1
|
Atella TC, Medina JM, Atella GC, Allodi S, Kluck GEG. Neuroprotective Effects of Metformin Through AMPK Activation in a Neurotoxin-Based Model of Cerebellar Ataxia. Mol Neurobiol 2024; 61:5102-5116. [PMID: 38165584 DOI: 10.1007/s12035-023-03892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 01/04/2024]
Abstract
Cerebellar ataxia is a heterogeneous group of neural disorders clinically characterized by cerebellar dysfunction. The diagnosis of patients with progressive cerebellar ataxia is complex due to the direct correlation with other neuron diseases. Although there is still no cure for this pathological condition, some metabolic, hereditary, inflammatory, and immunological factors affecting cerebellar ataxia are being studied and may become therapeutic targets. Advances in studying the neuroanatomy, pathophysiology, and molecular biology of the cerebellum (CE) contribute to a better understanding of the mechanisms behind the development of this disorder. In this study, Wistar rats aged 30 to 35 days were injected intraperitoneally with 3-acetylpyridine (3-AP) and/or metformin (for AMP-activated protein kinase (AMPK) enzyme activation) and euthanized in 24 hours and 4 days after injection. We analyzed the neuromodulatory role of the AMPK on cerebellar ataxia induced by the neurotoxin 3-AP in the brain stem (BS) and CE, after pre-treatment for 7 and 15 days with metformin, a pharmacological indirect activator of AMPK. The results shown here suggest that AMPK activation in the BS and CE leads to a significant reduction in neuroinflammation in these regions. AMPK was able to restore the changes in fatty acid composition and pro-inflammatory cytokines caused by 3-AP, suggesting that the action of AMPK seems to result in a possible neuroprotection on the cerebellar ataxia model.
Collapse
Affiliation(s)
- Tainá C Atella
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge M Medina
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C Atella
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George E G Kluck
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Department of Biochemistry and Biomedical Sciences, Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton General Hospital Campus, 237 Barton St E, Hamilton, Ontario, L8L 2X2, Canada.
| |
Collapse
|
2
|
Differential effects of inferior olive lesion on vestibulo-ocular and optokinetic motor learning. Neuroreport 2021; 31:9-16. [PMID: 31568211 DOI: 10.1097/wnr.0000000000001333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The combined operation of optokinetic reflex (OKR) and vestibular-ocular reflex (VOR) is essential for image stability during self-motion. Retinal slip signals, which provide neural substrate for OKR and VOR plasticity, are delivered to the inferior olive. Although it has been assumed that the neural circuitry and mechanisms underlying OKR and VOR plasticity are shared, differential role of the inferior olive in the plasticity of OKR and VOR has not been clearly established. To investigate the differential effect of inferior olive lesion on OKR and VOR plasticity, we examined the change of OKR and VOR gains after gain-up and gain-down VOR training. The results demonstrated that inferior olive-lesion differentially affected cerebellum-dependent motor learning. In control mice, OKR gain increased after both gain-up and gain-down VOR training, and VOR gain increased after gain-up VOR training and decreased after gain-down VOR training. In inferior olive-lesioned mice, OKR gain decreased after both gain-up and gain-down VOR training, and while VOR gain did not significantly change after gain-up VOR training, VOR gain decreased after gain-down VOR training. We suggest that multiple mechanisms of plasticity are differentially involved in VOR and OKR adaptation, and gain-up and gain-down VOR learning rely on different plasticity mechanisms.
