1
|
Liu R, Xing Y, Zhang H, Wang J, Lai H, Cheng L, Li D, Yu T, Yan X, Xu C, Piao Y, Zeng L, Loh HH, Zhang G, Yang X. Imbalance between the function of Na+-K+-2Cl and K+-Cl impairs Cl– homeostasis in human focal cortical dysplasia. Front Mol Neurosci 2022; 15:954167. [PMID: 36324524 PMCID: PMC9621392 DOI: 10.3389/fnmol.2022.954167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Altered expression patterns of Na+-K+-2Cl– (NKCC1) and K+-Cl– (KCC2) co-transporters have been implicated in the pathogenesis of epilepsy. Here, we assessed the effects of imbalanced NKCC1 and KCC2 on γ-aminobutyric acidergic (GABAergic) neurotransmission in certain brain regions involved in human focal cortical dysplasia (FCD). Materials and methods We sought to map a micro-macro neuronal network to better understand the epileptogenesis mechanism. In patients with FCD, we resected cortical tissue from the seizure the onset zone (SOZ) and the non-seizure onset zone (non-SOZ) inside the epileptogenic zone (EZ). Additionally, we resected non-epileptic neocortical tissue from the patients with mesial temporal lobe epilepsy (MTLE) as control. All of tissues were analyzed using perforated patch recordings. NKCC1 and KCC2 co-transporters expression and distribution were analyzed by immunohistochemistry and western blotting. Results Results revealed that depolarized GABAergic signals were observed in pyramidal neurons in the SOZ and non-SOZ groups compared with the control group. The total number of pyramidal neurons showing GABAergic spontaneous postsynaptic currents was 11/14, 7/17, and 0/12 in the SOZ, non-SOZ, and control groups, respectively. The depolarizing GABAergic response was significantly dampened by the specific NKCC1 inhibitor bumetanide (BUM). Patients with FCD exhibited higher expression and internalized distribution of KCC2, particularly in the SOZ group. Conclusion Our results provide evidence of a potential neurocircuit underpinning SOZ epileptogenesis and non-SOZ seizure susceptibility. Imbalanced function of NKCC1 and KCC2 may affect chloride ion homeostasis in neurons and alter GABAergic inhibitory action, thereby contributing to epileptogenesis in FCDs. Maintaining chloride ion homeostasis in the neurons may represent a new avenue for the development of novel anti-seizure medications (ASMs).
Collapse
Affiliation(s)
- Ru Liu
- Guangzhou Laboratory, Guangzhou, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Xing
- Guangzhou Laboratory, Guangzhou, China
| | | | - Junling Wang
- Guangzhou Laboratory, Guangzhou, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Lipeng Cheng
- Guangzhou Laboratory, Guangzhou, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Donghong Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Yu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yueshan Piao
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Linghui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou, China
| | | | - Guojun Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Guojun Zhang,
| | - Xiaofeng Yang
- Guangzhou Laboratory, Guangzhou, China
- Neuroelectrophysiological Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xiaofeng Yang,
| |
Collapse
|
2
|
Dos Santos Heringer L, Rios Carvalho J, Teixeira Oliveira J, Texeira Silva B, de Souza Aguiar Dos Santos DM, Martinez Martinez Toledo AL, Borges Savoldi LM, Magalhães Portela D, Adriani Marques S, Campello Costa Lopes P, Blanco Martinez AM, Mendonça HR. Altered excitatory and inhibitory neocortical circuitry leads to increased convulsive severity after pentylenetetrazol injection in an animal model of schizencephaly, but not of microgyria. Epilepsia Open 2022; 7:462-473. [PMID: 35808864 PMCID: PMC9436300 DOI: 10.1002/epi4.12625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Malformations of the polymicrogyria spectrum can be mimicked in rodents through neonatal transcranial focal cortical freeze lesions. The animals presenting the malformations present both altered synaptic events and epileptiform activity in the vicinity of the microgyrus, but the comprehension of their contribution to increased predisposition or severity of seizures require further studies. METHODS In order to investigate these issues, we induced both microgyria and schizencephaly in 57 mice and evaluated: their convulsive susceptibility and severity after pentyleneterazol (PTZ) treatment, the quantification of their symmetric and asymmetric synapses, the morphology of their dendritic arbors, and the content of modulators of synaptogenesis, such as SPARC, gephyrin and GAP-43 within the adjacent visual