1
|
Clausse V, Fang Y, Tao D, Tagad HD, Sun H, Wang Y, Karavadhi S, Lane K, Shi ZD, Vasalatiy O, LeClair CA, Eells R, Shen M, Patnaik S, Appella E, Coussens NP, Hall MD, Appella DH. Discovery of Novel Small-Molecule Scaffolds for the Inhibition and Activation of WIP1 Phosphatase from a RapidFire Mass Spectrometry High-Throughput Screen. ACS Pharmacol Transl Sci 2022; 5:993-1006. [PMID: 36268125 PMCID: PMC9578142 DOI: 10.1021/acsptsci.2c00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Wild-type P53-induced phosphatase 1 (WIP1), also known as PPM1D or PP2Cδ, is a serine/threonine protein phosphatase induced by P53 after genotoxic stress. WIP1 inhibition has been proposed as a therapeutic strategy for P53 wild-type cancers in which it is overexpressed, but this approach would be ineffective in P53-negative cancers. Furthermore, there are several cancers with mutated P53 where WIP1 acts as a tumor suppressor. Therefore, activating WIP1 phosphatase might also be a therapeutic strategy, depending on the P53 status. To date, no specific, potent WIP1 inhibitors with appropriate pharmacokinetic properties have been reported, nor have WIP1-specific activators. Here, we report the discovery of new WIP1 modulators from a high-throughput screen (HTS) using previously described orthogonal biochemical assays suitable for identifying both inhibitors and activators. The primary HTS was performed against a library of 102 277 compounds at a single concentration using a RapidFire mass spectrometry assay. Hits were further evaluated over a range of 11 concentrations with both the RapidFire MS assay and an orthogonal fluorescence-based assay. Further biophysical, biochemical, and cell-based studies of confirmed hits revealed a WIP1 activator and two inhibitors, one competitive and one uncompetitive. These new scaffolds are prime candidates for optimization which might enable inhibitors with improved pharmacokinetics and a first-in-class WIP1 activator.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Fang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Harichandra D. Tagad
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hongmao Sun
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yuhong Wang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Surendra Karavadhi
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kelly Lane
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Zhen-Dan Shi
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Olga Vasalatiy
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Christopher A. LeClair
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Rebecca Eells
- Reaction
Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Samarjit Patnaik
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ettore Appella
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Coussens
- Molecular
Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Phosphatase magnesium-dependent 1 δ (PPM1D), serine/threonine protein phosphatase and novel pharmacological target in cancer. Biochem Pharmacol 2020; 184:114362. [PMID: 33309518 DOI: 10.1016/j.bcp.2020.114362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Aberrations in DNA damage response genes are recognized mediators of tumorigenesis and resistance to chemo- and radiotherapy. While protein phosphatase magnesium-dependent 1 δ (PPM1D), located on the long arm of chromosome 17 at 17q22-23, is a key regulator of cellular responses to DNA damage, amplification, overexpression, or mutation of this gene is important in a wide range of pathologic processes. In this review, we describe the physiologic function of PPM1D, as well as its role in diverse processes, including fertility, development, stemness, immunity, tumorigenesis, and treatment responsiveness. We highlight both the advances and limitations of current approaches to targeting malignant processes mediated by pathogenic alterations in PPM1D with the goal of providing rationale for continued research and development of clinically viable treatment approaches for PPM1D-associated diseases.
Collapse
|
3
|
Hat B, Jaruszewicz-Błońska J, Lipniacki T. Model-based optimization of combination protocols for irradiation-insensitive cancers. Sci Rep 2020; 10:12652. [PMID: 32724100 PMCID: PMC7387345 DOI: 10.1038/s41598-020-69380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/19/2020] [Indexed: 01/07/2023] Open
Abstract
Alternations in the p53 regulatory network may render cancer cells resistant to the radiation-induced apoptosis. In this theoretical study we search for the best protocols combining targeted therapy with radiation to treat cancers with wild-type p53, but having downregulated expression of PTEN or overexpression of Wip1 resulting in resistance to radiation monotherapy. Instead of using the maximum tolerated dose paradigm, we exploit stochastic computational model of the p53 regulatory network to calculate apoptotic fractions for both normal and cancer cells. We consider combination protocols, with irradiations repeated every 12, 18, 24, or 36 h to find that timing between Mdm2 inhibitor delivery and irradiation significantly influences the apoptotic cell fractions. We assume that uptake of the inhibitor is higher by cancer than by normal cells and that cancer cells receive higher irradiation doses from intersecting beams. These two assumptions were found necessary for the existence of protocols inducing massive apoptosis in cancer cells without killing large fraction of normal cells neighboring tumor. The best found protocols have irradiations repeated every 24 or 36 h with two inhibitor doses per irradiation cycle, and allow to induce apoptosis in more than 95% of cancer cells, killing less than 10% of normal cells.
