisingly, hypoxia failed to induce promoter activity or expression of either AQP. While genomic chromatin immunoprecipitation showed limited binding of HIF-1α to conserved HREs, their mutation did not suppress promoter activities. Stable HIF-1α suppression significantly decreased mRNA and protein levels of both AQPs, but HIF-1α failed to induce AQP levels following accumulation. Together, our results demonstrate that AQP1 and AQP5 expression is sensitive to human disc degeneration and that HIF-1α uniquely maintains basal expression of both AQPs in NP cells, independent of oxemic tension and HIF-1 binding to promoter HREs. Diminished HIF-1 activity during degeneration may suppress AQP levels in NP cells, compromising their ability to respond to extracellular osmolarity changes.
Collapse
Affiliation(s)
- Zariel I Johnson
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shilpa S Gogate
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rebecca Day
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Abbie Binch
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Dessislava Z Markova
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Neil Chiverton
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ashley Cole
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Matt Conner
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Irving M Shapiro
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Makarand V Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
16
|
Hsu Y, Tran M, Linninger AA. Dynamic regulation of aquaporin-4 water channels in neurological disorders. Croat Med J 2016; 56:401-21. [PMID: 26526878 PMCID: PMC4655926 DOI: 10.3325/cmj.2015.56.401] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aquaporin-4 water channels play a central role in brain water regulation in neurological disorders. Aquaporin-4 is abundantly expressed at the astroglial endfeet facing the cerebral vasculature and the pial membrane, and both its expression level and subcellular localization significantly influence brain water transport. However, measurements of aquaporin-4 levels in animal models of brain injury often report opposite trends of change at the injury core and the penumbra. Furthermore, aquaporin-4 channels play a beneficial role in brain water clearance in vasogenic edema, but a detrimental role in cytotoxic edema and exacerbate cell swelling. In light of current evidence, we still do not have a complete understanding of the role of aquaporin-4 in brain water transport. In this review, we propose that the regulatory mechanisms of aquaporin-4 at the transcriptional, translational, and post-translational levels jointly regulate water permeability in the short and long time scale after injury. Furthermore, in order to understand why aquaporin-4 channels play opposing roles in cytotoxic and vasogenic edema, we discuss experimental evidence on the dynamically changing osmotic gradients between blood, extracellular space, and the cytosol during the formation of cytotoxic and vasogenic edema. We conclude with an emerging picture of the distinct osmotic environments in cytotoxic and vasogenic edema, and propose that the directions of aquaporin-4-mediated water clearance in these two types of edema are distinct. The difference in water clearance pathways may provide an explanation for the conflicting observations of the roles of aquaporin-4 in edema resolution.
Collapse
Affiliation(s)
| | | | - Andreas A Linninger
- Andreas Linninger, 851 S Morgan St., SEO 218, MC 063, Chicago, IL 60607, USA,
| |
Collapse
|
17
|
Effect of adenovirus-mediated RNA interference of IL-1β expression on spinal cord injury in rats. Spinal Cord 2016; 54:778-784. [PMID: 26902461 DOI: 10.1038/sc.2016.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 12/20/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022]
Abstract
STUDY DESIGN We introduced an adenoviral vector expressing interleukin-1β (IL-1β) small-hairpin RNA (shRNA) into the injured spinal cords to evaluate the therapeutic potential of IL-1β downregulation in a rat model of spinal cord injury (SCI). OBJECTIVES The purpose of this study was to investigate the possible protective effects of the IL-1β downregulation on traumatic SCI in rats. SETTING Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, People's Republic of China. METHODS An adenoviral shRNA targeting IL-1β was constructed and injected at the T12 section 7 days before SCI. The rats' motor functions were evaluated by the Basso-Beattie-Bresnahan (BBB) rating scale. Immunofluorescence, enzyme-linked immunosorbent assay, flow-cytometric analysis and western blots were also performed. RESULTS Animals downregulating IL-1β had significantly better recovery of locomotor function and less neuronal loss after SCI. In addition, IL-1β downregulation significantly decreased tumor necrosis factor-alpha (TNF-α) level and Bax expression, reduced the activity of caspase-3 and increased Bcl-2 expression after SCI. CONCLUSION This study demonstrated that the IL-1β downregulation may have potential therapeutic benefits for both reducing secondary damages and improving the outcomes after traumatic SCI.