cortex. RESULTS Our results have shown that only schizencephalic animals present increased convulsive severity. Nevertheless, both microgyric and schizencephalic cortices present increased synapse number and dendritic complexity of layer IV and layer V-located neurons. Specifically, the microgyric cortex presented reduced inhibitory synapses, while the schizencephalic cortex presented increased excitatory synapses. This altered synapse number is correlated with decreased content of both the anti-synaptogenic factor SPARC and the inhibitory postsynaptic organizer gephyrin in both malformed groups. Besides, GAP-43 content and dendritic spines number are enhanced exclusively in schizencephalic cortices. SIGNIFICANCE In conclusion, our study supports the hypothesis that the sum of synaptic alterations drives to convulsive aggravation in animals with schizencephaly, but not microgyria after PTZ treatment. These findings reveal that different malformations of cortical development should trigger epilepsy via different mechanisms, requiring further studies for development of specific therapeutic interventions.
Collapse
Affiliation(s)
- Luiza Dos Santos Heringer
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, - RJ
| | - Julia Rios Carvalho
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, - RJ
| | | | - Bruna Texeira Silva
- Laboratory of Neuroplasticity, Department of Neurobiology, Institute of Biology, Brazil, Niterói, - RJ
| | - Domethila Mariano de Souza Aguiar Dos Santos
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, - RJ
| | - Anna Lecticia Martinez Martinez Toledo
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, - RJ
| | - Laura Maria Borges Savoldi
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, - RJ
| | - Debora Magalhães Portela
- Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Brazil, Macaé, - RJ
| | - Suelen Adriani Marques
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, - RJ
| | | | - Ana Maria Blanco Martinez
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, - RJ
| | - Henrique Rocha Mendonça
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Brazil, Rio de Janeiro, - RJ.,Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Brazil, Macaé, - RJ
| |
Collapse
|
3
|
Harris AC, Jin XT, Greer JE, Povlishock JT, Jacobs KM. Somatostatin interneurons exhibit enhanced functional output and resilience to axotomy after mild traumatic brain injury. Neurobiol Dis 2022; 171:105801. [PMID: 35753625 PMCID: PMC9383472 DOI: 10.1016/j.nbd.2022.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/01/2022] Open
Abstract
Mild traumatic brain injury (mTBI) gives rise to a remarkable breadth of pathobiological consequences, principal among which are traumatic axonal injury and perturbation of the functional integrity of neuronal networks that may arise secondary to the elimination of the presynaptic contribution of axotomized neurons. Because there exists a vast diversity of neocortical neuron subtypes, it is imperative to elucidate the relative vulnerability to axotomy among different subtypes. Toward this end, we exploited SOM-IRES-Cre mice to investigate the consequences of the central fluid percussion model of mTBI on the microanatomical integrity and the functional efficacy of the somatostatin (SOM) interneuron population, one of the principal subtypes of neocortical interneuron. We found that the SOM population is resilient to axotomy, representing only 10% of the global burden of inhibitory interneuron axotomy, a result congruous with past work demonstrating that parvalbumin (PV) interneurons bear most of the burden of interneuron axotomy. However, the intact structure of SOM interneurons after injury did not translate to normal cellular function. One day after mTBI, the SOM population is more intrinsically excitable and demonstrates enhanced synaptic efficacy upon post-synaptic layer 5 pyramidal neurons as measured by optogenetics, yet the global evoked inhibitory tone within layer 5 is stable. Simultaneously, there exists a significant increase in the frequency of miniature inhibitory post-synaptic currents within layer 5 pyramidal neurons. These results are consistent with a scheme in which 1 day after mTBI, SOM interneurons are stimulated to compensate for the release from inhibition of layer 5 pyramidal neurons secondary to the disproportionate axotomy of PV interneurons. The enhancement of SOM interneuron intrinsic excitability and synaptic efficacy may represent the initial phase of a dynamic process of attempted autoregulation of neocortical network homeostasis secondary to mTBI.