Collapse
|
3
|
Akhlaghpasand M, Tizro M, Raoofi A, Meymand AZ, Farhadieh M, Khodagholi F, Khatmi A, Soltani R, Hoseini Y, Jahanian A, Boroujeni ME, Aliaghaei A. Grafted human chorionic stem cells restore motor function and preclude cerebellar neurodegeneration in rat model of cerebellar ataxia. Metab Brain Dis 2020; 35:615-625. [PMID: 32062747 DOI: 10.1007/s11011-020-00543-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Cerebellar ataxia (CA) is a form of ataxia that adversely affects the cerebellum. Cell replacement therapy (CRT) has been considered as a potential treatment for neurological disorders. In this report, we investigated the neuro-restorative effects of human chorionic stem cells (HCSCs) transplantation on rat model of CA induced by 3-acetylpyridine (3-AP). In this regard, HCSCs were isolated and phenotypically determined. Next, a single injection of 3-AP was administered for ataxia induction, and bilateral HCSCs implantation was conducted 3 days after 3-AP injection, followed by expression analysis of a number of apoptotic, autophagic and inflammatory genes as well as vascular endothelial growth factor (VEGF) level, along with assessment of cerebellar neurodegeneration, motor coordination and muscle activity. The findings revealed that grafting of HCSCs in 3-AP model of ataxia decreased the expression levels of several inflammatory, autophagic and apoptotic genes and provoked the up-regulation of VEGF in the cerebellar region, prevented the degeneration of Purkinje cells caused by 3-AP toxicity and ameliorated motor coordination and muscle function. In conclusion, these data indicate in vivo efficacy of HCSCs in the reestablishment of motor skills and reversal of CA.
Collapse
Affiliation(s)
- Mohammadhosein Akhlaghpasand
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Tizro
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Raoofi
- Department of Anatomical Sciences, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | | | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysan Khatmi
- Cell Biology and Anatomical Sciences, School Of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Soltani
- Cell Biology and Anatomical Sciences, School Of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadolah Hoseini
- Neurosurgery Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jahanian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Abbas Aliaghaei
- Cell Biology and Anatomical Sciences, School Of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Resveratrol Protects Purkinje Neurons and Restores Muscle Activity in Rat Model of Cerebellar Ataxia. J Mol Neurosci 2018; 65:35-42. [DOI: 10.1007/s12031-018-1065-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022]
|
5
|
White JJ, Sillitoe RV. Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. Nat Commun 2017; 8:14912. [PMID: 28374839 PMCID: PMC5382291 DOI: 10.1038/ncomms14912] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/14/2017] [Indexed: 01/13/2023] Open
Abstract
Theories of cerebellar function place the inferior olive to cerebellum connection at the centre of motor behaviour. One possible implication of this is that disruption of olivocerebellar signalling could play a major role in initiating motor disease. To test this, we devised a mouse genetics approach to silence glutamatergic signalling only at olivocerebellar synapses. The resulting mice had a severe neurological condition that mimicked the early-onset twisting, stiff limbs and tremor that is observed in dystonia, a debilitating movement disease. By blocking olivocerebellar excitatory neurotransmission, we eliminated Purkinje cell complex spikes and induced aberrant cerebellar nuclear activity. Pharmacologically inhibiting the erratic output of the cerebellar nuclei in the mutant mice improved movement. Furthermore, deep brain stimulation directed to the interposed cerebellar nuclei reduced dystonia-like postures in these mice. Collectively, our data uncover a neural mechanism by which olivocerebellar dysfunction promotes motor disease phenotypes and identify the cerebellar nuclei as a therapeutic target for surgical intervention. Dystonia is thought to be driven by impairments in cerebellar signalling. The authors use a mouse genetic approach to silence excitatory transmission in the inferior olive to cerebellum pathway, resulting in dystonia-like signs in the animals which can be alleviated using DBS stimulation of the pathway.
Collapse
Affiliation(s)
- Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Chen XY, Wang Y, Chen Y, Chen L, Wolpaw JR. The inferior olive is essential for long-term maintenance of a simple motor skill. J Neurophysiol 2016; 116:1946-1955. [PMID: 27535367 PMCID: PMC5144694 DOI: 10.1152/jn.00085.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022] Open
Abstract
The inferior olive (IO) is essential for operant down-conditioning of the rat soleus H-reflex, a simple motor skill. To evaluate the role of the IO in long-term maintenance of this skill, the H-reflex was down-conditioned over 50 days, the IO was chemically ablated, and down-conditioning continued for up to 102 more days. H-reflex size just before IO ablation averaged 62(±2 SE)% of its initial value (P < 0.001 vs. initial). After IO ablation, H-reflex size rose to 75-80% over ∼10 days, remained there for ∼30 days, rose over 10 days to above its initial value, and averaged 140(±14)% for the final 10 days of study (P < 0.01 vs. initial). This two-stage loss of down-conditioning maintenance correlated with IO neuronal loss (r = 0.75, P < 0.01) and was similar to the loss of down-conditioning that follows ablation of the cerebellar output nuclei dentate and interpositus. In control (i.e., unconditioned) rats, IO ablation has no long-term effect on H-reflex size. These results indicate that the IO is essential for long-term maintenance of a down-conditioned H-reflex. With previous data, they support the hypothesis that IO and cortical inputs to cerebellum combine to produce cerebellar plasticity that produces sensorimotor cortex plasticity that produces spinal cord plasticity that produces the smaller H-reflex. H-reflex down-conditioning appears to depend on a hierarchy of plasticity that may be guided by the IO and begin in the cerebellum. Similar hierarchies may underlie other motor learning.