Collapse
|
18
|
miR-320a affects spinal cord edema through negatively regulating aquaporin-1 of blood-spinal cord barrier during bimodal stage after ischemia reperfusion injury in rats. BMC Neurosci 2016; 17:10. [PMID: 26850728 PMCID: PMC4744445 DOI: 10.1186/s12868-016-0243-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/25/2016] [Indexed: 01/19/2023] Open
Abstract
Background Spinal cord edema is a serious complication and pathophysiological change after ischemia reperfusion (IR) injury. It has been demonstrated closely associated with bimodal disruption of blood–spinal cord barrier (BSCB) in our previous work. Aquaporin (AQP)1 plays important but contradictory roles in water homeostasis. Recently, microRNAs (miRs) effectively regulate numerous target mRNAs during ischemia. However, whether miRs are able to protect against dimodal disruption of BSCB by regulating perivascular AQP1 remains to be elucidated.
Results Spinal water content and EB extravasation were suggested as a bimodal distribution in directly proportion to AQP1, since all maximal changes were detected at 12 and 48 h after reperfusion. Further TEM and double immunofluorescence showed that former disruption of BSCB at 12 h was attributed to cytotoxic edema by up-regulated AQP1 expressions in astrocytes, whereas the latter at 48 h was mixed with vasogenic edema with both endothelial cells and astrocytes involvement. Microarray analysis revealed that at 12 h post-injury, ten miRs were upregulated (>2.0 fold) and seven miRs were downregulated (<0.5 fold) and at 48 h, ten miRs were upregulated and eleven were downregulated compared to Sham-operated controls. Genomic screening and luciferase assays identified that miR-320a was a potential modulator of AQP1 in spinal cord after IR in vitro. In vivo, compared to rats in IR and negative control group, intrathecal infusion of miR-320a mimic attenuated IR-induced lower limb motor function deficits and BSCB dysfunction as decreased EB extravasation and spinal water content through down-regulating AQP1 expressions, whereas pretreated with miR-320a AMO reversed above effects.
Conclusion These findings indicate miR-320a directly and functionally affects spinal cord edema through negatively regulating AQP1 of BSCB after IR.
Collapse
|
19
|
Swenson ER. Hypoxia and Its Acid-Base Consequences: From Mountains to Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:301-23. [PMID: 27343105 DOI: 10.1007/978-1-4899-7678-9_21] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hypoxia, depending upon its magnitude and circumstances, evokes a spectrum of mild to severe acid-base changes ranging from alkalosis to acidosis, which can alter many responses to hypoxia at both non-genomic and genomic levels, in part via altered hypoxia-inducible factor (HIF) metabolism. Healthy people at high altitude and persons hyperventilating to non-hypoxic stimuli can become alkalotic and alkalemic with arterial pH acutely rising as high as 7.7. Hypoxia-mediated respiratory alkalosis reduces sympathetic tone, blunts hypoxic pulmonary vasoconstriction and hypoxic cerebral vasodilation, and increases hemoglobin oxygen affinity. These effects and others can be salutary or counterproductive to tissue oxygen delivery and utilization, based upon magnitude of each effect and summation. With severe hypoxia either in the setting of profound arterial hemoglobin desaturation and reduced O2 content or poor perfusion (ischemia) at the global or local level, metabolic and hypercapnic acidosis develop along with considerable lactate formation and pH falling to below 6.8. Although conventionally considered to be injurious and deleterious to cell function and survival, both acidoses may be cytoprotective by various anti-inflammatory, antioxidant, and anti-apoptotic mechanisms which limit total hypoxic or ischemic-reperfusion injury. Attempts to correct acidosis by giving bicarbonate or other alkaline agents under these circumstances ahead of or concurrent with reoxygenation efforts may be ill advised. Better understanding of this so-called "pH paradox" or permissive acidosis may offer therapeutic possibilities. Rapidly growing cancers often outstrip their vascular supply compromising both oxygen and nutrient delivery and metabolic waste disposal, thus limiting their growth and metastatic potential. However, their excessive glycolysis and lactate formation may not necessarily represent oxygen insufficiency, but rather the Warburg effect-an attempt to provide a large amount of small carbon intermediates to supply the many synthetic pathways of proliferative cell growth. In either case, there is expression and upregulation of many genes involved in acid-base homeostasis, in part by HIF-1 signaling. These include a unique isoform of carbonic anhydrase (CA-IX) and numerous membrane acid-base transporters engaged to maintain an optimal intracellular and extracellular pH for maximal growth. Inhibition of these proteins or gene suppression may have important therapeutic application in cancer chemotherapy.
