1
|
Slíž K, Mikuš P. Advances in SARMs anti-doping analysis. Drug Test Anal 2024. [PMID: 38706416 DOI: 10.1002/dta.3697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
Selective androgen receptor modulators (SARMs) are performance-enhancing drugs (PEDs) that stimulate anabolism, increase muscle mass and strength and promote recovery from exercise. The use of SARMs in sports is considered doping and is strictly prohibited by the World Anti-Doping Agency (WADA) and the International Federation of Horseracing Authorities (IFHA). To monitor the abuse of SARMs in sports, it is essential to develop advanced, selective and sensitive analytical methods that provide reliable results. This review evaluates the advances in this area, with a focus on the identification of target analytes related to SARMs, such as SARMs, their metabolites or markers. The aim is to identify targets that could extend the detection windows of SARMs, provide scientific support for results management and/or offer an indirect biomarker-based approach to doping control. This review also aims to evaluate the current liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods developed for the monitoring of SARMs in different biological matrices, including traditional matrices such as urine and serum/plasma samples, as well as alternative matrices such as dried blood spots, hair and nail samples.
Collapse
Affiliation(s)
- Kristián Slíž
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Toxicologic and Antidoping Centre, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
- Toxicologic and Antidoping Centre, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Raber J, Fuentes Anaya A, Torres ERS, Lee J, Boutros S, Grygoryev D, Hammer A, Kasschau KD, Sharpton TJ, Turker MS, Kronenberg A. Effects of Six Sequential Charged Particle Beams on Behavioral and Cognitive Performance in B6D2F1 Female and Male Mice. Front Physiol 2020; 11:959. [PMID: 32982769 PMCID: PMC7485338 DOI: 10.3389/fphys.2020.00959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
The radiation environment astronauts are exposed to in deep space includes galactic cosmic radiation (GCR) with different proportions of all naturally occurring ions. To assist NASA with assessment of risk to the brain following exposure to a mixture of ions broadly representative of the GCR, we assessed the behavioral and cognitive performance of female and male C57BL/6J × DBA2/J F1 (B6D2F1) mice two months following rapidly delivered, sequential 6 beam irradiation with protons (1 GeV, LET = 0.24 keV, 50%), 4He ions (250 MeV/n, LET = 1.6 keV/μm, 20%), 16O ions (250 MeV/n, LET = 25 keV/μm 7.5%), 28Si ions (263 MeV/n, LET = 78 keV/μm, 7.5%), 48Ti ions (1 GeV/n, LET = 107 keV/μm, 7.5%), and 56Fe ions (1 GeV/n, LET = 151 keV/μm, 7.5%) at 0, 25, 50, or 200 cGy) at 4-6 months of age. When the activity over 3 days of open field habituation was analyzed in female mice, those irradiated with 50 cGy moved less and spent less time in the center than sham-irradiated mice. Sham-irradiated female mice and those irradiated with 25 cGy showed object recognition. However, female mice exposed to 50 or 200 cGy did not show object recognition. When fear memory was assessed in passive avoidance tests, sham-irradiated mice and mice irradiated with 25 cGy showed memory retention while mice exposed to 50 or 200 cGy did not. The effects of radiation passive avoidance memory retention were not sex-dependent. There was no effect of radiation on depressive-like behavior in the forced swim test. There was a trend toward an effect of radiation on BDNF levels in the cortex of males, but not for females, with higher levels in male mice irradiated with 50 cGy than sham-irradiated. Finally, sequential 6-ion irradiation impacted the composition of the gut microbiome in a sex-dependent fashion. Taxa were uncovered whose relative abundance in the gut was associated with the radiation dose received. Thus, exposure to sequential six-beam irradiation significantly affects behavioral and cognitive performance and the gut microbiome.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Andrea Fuentes Anaya
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Eileen Ruth S. Torres
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Joanne Lee
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Dmytro Grygoryev
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States
| | - Austin Hammer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Kristin D. Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
- Department of Statistics, Oregon State University, Corvallis, OR, United States
| | - Mitchell S. Turker
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States
| | - Amy Kronenberg
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
3
|
Baddour AAD, Apodaca LA, Alikhani L, Lu C, Minasyan H, Batra RS, Acharya MM, Baulch JE. Sex-Specific Effects of a Wartime-Like Radiation Exposure on Cognitive Function. Radiat Res 2019; 193:5-15. [DOI: 10.1667/rr15413.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Al Anoud D. Baddour
- Department of Radiation Oncology, University of California Irvine, Irvine, California 92697
| | - Lauren A. Apodaca
- Department of Radiation Oncology, University of California Irvine, Irvine, California 92697
| | - Leila Alikhani
- Department of Radiation Oncology, University of California Irvine, Irvine, California 92697
| | - Celine Lu
- Department of Radiation Oncology, University of California Irvine, Irvine, California 92697
| | - Harutyun Minasyan
- Department of Radiation Oncology, University of California Irvine, Irvine, California 92697
| | - Raja S. Batra
- Department of Radiation Oncology, University of California Irvine, Irvine, California 92697
| | - Munjal M. Acharya
- Department of Radiation Oncology, University of California Irvine, Irvine, California 92697
| | - Janet E. Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, California 92697
| |
Collapse
|
5
|
Elancheran R, Maruthanila VL, Ramanathan M, Kabilan S, Devi R, Kunnumakara A, Kotoky J. Recent discoveries and developments of androgen receptor based therapy for prostate cancer. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00416g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main focus of this review is to discuss the discoveries and developments of various therapies for prostate cancer.