Collapse
Affiliation(s)
- Beata Hat
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | | | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Clausse V, Tao D, Debnath S, Fang Y, Tagad HD, Wang Y, Sun H, LeClair CA, Mazur SJ, Lane K, Shi ZD, Vasalatiy O, Eells R, Baker LK, Henderson MJ, Webb MR, Shen M, Hall MD, Appella E, Appella DH, Coussens NP. Physiologically relevant orthogonal assays for the discovery of small-molecule modulators of WIP1 phosphatase in high-throughput screens. J Biol Chem 2019; 294:17654-17668. [PMID: 31481464 PMCID: PMC6873202 DOI: 10.1074/jbc.ra119.010201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Indexed: 01/07/2023] Open
Abstract
WT P53-Induced Phosphatase 1 (WIP1) is a member of the magnesium-dependent serine/threonine protein phosphatase (PPM) family and is induced by P53 in response to DNA damage. In several human cancers, the WIP1 protein is overexpressed, which is generally associated with a worse prognosis. Although WIP1 is an attractive therapeutic target, no potent, selective, and bioactive small-molecule modulator with favorable pharmacokinetics has been reported. Phosphatase enzymes are among the most challenging targets for small molecules because of the difficulty of achieving both modulator selectivity and bioavailability. Another major obstacle has been the availability of robust and physiologically relevant phosphatase assays that are suitable for high-throughput screening. Here, we describe orthogonal biochemical WIP1 activity assays that utilize phosphopeptides from native WIP1 substrates. We optimized an MS assay to quantify the enzymatically dephosphorylated peptide reaction product in a 384-well format. Additionally, a red-shifted fluorescence assay was optimized in a 1,536-well format to enable real-time WIP1 activity measurements through the detection of the orthogonal reaction product, Pi. We validated these two optimized assays by quantitative high-throughput screening against the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection and used secondary assays to confirm and evaluate inhibitors identified in the primary screen. Five inhibitors were further tested with an orthogonal WIP1 activity assay and surface plasmon resonance binding studies. Our results validate the application of miniaturized physiologically relevant and orthogonal WIP1 activity assays to discover small-molecule modulators from high-throughput screens.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Subrata Debnath
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Harichandra D Tagad
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuhong Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Hongmao Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Christopher A LeClair
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Sharlyn J Mazur
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Kelly Lane
- Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - Zhen-Dan Shi
- Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - Olga Vasalatiy
- Imaging Probe Development Center, NHLBI, National Institutes of Health, Rockville, Maryland 20850
| | - Rebecca Eells
- Reaction Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355
| | - Lynn K Baker
- Reaction Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Martin R Webb
- Francis Crick Institute, 1 Midland Road, London NW1 AT, United Kingdom
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| | - Ettore Appella
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850
| |
Collapse
|
5
|
Wang P, Zhao Y, Liu K, Liu X, Liang J, Zhou H, Wang Z, Zhou Z, Xu N. Wip1 cooperates with KPNA2 to modulate the cell proliferation and migration of colorectal cancer via a p53-dependent manner. J Cell Biochem 2019; 120:15709-15718. [PMID: 31127650 DOI: 10.1002/jcb.28840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
Due to the increasing incidence and mortality, the early diagnosis, specific targeted therapies, and prognosis for colorectal cancer (CRC) attract more and more attention. Wild-type p53-induced phosphatase 1 (Wip1) and karyopherin α2 (KPNA2) have been regarded as oncogenes in many cancers, including CRC. Wip1 dephosphorylates p53 to inactivate it. TP53 activator and Wip1 inhibitor downregulate KPNA2 expression. Therefore, we speculate that Wip1 may co-operate with KPNA2 to modulate CRC progression in a p53-dependent manner. Here, Wip1 and KPNA2 messenger RNA expression and protein levels are significantly increased in CRC tissues and cell lines and are positively correlated with each other. Wip1 silence increases p53 phosphorylation while decreases KPNA2 protein. Wip1 knockdown remarkably suppresses CRC cell proliferation and migration while KPNA2 overexpression exerts an opposing effect. KPNA2 overexpression could partially rescue Wip1 silence-inhibited CRC cell proliferation and migration. Finally, Wip1 interacts with KPNA2 to modulate the activation of AKT/GSK-3β signaling and metastasis-related factors. In summary, Wip1 could co-operate with KPNA2 to modulate CRC cell proliferation and migration, possibly via a p53-dependent manner, through downstream AKT/GSK-3β pathway. We provided a novel mechanism of Wip1 interacting with KPNA2, therefore modulating CRC cell proliferation and migration.