Collapse
Affiliation(s)
- Alan C Harris
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - Xiao-Tao Jin
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - John E Greer
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - John T Povlishock
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - Kimberle M Jacobs
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| |
Collapse
|
4
|
Nomura S, Kida H, Hirayama Y, Imoto H, Inoue T, Moriyama H, Mitsushima D, Suzuki M. Reduction of spike generation frequency by cooling in brain slices from rats and from patients with epilepsy. J Cereb Blood Flow Metab 2019; 39:2286-2294. [PMID: 30117752 PMCID: PMC6827110 DOI: 10.1177/0271678x18795365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study aimed to understand the mechanism by which brain cooling terminates epileptic discharge. Cortical slices were prepared from rat brains (n = 19) and samples from patients with intractable epilepsy that had undergone temporal lobectomy (n = 7). We performed whole cell current clamp recordings at approximately physiological brain temperature (35℃) and at cooler temperatures (25℃ and 15℃). The firing threshold in human neurons was lower at 25℃ (-32.6 mV) than at 35℃ (-27.0 mV). The resting potential and spike frequency were similar at 25℃ and 35℃. Cooling from 25℃ to 15℃ did not change the firing threshold, but the resting potential increased from -65.5 to -54.0 mV and the waveform broadened from 1.85 to 6.55 ms, due to delayed repolarization. These changes enhanced the initial spike appearance and reduced spike frequency; moreover, spike frequency was insensitive to increased levels of current injections. Similar results were obtained in rat brain studies. We concluded that the reduction in spike frequency at 15℃, due to delayed repolarization, might be a key mechanism by which brain cooling terminates epileptic discharge. On the other hand, spike frequency was not influenced by the reduced firing threshold or the elevated resting potential caused by cooling.
Collapse
Affiliation(s)
- Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.,Epilepsy Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Hiroyuki Kida
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yuya Hirayama
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hirochika Imoto
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan.,Epilepsy Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Takao Inoue
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroshi Moriyama
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Dai Mitsushima
- Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| |
Collapse
|
5
|
Ekanem NB, Reed LK, Weston N, Jacobs KM. Enhanced responses to somatostatin interneuron activation in developmentally malformed cortex. Epilepsia Open 2019; 4:334-338. [PMID: 31168501 PMCID: PMC6546010 DOI: 10.1002/epi4.12316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/15/2019] [Indexed: 11/21/2022] Open
Abstract
Intractable epilepsy is commonly associated with developmental cortical malformations. Using the rodent freeze lesion model, we have sought the underlying circuit abnormalities contributing to the epileptiform activity that occurs in association with the structural pathology of four-layered microgyria. We showed previously that within the epileptogenic paramicrogyral region (PMR) surrounding the malformation, non-fast-spiking neurons commonly containing somatostatin (SSt) exhibit alterations, including having a greater maximum firing rate. Here we examined the output of SSt interneurons with optogenetics, using SSt-Cre mice mated to mice with floxed channelrhodopsin-2. Voltage clamp recordings from layer V pyramidal neurons in ex vivo slices had significantly enhanced SSt-evoked inhibitory postsynaptic currents in PMR cortex compared to control. In addition, under conditions of low-Mg2+ artificial cerebral spinal fluid (aCSF), light activation of the SSt neurons evoked field potential epileptiform activity in the PMR cortex, but not in control. These data suggest that within the PMR cortex, SSts have a significantly larger effect on excitatory neurons. Surprisingly, the network effect of this enhanced inhibition is hyperexcitability with propagating epileptiform activity, perhaps due to disinhibition of other interneuron cell types or to enhanced synchrony of excitatory cortical elements. This identification creates a new locus for potential modulation of epileptiform activity associated with cortical malformation.
