1
|
Ratliff WA, Saykally JN, Kane MJ, Citron BA. Neuromuscular Junction Morphology and Gene Dysregulation in the Wobbler Model of Spinal Neurodegeneration. J Mol Neurosci 2018; 66:114-120. [PMID: 30105628 DOI: 10.1007/s12031-018-1153-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neuromuscular disease for which there is currently no effective treatment. The progression of ALS includes loss of motor neurons controlling the voluntary muscles, with much of this loss occurring at the neuromuscular junction. In an effort to better understand changes at the neuromuscular junction, we utilized the wobbler mouse model of motor neuron loss. We examined biceps and end plate morphologies and monitored selected factors involved in end plate function. Structural volumes were determined from 3D reconstructions that were generated for the end plates. Wobbler mice exhibited size reductions of both the muscle fibers and the end plates within the biceps, and we found that the end plate volumes were the most sensitive indicator of the degeneration. Concurrently, we found increases in calcitonin gene-related peptide (CGRP) and its receptor in wobbler biceps and spinal cord. We also found increases in gene expression of two acetylcholine receptors within the wobbler biceps, which may be a result of altered CGRP/CALCRL (calcitonin receptor-like receptor) expression.
Collapse
Affiliation(s)
- Whitney A Ratliff
- Laboratory of Molecular Biology, Research and Development, Bay Pines VA Healthcare System, 151, Bldg. 22, Rm. 123, 10000 Bay Pines Blvd., Bay Pines, FL, 33744, USA.,Department of Molecular Medicine, USF College of Medicine, 12901 Bruce B. Downs Blvd., MDC 7, Tampa, FL, 33612, USA
| | - Jessica N Saykally
- Laboratory of Molecular Biology, Research and Development, Bay Pines VA Healthcare System, 151, Bldg. 22, Rm. 123, 10000 Bay Pines Blvd., Bay Pines, FL, 33744, USA.,Department of Molecular Medicine, USF College of Medicine, 12901 Bruce B. Downs Blvd., MDC 7, Tampa, FL, 33612, USA
| | - Michael J Kane
- Laboratory of Molecular Biology, Research and Development, Bay Pines VA Healthcare System, 151, Bldg. 22, Rm. 123, 10000 Bay Pines Blvd., Bay Pines, FL, 33744, USA.,Department of Molecular Medicine, USF College of Medicine, 12901 Bruce B. Downs Blvd., MDC 7, Tampa, FL, 33612, USA.,Biological Basis of Behavior Program, University of Pennsylvania, 425 South University Ave., Philadelphia, PA, 19104, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, Research and Development, Bay Pines VA Healthcare System, 151, Bldg. 22, Rm. 123, 10000 Bay Pines Blvd., Bay Pines, FL, 33744, USA. .,Department of Molecular Medicine, USF College of Medicine, 12901 Bruce B. Downs Blvd., MDC 7, Tampa, FL, 33612, USA. .,Laboratory of Molecular Biology, Research & Development (Mailstop 15), VA New Jersey Health Care System, Bldg. 16, Rm. 16-176, 385 Tremont Ave., East Orange, NJ, 07018, USA.
| |
Collapse
|
2
|
Wang J, Sun J, Tang Y, Guo G, Zhou X, Chen Y, Shen M. Basic fibroblast growth factor attenuates the degeneration of injured spinal cord motor endplates. Neural Regen Res 2014; 8:2213-24. [PMID: 25206531 PMCID: PMC4146030 DOI: 10.3969/j.issn.1673-5374.2013.24.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/08/2013] [Indexed: 12/15/2022] Open
Abstract
The distal end of the spinal cord and neuromuscular junction may develop secondary degeneration and damage following spinal cord injury because of the loss of neural connections. In this study, a rat model of spinal cord injury, established using a modified Allen's method, was injected with basic fibroblast growth factor solution via subarachnoid catheter. After injection, rats with spinal cord injury displayed higher scores on the Basso, Beattie and Bresnahan locomotor scale. Motor function was also well recovered and hematoxylin-eosin staining showed that spinal glial scar hyperplasia was not apparent. Additionally, anterior tibial muscle fibers slowly, but progressively, atrophied. nohistochemical staining showed that the absorbance values of calcitonin gene related peptide and acetylcholinesterase in anterior tibial muscle and spinal cord were similar, and injection of basic broblast growth factor increased this absorbance. Results showed that after spinal cord injury, the distal motor neurons and motor endplate degenerated. Changes in calcitonin gene related peptide and acetylcholinesterase in the spinal cord anterior horn motor neurons and motor endplate then occurred that were consistent with this regeneration. Our findings indicate that basic fibroblast growth factor can protect the endplate through attenuating the decreased expression of calcitonin gene related peptide and acetylcholinesterase in anterior horn motor neurons of the injured spinal cord.
Collapse
Affiliation(s)
- Jianlong Wang
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jianfeng Sun
- Department of Orthopedics, Yichang Central People's Hospital, Yichang 443003, Hubei Province, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Gangwen Guo
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiaozhe Zhou
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yanliang Chen
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Minren Shen
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|