Collapse
Affiliation(s)
- Peng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Zhao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuijie Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xianghe Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Liang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhixiang Zhou
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Bai F, Zhou H, Fu Z, Xie J, Hu Y, Nie S. NF-κB-induced WIP1 expression promotes colorectal cancer cell proliferation through mTOR signaling. Biomed Pharmacother 2018; 99:402-410. [PMID: 29367109 DOI: 10.1016/j.biopha.2018.01.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer deaths worldwide. Wild-type p53-induced protein 1 (WIP1) is overexpressed in multiple human cancers and acted as an oncogene. This study was aimed to investigate the effect of WIP1 in colorectal cancer growth and analyzed underlying mechanisms. Herein, we determined WIP1 expression in CRC tissues and cell lines, as well as evaluated its detailed function in CRC cell proliferation. Several factors have been reported to mediate WIP1 effects; herein, we examined the involvement of mTOR and p21 in WIP1 regulation of CRC cell proliferation. Moreover, NF-κB has been regarded as a positive transcriptional regulator of WIP1 to activate its expression. NF-κB knockdown suppressed CRC cell proliferation, which could be reversed by WIP1 overexpression, through p21 and mTOR. Further, we examined the binding of NF-κB to the promoter region of WIP1. In CRC tissues, NF-κB expression was significantly up-regulated, and positively correlated with WIP1 expression, suggesting that inhibiting NF-κB expression to attenuate its activating effect on WIP1 expression presented a promising strategy of controlling excess proliferation of CRC cell. In summary, WIP1 promotes CRC proliferation through p21 and mTOR, both downstream targets of p53; NF-κB served as a positive transcriptional regulator of WIP1 to activate its expression and affect its function in CRC cells. Our finding provided a novel strategy for treatment for CRC.
Collapse
Affiliation(s)
- Fei Bai
- Department of Colorectal Surgery, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, PR China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, Hunan Cancer Hospital&The Affiliated Hospital of Xiangya School of Medicine, Central South University, PR China
| | - Zhongping Fu
- Department of Colorectal Surgery, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, PR China
| | - Jiangbo Xie
- Department of Colorectal Surgery, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, PR China
| | - Yingbin Hu
- Department of Colorectal Surgery, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, PR China
| | - Shaolin Nie
- Department of Colorectal Surgery, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, PR China.
| |
Collapse
|
7
|
Xu J, Zhong H, Cui L, Lan Q, Chen L, He W, Wu Y, Jiang L, Huang H, Zhao X, Li L, Zeng S, Li M, Xu F. Expression of wild-type p53-induced phosphatase 1 in diabetic epiretinal membranes. Oncotarget 2018; 8:35532-35541. [PMID: 28402943 PMCID: PMC5482596 DOI: 10.18632/oncotarget.16683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/11/2017] [Indexed: 01/01/2023] Open
Abstract
Objective The aims of the present study were to investigate the expression and distribution of Wild-type p53-induced phosphatase 1 (Wip1) in diabetic patients with proliferative diabetic retinopathy (PDR) with epiretinal membranes (ERMs) meanwhile analyze the colocalization of Wip1 and nuclear factor kappa-B (NF-κB) p65 in ERMs. Methods ERMs samples were collected from patients with PDR (PDR group) or non-diabetic patients with idiopathic epiretinal membranes (iERMs) (control group) during pars plana vitrectomy. Real-Time PCR analysis was carried out to examine the mRNA expression of Wip1 in ERMs. Immunohistochemical analysis and Immunofluorescent analysis were performed to detect the protein expression of Wip1 in ERMs. Double immunofluorescent staining was performed to detect the colocalization of Wip1 and glial fibrillary acidic protein (GFAP) (retinal glial cells marker), also Wip1 and NF-κB. Results ERMs were obtained from 17 eyes of 17 patients with PDR (the PDR group) and 9 eyes of 9 nondiabetic patients (the control group) with iERMs. Our results showed high expression levels of Wip1 mRNAs in ERMs after PDR, but low in iERMs. In addition, both immunohistochemistry and immunofluorescence assay showed strong immunoreactivity for Wip1 in PDR ERMs. Furthermore, Wip1 and GFAP were coexpressed in PDR membranes. Finally, the expression of Wip1 was paralleled with NF-κB. Conclusion These data support the notion that Wip1 contributes to the formation of the ERMs in PDR membranes via NF-κB signaling.