Collapse
Affiliation(s)
- Nicole B. Ekanem
- Department of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondVirginia
| | - Laura K. Reed
- Department of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondVirginia
| | - Nicole Weston
- Department of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondVirginia
| | - Kimberle M. Jacobs
- Department of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondVirginia
| |
Collapse
|
6
|
Hånell A, Greer JE, Jacobs KM. Increased Network Excitability Due to Altered Synaptic Inputs to Neocortical Layer V Intact and Axotomized Pyramidal Neurons after Mild Traumatic Brain Injury. J Neurotrauma 2015; 32:1590-8. [PMID: 25789412 DOI: 10.1089/neu.2014.3592] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) can produce long lasting cognitive dysfunction. There is typically no cell death and only diffuse structural injury after mTBI. Thus, functional changes in intact neurons may contribute to symptoms. We have previously shown altered intrinsic properties of axotomized and intact neurons within 2 d after a central fluid percussion injury in mice expressing yellow fluorescent protein (YFP) that allow identification of axonal state prior to recording. Here, whole-cell patch clamp recordings were used to examine synaptic properties of YFP(+) layer V pyramidal neurons. An increased frequency of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was recorded from axotomized neurons at 1 d and intact neurons at 2 d after injury, likely reflecting an increased number of afferents. This also was reflected in the increased amplitude of the EPSC evoked by local extracellular stimulation for all neurons from injured cortex and increased likelihood of producing an action potential for intact cells. Field potentials recorded in superficial layers after online deep layer stimulation contained a single negative peak in controls but multiple negative peaks in injured tissue. The amplitude of this evoked negativity was significantly larger than controls over a series of stimulus intensities at both the 1 d and 2 d survival times. Interictal-like spikes never occurred in the field potential recordings from controls but were observed in 20-80% of stimulus presentations in injured cortex. Together, these results suggest an overall increase in network excitability and the production of particularly powerful (intact) neurons that have both increased intrinsic and synaptic excitability.
Collapse
Affiliation(s)
- Anders Hånell
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - John E Greer
- 2 Department of Neurosurgery, Virginia Commonwealth University , Richmond, Virginia
| | - Kimberle M Jacobs
- 1 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
7
|
Takano T, Matsui K. Increased expression of GAP43 in interneurons in a rat model of experimental polymicrogyria. J Child Neurol 2015; 30:716-28. [PMID: 25061039 DOI: 10.1177/0883073814541476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/01/2014] [Indexed: 12/15/2022]
Abstract
To investigate seizure susceptibility in polymicrogyria, the seizure threshold and growth-associated protein GAP43 expression were analyzed in a rat experimental model of polymicrogyria induced by intracerebral injection of ibotenate. A total of 72 neonates from 9 pregnant rats were used. Intraperitoneal pentylenetetrazole injection did not induce any seizure activity in the control rats, although it elicited seizures of variable severity in the polymicrogyria rats. Fluoro-Jade B-positive degenerating interneurons were found in the polymicrogyria brains; however, no such neurons were detected in the control brains. In the polymicrogyria rats, the GAP43 expression was significantly and widely distributed in the brain, and the percentage of parvalbumin-positive interneurons in the GAP43-positive cells was significantly higher than that observed in the nonphosphorylated neurofilament-positive pyramidal cells. We conclude that the relatively selective vulnerability of inhibitory interneurons constitutes the basis for the decreased seizure threshold observed in this model of polymicrogyria.