Collapse
Affiliation(s)
- Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; .,Department of Biomedical Sciences, State University of New York, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Yu Wang
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, State University of New York, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and.,Department of Neurology, Columbia University, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
7
|
Chen XY, Wang Y, Chen Y, Chen L, Wolpaw JR. Ablation of the inferior olive prevents H-reflex down-conditioning in rats. J Neurophysiol 2016; 115:1630-6. [PMID: 26792888 DOI: 10.1152/jn.01069.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/16/2016] [Indexed: 01/01/2023] Open
Abstract
We evaluated the role of the inferior olive (IO) in acquisition of the spinal cord plasticity that underlies H-reflex down-conditioning, a simple motor skill. The IO was chemically ablated before a 50-day exposure to an operant conditioning protocol that rewarded a smaller soleus H-reflex. In normal rats, down-conditioning succeeds (i.e., H-reflex size decreases at least 20%) in 80% of animals. Down-conditioning failed in every IO-ablated rat (P< 0.001 vs. normal rats). IO ablation itself had no long-term effect on H-reflex size. These results indicate that the IO is essential for acquisition of a down-conditioned H-reflex. With previous data, they support the hypothesis that IO and cortical inputs to cerebellum enable the cerebellum to guide sensorimotor cortex plasticity that produces and maintains the spinal cord plasticity that underlies the down-conditioned H-reflex. They help to further define H-reflex conditioning as a model for understanding motor learning and as a new approach to enhancing functional recovery after trauma or disease.
Collapse
Affiliation(s)
- Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York;
| | - Yu Wang
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; Department of Biomedical Sciences, State University of New York, Albany, New York; Department of Neurology, Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
8
|
Kotajima H, Sakai K, Hashikawa T, Yanagihara D. Effects of inferior olive lesion on fear-conditioned bradycardia. Neuroreport 2015; 25:556-61. [PMID: 24784584 PMCID: PMC4004639 DOI: 10.1097/wnr.0000000000000135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The inferior olive (IO) sends excitatory inputs to the cerebellar cortex and cerebellar nuclei through the climbing fibers. In eyeblink conditioning, a model of motor learning, the inactivation of or a lesion in the IO impairs the acquisition or expression of conditioned eyeblink responses. Additionally, climbing fibers originating from the IO are believed to transmit the unconditioned stimulus to the cerebellum in eyeblink conditioning. Studies using fear-conditioned bradycardia showed that the cerebellum is associated with adaptive control of heart rate. However, the role of inputs from the IO to the cerebellum in fear-conditioned bradycardia has not yet been investigated. To examine this possible role, we tested fear-conditioned bradycardia in mice by selective disruption of the IO using 3-acetylpyridine. In a rotarod test, mice with an IO lesion were unable to remain on the rod. The number of neurons of IO nuclei in these mice was decreased to ∼40% compared with control mice. Mice with an IO lesion did not show changes in the mean heart rate or in heart rate responses to a conditioned stimulus, or in their responses to a painful stimulus in a tail-flick test. However, they did show impairment of the acquisition/expression of conditioned bradycardia and attenuation of heart rate responses to a pain stimulus used as an unconditioned stimulus. These results indicate that the IO inputs to the cerebellum play a key role in the acquisition/expression of conditioned bradycardia.