Collapse
Affiliation(s)
- Jiping Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Haibin Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Ling Cui
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Qianqian Lan
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Lifei Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Wenjing He
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Yu Wu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Xin Zhao
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Li Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
8
|
Pechackova S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget 2018; 7:14458-75. [PMID: 26883108 PMCID: PMC4924728 DOI: 10.18632/oncotarget.7363] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
PP2C family serine/threonine phosphatase WIP1 acts as a negative regulator of the tumor suppressor p53 and is implicated in silencing of cellular responses to genotoxic stress. Chromosomal locus 17q23 carrying the PPM1D (coding for WIP1) is commonly amplified in breast carcinomas and WIP1 was proposed as potential pharmacological target. Here we employed a cellular model with knocked out PPM1D to validate the specificity and efficiency of GSK2830371, novel small molecule inhibitor of WIP1. We have found that GSK2830371 increased activation of the DNA damage response pathway to a comparable level as the loss of PPM1D. In addition, GSK2830371 did not affect proliferation of cells lacking PPM1D but significantly supressed proliferation of breast cancer cells with amplified PPM1D. Over time cells treated with GSK2830371 accumulated in G1 and G2 phases of the cell cycle in a p21-dependent manner and were prone to induction of senescence by a low dose of MDM2 antagonist nutlin-3. In addition, combined treatment with GSK2830371 and doxorubicin or nutlin-3 potentiated cell death through a strong induction of p53 pathway and activation of caspase 9. We conclude that efficient inhibition of WIP1 by GSK2830371 sensitizes breast cancer cells with amplified PPM1D and wild type p53 to chemotherapy.
Collapse
Affiliation(s)
- Sona Pechackova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Kamila Burdova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Jan Benada
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Petra Kleiblova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic.,Institute of Biochemistry and Experimental Oncology, Charles University in Prague, CZ-12853 Prague, Czech Republic
| | - Gabriela Jenikova
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220 Prague, Czech Republic
| |
Collapse
|
9
|
Inoue Y, Yamashita N, Kitao H, Tanaka K, Saeki H, Oki E, Oda Y, Tokunaga E, Maehara Y. Clinical Significance of the Wild Type p53-Induced Phosphatase 1 Expression in Invasive Breast Cancer. Clin Breast Cancer 2017; 18:e643-e650. [PMID: 29275106 DOI: 10.1016/j.clbc.2017.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/19/2017] [Accepted: 11/11/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Wild type p53-induced phosphatase 1 (Wip1), encoded by the protein phosphatase magnesium dependent 1 delta (PPM1D), inhibits p53. PPM1D amplification has been reported in breast cancer. Breast cancer can sometimes develop without a tumor protein 53 (TP53) mutation. In these cases, the p53 pathway might be disrupted by alternative mechanisms, and Wip1 is reported to be a key molecule involved. MATERIALS AND METHODS Primary invasive ductal carcinoma specimens were obtained from 201 cases, for which archival tissue samples for immunohistochemistry were available. We evaluated Wip1 and p21 protein expression (201 cases), Wip1 mRNA expression (63 cases), PPM1D DNA copy number (71 cases) and TP53 status (36 cases) using available samples among the 201 cases, and analyzed their relationships with clinicopathological factors and prognosis. RESULTS The nuclear expression of Wip1 protein was positive in 21 cases (10.4%). The PPM1D DNA copy number was significantly correlated with Wip1 protein expression. All cases with PPM1D amplification by single-nucleotide polymorphism comparative genomic hybridization array showed positive nuclear Wip1 expression. Wip1 protein expression was positively correlated with p21 expression. The tumors with positive Wip1 and negative p21 expression showed the poorest prognosis among all tumor types. CONCLUSION The protein expression of Wip1 might be regulated by PPM1D amplification, independent of TP53 status. Positive Wip1 and negative p21 expression was associated with the poorest prognosis and suggests the loss of p53 function.
Collapse
Affiliation(s)
- Yuka Inoue
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Nami Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Hiroyuki Kitao
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka City, Japan
| | - Kimihiro Tanaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Eriko Tokunaga
- Departments of Breast Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka City, Japan.