Collapse
Affiliation(s)
- Tomoyuki Takano
- Department of Pediatrics, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Japan
| | - Katsuyuki Matsui
- Department of Pediatrics, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Japan
| |
Collapse
|
8
|
Strack B, Jacobs KM, Cios KJ. Simulating vertical and horizontal inhibition with short-term dynamics in a multi-column multi-layer model of neocortex. Int J Neural Syst 2014; 24:1440002. [PMID: 24875787 PMCID: PMC9422346 DOI: 10.1142/s0129065714400024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The paper introduces a multi-layer multi-column model of the cortex that uses four different neuron types and short-term plasticity dynamics. It was designed with details of neuronal connectivity available in the literature and meets these conditions: (1) biologically accurate laminar and columnar flows of activity, (2) normal function of low-threshold spiking and fast spiking neurons, and (3) ability to generate different stages of epileptiform activity. With these characteristics the model allows for modeling lesioned or malformed cortex, i.e. examine properties of developmentally malformed cortex in which the balance between inhibitory neuron subtypes is disturbed.
Collapse
Affiliation(s)
- Beata Strack
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
9
|
Bell A, Jacobs KM. Early susceptibility for epileptiform activity in malformed cortex. Epilepsy Res 2013; 108:241-50. [PMID: 24368129 DOI: 10.1016/j.eplepsyres.2013.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 02/08/2023]
Abstract
Despite early disruption of developmental processes, hyperexcitability is often delayed after the induction of cortical malformations. In the freeze-lesion model of microgyria, interictal activity cannot be evoked in vitro until postnatal day (P)12, despite the increased excitatory afferent input to the epileptogenic region by P10. In order to determine the most critical time period for assessment of epileptogenic mechanisms, here we have used low-Mg(2+) aCSF as a second hit after the neonatal freeze lesion to examine whether there is an increased susceptibility prior to the overt expression of epileptiform activity. This two-hit model produced increased interictal activity in freeze-lesioned relative to control cortex. We quantified this with measures of incidence by sweep, time to first epileptiform event, and magnitude of late activity. The increase was present even in the P7-9 survival group, before increased excitatory afferents invade, as well as in the P10-11 and P12-15 groups. In our young adult group (P28-36), the amount of interictal activity did not differ, but only the lesioned cortices produced ictal activity. We conclude that epileptogenic processes begin early and continue beyond the expression of interictal activity, with different time courses for susceptibility for interictal and ictal activity.
Collapse
Affiliation(s)
- Andrew Bell
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
10
|
Strack B, Jacobs KM, Cios KJ. Biological Restraint on the Izhikevich Neuron Model Essential for Seizure Modeling. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2013; 2013:395-398. [PMID: 36818466 PMCID: PMC9937452 DOI: 10.1109/ner.2013.6695955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We propose a simple modification of the Izhikevich neuron model to restrict firing rates of neurons. We demonstrate how this modification affects overall network activity using a simple artificial network. Such restraint on the Izhikevich neuron model would be especially important in larger scale simulations or when frequency dependent short-term plasticity is one of the network components. Although maximum firing rates are most likely exceeded in simulations of seizure like activity or other conditions that promote excessive excitation, we show that restriction of neuronal firing frequencies has impact even on small networks with moderate levels of input.
Collapse
Affiliation(s)
- Beata Strack
- B. Strack is with the Department of Computer Science, Virginia Commonwealth University School of Engineering, Richmond, VA
| | - Kimberle M. Jacobs
- K.M. Jacobs is with the Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Krzysztof J. Cios
- K.J. Cios is with the Department of Computer Science, Virginia Commonwealth University School of Engineering, Richmond, VA and IITiS Polish Academy of Sciences, Poland
| |
Collapse
|
11
|
Strack B, Jacobs KM, Cios KJ. Simulating lesions in multi-layer, multi-columnar model of neocortex. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2013; 2013:835-838. [PMID: 36818467 PMCID: PMC9937446 DOI: 10.1109/ner.2013.6696064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The paper presents results of modeling global and focal loss of layers in a multi-columnar model of neocortex. Specifically, the spread of activity across columns in conditions of inhibitory blockade is compared. With very low inhibition activity spreads through all layers, however, deep layers are critical for spread of activity when inhibition is only moderately blocked.