Collapse
Affiliation(s)
- Erik R Swenson
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA. .,VA Puget Sound Health Care System, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM. Role of astrocytes in the neuroprotective actions of 17β-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 2014; 389:48-57. [PMID: 24444786 DOI: 10.1016/j.mce.2014.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/04/2023]
Abstract
Neuroprotective actions of 17β-estradiol (estradiol) are in part mediated by direct actions on neurons. Astrocytes, which play an essential role in the maintenance of the homeostasis of neural tissue, express estrogen receptors and are also involved in the neuroprotective actions of estradiol in the brain. Estradiol controls gliosis and regulates neuroinflammation, edema and glutamate transport acting on astrocytes. In addition, the hormone regulates the release of neurotrophic factors and other neuroprotective molecules by astrocytes. In addition, reactive astrocytes are a local source of neuroprotective estradiol for the injured brain. Since estradiol therapy is not free from peripheral risks, alternatives for the hormone have been explored. Some selective estrogen receptor modulators (SERMs), which are already in use in clinical practice for the treatment of breast cancer, osteoporosis or menopausal symptoms, exert similar actions to estradiol on astrocytes. Therefore, SERMs represent therapeutic alternatives to estradiol for the activation of astroglia-mediated neuroprotective mechanisms.
Collapse
Affiliation(s)
| | | | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | |
Collapse
|
21
|
Lan WB, Lin JH, Chen XW, Wu CY, Zhong GX, Zhang LQ, Lin WP, Liu WN, Li X, Lin JL. Overexpressing neuroglobin improves functional recovery by inhibiting neuronal apoptosis after spinal cord injury. Brain Res 2014; 1562:100-8. [PMID: 24675030 DOI: 10.1016/j.brainres.2014.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/08/2014] [Accepted: 03/17/2014] [Indexed: 01/10/2023]
Abstract
The current study was performed to evaluate the mechanisms and therapeutic effects of overexpressing neuroglobin (Ngb) on spinal cord injury (SCI). Adeno-associated virus (AAV) was injected in the T12 section 7 days before SCI. Animals were randomly divided into four groups: a sham group, a vehicle group, an AAV-EGFP group and an AAV-Ngb group. Recovery of hind limb locomotor function was determined during the 3-week post operation period by the Basso, Beattie and Bresnahan locomotor rating scale. At 24 h after SCI and at the end of the study, the segments of spinal cord, centered with the lesion site were harvested for histopathological analysis. Immunofluorescence was performed using antibodies to recognize neuN in the lesion sections. At 24 h after SCI, the spinal cord tissue samples were removed to analyze tissue concentrations of superoxide dismutase (SOD) and malondialdehyde (MDA). Apoptotic cells were assessed using a terminal deoxynucleotidyl transferase, dUTP nick end labeling (TUNEL) kit. The expression of bcl-2, bax, cytochrome c, and cleaved caspase-3, were determined by Western blot assay and immunostaining analysis. The results showed that animals overexpressing Ngb had significantly greater recovery of locomotor function, less neuronal loss and fewer apoptotic cells. In addition, overexpressing Ngb significantly increased bcl-2 expression and SOD level, decreased bax expression, attenuated the release of cytochrome c from mitochondria to the cytosol fraction, and reduced the activity of caspase-3 and MDA level after SCI. These findings suggest, that overexpressing Ngb can significantly improve the recovery of locomotor function. This neuroprotective effect may be associated with the inhibition of neural apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Wen-Bin Lan
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Jian-Hua Lin
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
| | - Xuan-Wei Chen
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Chao-Yang Wu
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Guang-Xian Zhong
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Li-Qun Zhang
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Wen-Ping Lin
- Department of Orthopedics, the 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Wei-Nan Liu
- Department of Orthopedics, the Affiliated People׳s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xiang Li
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Jin-Luan Lin
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Aquaporin-4 mitigates retrograde degeneration of rubrospinal neurons by facilitating edema clearance and glial scar formation after spinal cord injury in mice. Mol Neurobiol 2014; 49:1327-37. [PMID: 24390474 DOI: 10.1007/s12035-013-8607-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/08/2013] [Indexed: 02/02/2023]
Abstract
Atrophy of upper motor neurons hampers axonal regeneration and functional recovery following spinal cord injury (SCI). Apart from the severity of primary injury, a series of secondary pathological damages including spinal cord edema and glial scar formation affect the fate of injured upper motor neurons. The aquaporin-4 (AQP4) water channel plays a critical role in water homeostasis and migration of astrocytes in the central nervous system, probably offering a new therapeutic target for protecting against upper motor neuron degeneration after SCI. To test this hypothesis, we examined the effect of AQP4 deficiency on atrophy of rubrospinal neurons after unilateral rubrospinal tract transection at the fourth cervical level in mice. AQP4 gene knockout (AQP4-/-) mice exhibited high extent of spinal cord edema at 72 h after lesion compared with wild-type littermates. AQP4-/- mice showed impairments in astrocyte migration toward the transected site with a greater lesion volume at 1 week after surgery and glial scar formation with a larger cyst volume at 6 weeks. More severe atrophy and loss of axotomized rubrospinal neurons as well as axonal degeneration in the rubrospinal tract rostral to the lesion were observed in AQP4-/- mice at 6 weeks after SCI. AQP4 expression was downregulated at the lesioned spinal segment at 3 days and 1 week after injury, but upregulated at 6 weeks. These results demonstrated that AQP4 not only mitigates spinal cord damage but also ameliorates retrograde degeneration of rubrospinal neurons by promoting edema clearance and glial scar formation after laceration SCI. This finding supports the notion that AQP4 may be a promising therapeutic target for SCI.