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| |
Collapse
|
10
|
Jeong HJ, Woo CG, Lee B, Khang SK, Nam SJ, Choi J. Protein Phosphatase Magnesium-Dependent 1δ (PPM1D) Expression as a Prognostic Marker in Adult Supratentorial Diffuse Astrocytic and Oligodendroglial Tumors. J Pathol Transl Med 2017; 52:71-78. [PMID: 29046514 PMCID: PMC5859240 DOI: 10.4132/jptm.2017.10.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background Protein phosphatase magnesium-dependent 1δ (PPM1D) is a p53-induced serine/threonine phosphatase, which is overexpressed in various human cancers. A recent study reported that a mutation in the PPM1D gene is associated with poor prognosis in brainstem gliomas. In this study, we evaluated the utility of PPM1D as a prognostic biomarker of adult supratentorial diffuse astrocytic and oligodendroglial tumors. Methods To investigate PPM1D protein expression, mRNA expression, and copy number changes, immunohistochemistry, RNAscope in situ hybridization, and fluorescence in situ hybridization were performed in 84 adult supratentorial diffuse gliomas. We further analyzed clinical characteristics and overall survival (OS) according to PPM1D protein expression, and examined its correlation with other glioma biomarkers such as isocitrate dehydrogenase (IDH) mutation, and p53 expression. Results Forty-six cases (54.8%) were PPM1D-positive. PPM1D expression levels were significantly correlated with PPM1D transcript levels (p= .035), but marginally with PPM1D gene amplification (p=.079). Patients with high-grade gliomas showed a higher frequency of PPM1D expression than those with low-grade gliomas (p <.001). Multivariate analysis demonstrated that PPM1D expression (hazard ratio [HR], 2.58; p=.032), age over 60 years (HR, 2.55; p=.018), and IDH1 mutation (HR, 0.18; p=.002) were significantly independent prognostic factors; p53 expression had no prognostic significance (p=.986). The patients with tumor expressing PPM1D showed a shorter OS (p=.003). Moreover, patients with tumor harboring wild-type IDH1 and PPM1D expression had the worst OS (p<.001). Conclusions Our data suggest that a subset of gliomas express PPM1D; PPM1D expression is a significant marker of poor prognosis in adult supratentorial diffuse astrocytic and oligodendroglial tumors.
Collapse
Affiliation(s)
- Hui Jeong Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Gok Woo
- Department of Pathology, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Bora Lee
- Department of Biostatistics, Clinical Trial Center, Soonchunhyang Medical Center, Bucheon, Korea
| | - Shin Kwang Khang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Pecháčková S, Burdová K, Macurek L. WIP1 phosphatase as pharmacological target in cancer therapy. J Mol Med (Berl) 2017; 95:589-599. [PMID: 28439615 PMCID: PMC5442293 DOI: 10.1007/s00109-017-1536-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
DNA damage response (DDR) pathway protects cells from genome instability and prevents cancer development. Tumor suppressor p53 is a key molecule that interconnects DDR, cell cycle checkpoints, and cell fate decisions in the presence of genotoxic stress. Inactivating mutations in TP53 and other genes implicated in DDR potentiate cancer development and also influence the sensitivity of cancer cells to treatment. Protein phosphatase 2C delta (referred to as WIP1) is a negative regulator of DDR and has been proposed as potential pharmaceutical target. Until recently, exploitation of WIP1 inhibition for suppression of cancer cell growth was compromised by the lack of selective small-molecule inhibitors effective at cellular and organismal levels. Here, we review recent advances in development of WIP1 inhibitors and discuss their potential use in cancer treatment.
Collapse
Affiliation(s)
- Soňa Pecháčková
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Kamila Burdová
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic.
| |
Collapse
|
12
|
Wang P, Ye JA, Hou CX, Zhou D, Zhan SQ. Combination of lentivirus-mediated silencing of PPM1D and temozolomide chemotherapy eradicates malignant glioma through cell apoptosis and cell cycle arrest. Oncol Rep 2016; 36:2544-2552. [PMID: 27633132 PMCID: PMC5055212 DOI: 10.3892/or.2016.5089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/22/2016] [Indexed: 01/06/2023] Open
Abstract
Temozolomide (TMZ) is approved for use as first-line treatment for glioblastoma multiforme (GBM). However, GBM shows chemoresistance shortly after the initiation of treatment. In order to detect whether silencing of human protein phosphatase 1D magnesium dependent (PPM1D) gene could increase the effects of TMZ in glioma cells, glioma cells U87-MG were infected with lentiviral shRNA vector targeting PPM1D silencing. After PPM1D silencing was established, cells were treated with TMZ. The multiple functions of human glioma cells after PPM1D silencing and TMZ chemotherapy were detected by flow cytometry and MTT assay. Significantly differentially expressed genes were distinguished by microarray-based gene expression profiling and analyzed by gene pathway enrichment analysis and ontology assessment. Western blotting was used to establish the protein expression of the core genes. PPM1D gene silencing improves TMZ induced cell proliferation and induces cell apoptosis and cell cycle arrest. When PPM1D gene silencing combined with TMZ was performed in glioma cells, 367 genes were upregulated and 444 genes were downregulated compared with negative control. The most significant differential expression pathway was pathway in cancer and IGFR1R, PIK3R1, MAPK8 and EP300 are core genes in the network. Western blotting showed that MAPK8 and PIK3R1 protein expression levels were upregulated and RB1 protein expression was decreased. It was consistent with that detected in gene expression profiling. In conclusion, PPM1D gene silencing combined with TMZ eradicates glioma cells through cell apoptosis and cell cycle arrest. PIK3R1/AKT pathway plays a role in the multiple functions of glioma cells after PPM1D silencing and TMZ chemotherapy.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jing-An Ye