Collapse
Affiliation(s)
- R. Elancheran
- Drug Discovery Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - V. L. Maruthanila
- Department of Bioscience
- E. G. S. Pillai Arts and Science College
- India
| | - M. Ramanathan
- Department of Pharmacology
- PSG College of Pharmacy
- Coimbatore-641 004
- India
| | - S. Kabilan
- Department of Chemistry
- Annamalai University
- India
| | - R. Devi
- Drug Discovery Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| | - A. Kunnumakara
- Department of Biotechnology
- Indian Institute of Technology
- Guwahti
- India
| | - Jibon Kotoky
- Drug Discovery Laboratory
- Life Sciences Division
- Institute of Advanced Study in Science and Technology
- Guwahati-781035
- India
| |
Collapse
|
6
|
Jayaraman A, Christensen A, Moser VA, Vest RS, Miller CP, Hattersley G, Pike CJ. Selective androgen receptor modulator RAD140 is neuroprotective in cultured neurons and kainate-lesioned male rats. Endocrinology 2014; 155:1398-406. [PMID: 24428527 PMCID: PMC3959610 DOI: 10.1210/en.2013-1725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed "selective androgen receptor modulators" (SARMs) have been developed that lack significant androgen action in prostate but exert agonist effects in select androgen-responsive tissues. The efficacy of SARMs in brain is largely unknown. In this study, we investigate the SARM RAD140 in cultured rat neurons and male rat brain for its ability to provide neuroprotection, an important neural action of endogenous androgens that is relevant to neural health and resilience to neurodegenerative diseases. In cultured hippocampal neurons, RAD140 was as effective as testosterone in reducing cell death induced by apoptotic insults. Mechanistically, RAD140 neuroprotection was dependent upon MAPK signaling, as evidenced by elevation of ERK phosphorylation and inhibition of protection by the MAPK kinase inhibitor U0126. Importantly, RAD140 was also neuroprotective in vivo using the rat kainate lesion model. In experiments with gonadectomized, adult male rats, RAD140 was shown to exhibit peripheral tissue-specific androgen action that largely spared prostate, neural efficacy as demonstrated by activation of androgenic gene regulation effects, and neuroprotection of hippocampal neurons against cell death caused by systemic administration of the excitotoxin kainate. These novel findings demonstrate initial preclinical efficacy of a SARM in neuroprotective actions relevant to Alzheimer's disease and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Anusha Jayaraman
- Davis School of Gerontology (A.J., A.C., R.S.V., C.J.P.) and Neuroscience Graduate Program (V.A.M., C.J.P.), University of Southern California, Los Angeles, California 90089; and Radius Health, Inc. (C.P.M., G.H.), Cambridge, Massachusetts 02139
| | | | | | | | | | | | | |
Collapse
|
7
|
Poutiainen PK, Oravilahti T, Peräkylä M, Palvimo JJ, Ihalainen JA, Laatikainen R, Pulkkinen JT. Design, Synthesis, and Biological Evaluation of Nonsteroidal Cycloalkane[d]isoxazole-Containing Androgen Receptor Modulators. J Med Chem 2012; 55:6316-27. [DOI: 10.1021/jm300233k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Janne A. Ihalainen
- Nanoscience Center, Department
of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, FI-40014 University
of Jyväskylä, Finland
| | | | | |
Collapse
|
8
|
Haendler B, Cleve A. Recent developments in antiandrogens and selective androgen receptor modulators. Mol Cell Endocrinol 2012; 352:79-91. [PMID: 21704118 DOI: 10.1016/j.mce.2011.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/16/2011] [Accepted: 06/03/2011] [Indexed: 11/30/2022]
Abstract
The androgens testosterone and dihydrotestosterone play an essential role in the development and maintenance of primary and secondary male characteristics. Androgens bind to a specific androgen receptor (AR), a ligand-dependent transcription factor which controls the expression of a large number of downstream target genes. The AR is an essential player in early and late prostate cancer, and may also be involved in some forms of breast cancer. It also represents a drug target for the treatment of hypogonadism. Recent studies furthermore indicate that targeting the AR in pathologies such as frailty syndrome, cachexia or polycystic ovary syndrome may have clinical benefit. Numerous AR ligands with very different pharmacological properties have been identified in the last 40 years and helped to treat several of these diseases. However, progress still needs to be made in order to find compounds with an improved profile with regard to efficacy, differentiation and side-effects. This will only be achieved through a better understanding of the mechanisms involved in normal and aberrant AR signaling.
Collapse
Affiliation(s)
- Bernard Haendler
- TRG Oncology, Global Drug Discovery, Bayer HealthCare, D-13342 Berlin, Germany.
| | | |
Collapse
|