Collapse
|
23
|
Chu H, Tang Y, Dong Q. Protection of Vascular Endothelial Growth Factor to Brain Edema Following Intracerebral Hemorrhage and Its Involved Mechanisms: Effect of Aquaporin-4. PLoS One 2013; 8:e66051. [PMID: 23805198 PMCID: PMC3689706 DOI: 10.1371/journal.pone.0066051] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/02/2013] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH) is largely unknown. Our previous study has shown aquaporin-4 (AQP4) plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165) was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4+/+) and AQP4 knock-out (AQP4−/−) mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4+/+ mice at each time point, but had no effect on AQP4−/− mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4−/− mice, but not AQP4+/+ mice. RhVEGF165 reduced neurological deficits and increased Nissl’s staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK) and extracellular signal-regulated kinase (p-ERK) and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to treatment of brain edema following ICH.
Collapse
Affiliation(s)
- Heling Chu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China
- * E-mail:
| |
Collapse
|
24
|
Varma AK, Das A, Wallace G, Barry J, Vertegel AA, Ray SK, Banik NL. Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res 2013; 38:895-905. [PMID: 23462880 DOI: 10.1007/s11064-013-0991-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 12/12/2022]
Abstract
The incidence of acute and chronic spinal cord injury (SCI) in the United States is more than 10,000 per year, resulting in 720 cases per million persons enduring permanent disability each year. The economic impact of SCI is estimated to be more than 4 billion dollars annually. Preclinical studies, case reports, and small clinical trials suggest that early treatment may improve neurological recovery. To date, no proven therapeutic modality exists that has demonstrated a positive effect on neurological outcome. Emerging data from recent preclinical and clinical studies offer hope for this devastating condition. This review gives an overview of current basic research and clinical studies for the treatment of SCI.
Collapse
Affiliation(s)
- Abhay K Varma
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Effects of avastin on expression of AQP4 in Müller cells under hypoxia. ACTA ACUST UNITED AC 2012; 32:607-612. [PMID: 22886979 DOI: 10.1007/s11596-012-1005-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the effects of Avastin on aquaporin4 (AQP4) expression in human retinal Müller cells in vitro under hypoxia, so as to explore the mechanism of Avastin treating retinal edema. The human Müller cells were cultured using the enzymatic digestion method. Müller cells were identified under the transmission electron microscopy and by using immunofluorescence staining. By using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), the expression of AQP4 mRNA and VEGF mRNA in Müller cells cultured with 500 μmol/L CoCl(2) for 0, 3, 6, 12 and 24 h, and with 0, 100, 300, 500 and 700 μmol/L CoCl(2) for 24 h was detected. The expression of AQP4 mRNA in Müller cells cultured with 50 ng/mL exogenous vascular endothelial growth factor (VEGF) for 0, 0.5, 1, 2 and 4 h, and with 0, 25, 50 and 75 ng/mL VEGF for 24 h was detected. Amplified cDNA products of AQP4 mRNA in Müller cells cultured with 500 μmol/L CoCl(2) and 200 μg/mL Avastin for 24 h were detected. The results showed that more than 95% cells displayed positive immunofluorescence reaction. Characteristic 8-10 nm intracellular filaments could be seen in the cytoplasm under the transmission electron microscopy. In the CoCl(2) experimental groups, the expression of AQP4 mRNA and VEGF mRNA in Müller cells was increased as compared with the control group. Alteration of AQP4 mRNA and VEGF mRNA levels showed a significantly positive correlation (r (2)=0.822, P<0.05). The expression of AQP4 mRNA in Müller cells was increased by VEGF. The expression of AQP4 mRNA was significantly decreased by Avastin as compared with the control group. It is suggested that Avastin can decrease the expression of AQP4 mRNA in human Müller cells under chemical hypoxic conditions partially via VEGF path, which may be one of the mechanisms of Avastin treating retinal edema.
Collapse
|