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Chong-Xian Hou
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Sheng-Quan Zhan
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
13
|
Jin Y, Xiao W, Song T, Feng G, Dai Z. Expression and Prognostic Significance of p53 in Glioma Patients: A Meta-analysis. Neurochem Res 2016; 41:1723-31. [PMID: 27038932 DOI: 10.1007/s11064-016-1888-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/19/2022]
Abstract
Glioma is a brain tumor deriving from the neoplastic glial cells or neuroglia. Due to its resistance to anticancer drugs and different disease progress of individuals, patients with high-grade glioma are difficult to completely cure, leading to a poor prognosis and low overall survival. Therefore, there is an urgent need to look for prognostic and diagnostic indicators that can predict glioma grades. P53 is one of the widely studied biomarkers in human glioma. The purpose of this study was to comprehensively evaluate the significance of p53 expression in glioma grades and overall survival. We searched commonly used electronic databases to retrieve related articles of p53 expression in glioma. Overall, a total of 21 studies including 1322 glioma patients were finally screened out. We observed that the frequency of p53 immuno-positivity was higher in high-grade patients than that in low-grade category (63.8 vs. 41.6 %), and our statistic analysis indicated that p53 expression was associated with pathological grade of glioma (OR 2.93, 95 % CI 1.87-4.60, P < 0.00001). This significant correction was also found in 1-, 3- and 5-year overall survival. However, no positive relationship was found between age, sex, tumor size and p53 expression in patients with glioma. In conclusion, our results suggested that p53 immunohistochemical expression might have an effective usefulness in predicting the prognosis in patients with glioma.
Collapse
Affiliation(s)
- Yueling Jin
- Department of Pathology, Shanghai University of Medicine & Health Sciences, Meilong Road 21, Shanghai, 200237, China
| | - Weizhong Xiao
- Department of Neurology, Shanghai Pudong Hospital Affiliated to Fudan University, Gongwei Road No. 2008, Huinan Town, Pudong New District, Shanghai, 201399, China
| | - Tingting Song
- Shanghai Putuo District Changfeng Lane Baiyu Community Health Service Center, Caoyang Road 421, Putuo District, Shanghai, 200063, China
| | - Guangjia Feng
- Department of Hematology, Shanghai Pudong Hospital Affiliated to Fudan University, Gongwei Road No. 2008, Huinan Town, Pudong New District, Shanghai, 201399, China
| | - Zhensheng Dai
- Department of Hematology, Shanghai Pudong Hospital Affiliated to Fudan University, Gongwei Road No. 2008, Huinan Town, Pudong New District, Shanghai, 201399, China.
| |
Collapse
|
14
|
Wang B, Li D, Sidler C, Rodriguez-Juarez R, Singh N, Heyns M, Ilnytskyy Y, Bronson RT, Kovalchuk O. A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1. Oncotarget 2016; 6:9937-50. [PMID: 25888625 PMCID: PMC4496408 DOI: 10.18632/oncotarget.3157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide, and it has been linked to radiation exposure. As a well-defined oncogene, wild-type p53-induced phosphatase 1 (WIP1) plays an inhibitory role in several tumor suppressor pathways, including p53. WIP1 is amplified and overexpressed in many malignancies, including HCC. However, the underlying mechanisms remain largely unknown. Here, we show that low-dose ionizing radiation (IR) induces miR-29c expression in female mouse liver, while inhibiting its expression in HepG2, a human hepatocellular carcinoma cell line which is used as a model system in this study. miR-29c expression is downregulated in human hepatocellular carcinoma cells, which is inversely correlated with WIP1 expression. miR-29c attenuates luciferase activity of a reporter harboring the 3'UTR binding motif of WIP1 mRNA. Ectopic expression of miR-29c significantly represses cell proliferation and induces apoptosis and G1 arrest in HepG2. In contrast, the knockdown of miR-29c greatly enhances HepG2 cell proliferation and suppresses apoptosis. The biological effects of miR-29c may be mediated by its target WIP1 which regulates p53 activity via dephosphorylation at Ser-15. Finally, fluorescence in situ hybridization (FISH) and immunohistochemical analyses indicate that miR-29c is downregulated in 50.6% of liver carcinoma tissues examined, whereas WIP1 is upregulated in 45.4% of these tissues. The expression of miR-29c inversely correlates with that of WIP1 in HCC. Our results suggest that the IR-responsive miR-29c may function as a tumor suppressor that plays a crucial role in the development of liver carcinoma via targeting WIP1, therefore possibly representing a target molecule for therapeutic intervention for this disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.,Department of Biochemistry, Qiqihar Medical University, Qiqihar, P.R. China