Collapse
Affiliation(s)
- Beata Strack
- Department of Computer Science, Virginia Commonwealth University School of Engineering, Richmond, VA
| | - Kimberle M Jacobs
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Krzysztof J Cios
- Department of Computer Science, Virginia Commonwealth University School of Engineering, Richmond, VA and IITiS Polish Academy of Sciences, Poland
| |
Collapse
|
12
|
LIS1 deficiency promotes dysfunctional synaptic integration of granule cells generated in the developing and adult dentate gyrus. J Neurosci 2012; 32:12862-75. [PMID: 22973010 DOI: 10.1523/jneurosci.1286-12.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Type I lissencephaly, a neuronal migration disorder characterized by cognitive disability and refractory epilepsy, is often caused by heterozygous mutations in the LIS1 gene. Histopathologies of malformation-associated epilepsies have been well described, but it remains unclear whether hyperexcitability is attributable to disruptions in neuronal organization or abnormal circuit function. Here, we examined the effect of LIS1 deficiency on excitatory synaptic function in the dentate gyrus of hippocampus, a region believed to serve critical roles in seizure generation and learning and memory. Mice with heterozygous deletion of LIS1 exhibited robust granule cell layer dispersion, and adult-born granule cells labeled with enhanced green fluorescent protein were abnormally positioned in the molecular layer, hilus, and granule cell layer. In whole-cell patch-clamp recordings, reduced LIS1 function was associated with greater excitatory synaptic input to mature granule cells that was consistent with enhanced release probability at glutamatergic synapses. Adult-born granule cells that were ectopically positioned in the molecular layer displayed a more rapid functional maturation and integration into the synaptic network compared with newborn granule cells located in the hilus or granule cell layer or in wild-type controls. In a conditional knock-out mouse, induced LIS1 deficiency in adulthood also enhanced the excitatory input to granule cells in the absence of neuronal disorganization. These findings indicate that disruption of LIS1 has direct effects on excitatory synaptic transmission independent of laminar disorganization, and the ectopic position of adult-born granule cells within a malformed dentate gyrus critically influences their functional maturation and integration.
Collapse
|
13
|
Electrophysiological abnormalities in both axotomized and nonaxotomized pyramidal neurons following mild traumatic brain injury. J Neurosci 2012; 32:6682-7. [PMID: 22573690 DOI: 10.1523/jneurosci.0881-12.2012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mild traumatic brain injury (mTBI) often produces lasting detrimental effects on cognitive processes. The mechanisms underlying neurological abnormalities have not been fully identified, in part due to the diffuse pathology underlying mTBI. Here we employ a mouse model of mTBI that allows for identification of both axotomized and intact neurons in the living cortical slice via neuronal expression of yellow fluorescent protein. Both axotomized and intact neurons recorded within injured cortex are healthy with a normal resting membrane potential, time constant (τ), and input resistance (R(in)). In control cortex, 25% of cells show an intrinsically bursting action potential (AP) firing pattern, and the rest respond to injected depolarizing current with a regular-spiking pattern. At 2 d postinjury, intrinsic bursting activity is lost within the intact population. The AP amplitude is increased and afterhyperpolarization duration decreased in axotomized neurons at 1 and 2 d postinjury. In contrast, intact neurons also show these changes at 1 d, but recover by 2 d postinjury. Two measures suggest an initial decrease in excitability in axotomized neurons followed by an increase in excitability within intact neurons. The rheobase is significantly increased in axotomized neurons at 1 d postinjury. The slope of the plot of AP frequency versus injected current is larger for intact neurons at 2 d postinjury. Together, these results demonstrate that intact and axotomized neurons are both affected by mTBI, resulting in different changes in neuronal excitability that may contribute to network dysfunction following TBI.
Collapse
|
14
|
Hyperthermia induces epileptiform discharges in cultured rat cortical neurons. Brain Res 2011; 1417:87-102. [DOI: 10.1016/j.brainres.2011.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 01/28/2023]
|