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.,Department of Biochemistry, Qiqihar Medical University, Qiqihar, P.R. China
| | - Corinne Sidler
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | | | - Natasha Singh
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Mieke Heyns
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Roderick T Bronson
- The Dana Farber/Harvard Comprehensive Cancer Center, Boston, Massachusetts, USA
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
15
|
Zhao M, Zhang H, Zhu G, Liang J, Chen N, Yang Y, Liang X, Cai H, Liu W. Association between overexpression of Wip1 and prognosis of patients with non-small cell lung cancer. Oncol Lett 2016; 11:2365-2370. [PMID: 27073481 PMCID: PMC4812323 DOI: 10.3892/ol.2016.4245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/28/2016] [Indexed: 01/07/2023] Open
Abstract
Wild-type p53-induced phosphatase 1 (Wip1), also termed PPM1D, is a member of the protein phosphatase 2C family, which is characterized by distinctive oncogenic properties. Overexpression of Wip1 is observed in certain types of human tumors that are associated with significantly poor prognosis. The present study aimed to detect the expression of Wip1 in non-small cell lung cancer (NSCLC) and to analyze its prognostic value in such patients. The protein expression level of Wip1 was compared between NSCLC and normal lung tissue specimens using by immunohistochemistry, and it was found that Wip1 was highly expressed in NSCLCs but was absent or weakly expressed in normal lung tissues. Detailed clinical and demographic information of patients were retrospectively collected pre- and postoperatively, and Kaplan-Meier survival and Cox's regression analyses were performed to evaluate the prognosis of patients. Survival analysis revealed that the overall survival rate for patients in the Wip1-positive expression group was significantly lower than that of the Wip1-negative group, and Cox multivariate analysis indicated that positive Wip1 expression, pN classification and pathological stage were significant prognostic predictors. The results of the current study suggest that Wip1 may be associated with pathological diagnosis and prognostic evaluation of NSCLC.
Collapse
Affiliation(s)
- Min Zhao
- Department of Oncology, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China; Department of Lung Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Hongbin Zhang
- Department of Lung Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Guiyun Zhu
- Department of Pathology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Jian Liang
- Department of Lung Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Ning Chen
- Department of Pathology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Yonghui Yang
- Department of Pathology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Xiangcun Liang
- Department of Lung Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Hongmei Cai
- Department of Lung Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, Hebei 050041, P.R. China
| | - Wei Liu
- Department of Oncology, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China; Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050012, P.R. China
| |
Collapse
|
16
|
Wang H, Zhang X, Teng L, Legerski RJ. DNA damage checkpoint recovery and cancer development. Exp Cell Res 2015; 334:350-8. [PMID: 25842165 DOI: 10.1016/j.yexcr.2015.03.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/12/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
Abstract
Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients׳ poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Haiyong Wang
- First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003, China
| | - Xiaoshan Zhang
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 USA
| | - Lisong Teng
- First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003, China.
| | - Randy J Legerski
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 USA.
| |
Collapse
|
17
|
Cooperative integration between HEDGEHOG-GLI signalling and other oncogenic pathways: implications for cancer therapy. Expert Rev Mol Med 2015; 17:e5. [PMID: 25660620 PMCID: PMC4836208 DOI: 10.1017/erm.2015.3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The HEDGEHOG-GLI (HH-GLI) signalling is a key pathway critical in embryonic development, stem cell biology and tissue homeostasis. In recent years, aberrant activation of HH-GLI signalling has been linked to several types of cancer, including those of the skin, brain, lungs, prostate, gastrointestinal tract and blood. HH-GLI signalling is initiated by binding of HH ligands to the transmembrane receptor PATCHED and is mediated by transcriptional effectors that belong to the GLI family, whose activity is finely tuned by a number of molecular interactions and post-translation modifications. Several reports suggest that the activity of the GLI proteins is regulated by several proliferative and oncogenic inputs, in addition or independent of upstream HH signalling. The identification of this complex crosstalk and the understanding of how the major oncogenic signalling pathways interact in cancer is a crucial step towards the establishment of efficient targeted combinatorial treatments. Here we review recent findings on the cooperative integration of HH-GLI signalling with the major oncogenic inputs and we discuss how these cues modulate the activity of the GLI proteins in cancer. We then summarise the latest advances on SMO and GLI inhibitors and alternative approaches to attenuate HH signalling through rational combinatorial therapies.
Collapse
|
18
|
WIP1 regulates the proliferation and invasion of nasopharyngeal carcinoma in vitro. Tumour Biol 2014; 35:7651-7. [PMID: 24801909 DOI: 10.1007/s13277-014-2034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/28/2014] [Indexed: 01/07/2023] Open
Abstract
Wild-type p53-induced phosphatase (WIP1) is overexpressed and functionally altered in multiple human malignancies. The present study investigated its abnormal expression and dysfunctions in nasopharyngeal carcinoma (NPC) in vitro. Here, analysis of WIP1 mRNA and protein in human NPC tissues revealed that both WIP1 messenger RNA (mRNA) and protein were elevated and were correlated with NPC clinical stage and metastasis in patients. In vitro experiments further showed that WIP1 inhibition led to a decrease in the proliferative ability of NPC CNE-2 and 5-8F cells accompanied by cell cycle arrest and increased apoptosis. In addition, WIP1 knockdown inhibited the invasiveness of CNE-2 and 5-8F cells and was associated with the down-regulation of the expression of matrix metallopeptidase 9 (MMP-9) mRNA and protein. Taken together, our data demonstrate that WIP1 regulates the proliferation and invasiveness of NPC cells in vitro, and this may be correlated with its modulation of MMP-9 expression, cell cycle progression and apoptosis. WIP1 functioned as a potential therapeutic target in NPC management.
Collapse
|
19
|
Kleiblova P, Shaltiel IA, Benada J, Ševčík J, Pecháčková S, Pohlreich P, Voest EE, Dundr P, Bartek J, Kleibl Z, Medema RH, Macurek L. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. ACTA ACUST UNITED AC 2013; 201:511-21. [PMID: 23649806 PMCID: PMC3653305 DOI: 10.1083/jcb.201210031] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations in PPM1D/Wip1 phosphatase impair the DNA damage-induced checkpoint and
may predispose cells to tumorigenesis. The DNA damage response (DDR) pathway and its core component tumor suppressor p53
block cell cycle progression after genotoxic stress and represent an intrinsic
barrier preventing cancer development. The serine/threonine phosphatase
PPM1D/Wip1 inactivates p53 and promotes termination of the DDR pathway. Wip1 has
been suggested to act as an oncogene in a subset of tumors that retain wild-type
p53. In this paper, we have identified novel gain-of-function mutations in exon
6 of PPM1D that result in expression of C-terminally truncated
Wip1. Remarkably, mutations in PPM1D are present not only in
the tumors but also in other tissues of breast and colorectal cancer patients,
indicating that they arise early in development or affect the germline. We show
that mutations in PPM1D affect the DDR pathway and propose that
they could predispose to cancer.
Collapse
Affiliation(s)
- Petra Kleiblova
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University in Prague, CZ-12853 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Li ZT, Zhang L, Gao XZ, Jiang XH, Sun LQ. Expression and Significance of the Wip1 Proto-oncogene in Colorectal Cancer. Asian Pac J Cancer Prev 2013; 14:1975-9. [DOI: 10.7314/apjcp.2013.14.3.1975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
WIP1 phosphatase modulates the Hedgehog signaling by enhancing GLI1 function. Oncogene 2012; 32:4737-47. [PMID: 23146903 DOI: 10.1038/onc.2012.502] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/10/2012] [Accepted: 09/18/2012] [Indexed: 02/06/2023]
Abstract
The Hedgehog-GLI (HH-GLI) signaling plays a critical role in controlling growth and tissue patterning during embryogenesis and is implicated in a variety of human malignancies, including those of the skin. Phosphorylation events have been shown to regulate the activity of the GLI transcription factors, the final effectors of the HH-GLI signaling pathway. Here, we show that WIP1 (or PPM1D), an oncogenic phosphatase amplified/overexpressed in several types of human cancer, is a positive modulator of the HH signaling. Mechanistically, WIP1 enhances the function of GLI1 by increasing its transcriptional activity, nuclear localization and protein stability, but not of GLI2 nor GLI3. We also find that WIP1 and GLI1 are in a complex. Modulation of the transcriptional activity of GLI1 by WIP1 depends on the latter's phosphatase activity and, remarkably, does not require p53, a known WIP1 target. Functionally, we find that WIP1 is required for melanoma and breast cancer cell proliferation and self-renewal in vitro and melanoma xenograft growth induced by activation of the HH signaling. Pharmacological blockade of the HH pathway with the SMOOTHENED antagonist cyclopamine acts synergistically with inhibition of WIP1 in reducing growth of melanoma and breast cancer cells in vitro. Overall, our data uncover a role for WIP1 in modulating the activity of GLI1 and in sustaining cancer cell growth and cancer stem cell self-renewal induced by activation of the HH pathway. These findings open a novel therapeutic approach for human melanomas and, possibly, other cancer types expressing WIP1 and with activated HH pathway.
Collapse
|