Collapse
Affiliation(s)
- Hiroko Kotajima
- aDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo bCore Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo cLaboratory for Neuronal Architecture, RIKEN, Brain Science Institute, Saitama, Japan
| | | | | | | |
Collapse
|
9
|
Neuroprotective role of liver growth factor "LGF" in an experimental model of cerebellar ataxia. Int J Mol Sci 2014; 15:19056-73. [PMID: 25338046 PMCID: PMC4227260 DOI: 10.3390/ijms151019056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022] Open
Abstract
Cerebellar ataxias (CA) comprise a heterogeneous group of neurodegenerative diseases characterized by a lack of motor coordination. They are caused by disturbances in the cerebellum and its associated circuitries, so the major therapeutic goal is to correct cerebellar dysfunction. Neurotrophic factors enhance the survival and differentiation of selected types of neurons. Liver growth factor (LGF) is a hepatic mitogen that shows biological activity in neuroregenerative therapies. We investigate the potential therapeutic activity of LGF in the 3-acetylpiridine (3-AP) rat model of CA. This model of CA consists in the lesion of the inferior olive-induced by 3-AP (40 mg/kg). Ataxic rats were treated with 5 µg/rat LGF or vehicle during 3 weeks, analyzing: (a) motor coordination by using the rota-rod test; and (b) the immunohistochemical and biochemical evolution of several parameters related with the olivo-cerebellar function. Motor coordination improved in 3-AP-lesioned rats that received LGF treatment. LGF up-regulated NeuN and Bcl-2 protein levels in the brainstem, and increased calbindin expression and the number of neurons receiving calbindin-positive projections in the cerebellum. LGF also reduced extracellular glutamate and GABA concentrations and microglia activation in the cerebellum. In view of these results, we propose LGF as a potential therapeutic agent in cerebellar ataxias.
Collapse
|
10
|
Sasamura K, Ohki-Hamazaki H, Sugihara I. Morphology of the olivocerebellar projection of the chick: An axonal reconstruction study. J Comp Neurol 2013; 521:3321-39. [DOI: 10.1002/cne.23352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/05/2013] [Accepted: 04/25/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Kazuma Sasamura
- Department of Systems Neurophysiology, Graduate School and Center for Brain Integration Research; Tokyo Medical and Dental University; Bunkyo-ku; Tokyo; 113-8519; Japan
| | - Hiroko Ohki-Hamazaki
- Division of Biology, College of Liberal Arts and Sciences; Kitasato University; Minami-ku, Sagamihara; Kanagawa; 252-0373; Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School and Center for Brain Integration Research; Tokyo Medical and Dental University; Bunkyo-ku; Tokyo; 113-8519; Japan
| |
Collapse
|
11
|
Sugihara I, Brown KM, Ascoli GA. New insights on vertebrate olivo-cerebellar climbing fibers from computerized morphological reconstructions. BIOARCHITECTURE 2013; 3:38-41. [PMID: 23756373 DOI: 10.4161/bioa.24062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Characterization of neuronal connectivity is essential to understanding the architecture of the animal nervous system. Specific labeling and imaging techniques can visualize axons and dendrites of single nerve cells. Two-dimensional manual drawing has long been used to describe the morphology of labeled neuronal elements. However, quantitative morphometry, which is essential to understanding functional significance, cannot be readily extracted unless the detailed neuronal geometry is comprehensively reconstructed in three-dimensional space. We have recently applied an accurate and robust digital reconstruction system to cerebellar climbing fibers, which form highly dense and complex terminal arbors as one of the strongest presynaptic endings in the vertebrate nervous system. Resulting statistical analysis has shown how climbing fibers morphology is special in comparison to other axonal terminals. While thick primary branches may convey excitation quickly and faithfully to the far ends, thin tendril branches, which have a larger bouton density, form the majority of presynaptic outputs. This data set, now publicly available from NeuroMorpho.Org for further modeling and analysis, may constitute the first detailed and comprehensive digital reconstruction of the complete axonal terminal field with identified branch types and full accounting of boutons for any neuronal class in the vertebrate brain.
Collapse
Affiliation(s)
- Izumi Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School and the Center for Brain Integration Research, Tokyo, Japan
| | | | | |
Collapse
|
12
|
Digital morphometry of rat cerebellar climbing fibers reveals distinct branch and bouton types. J Neurosci 2013; 32:14670-84. [PMID: 23077053 DOI: 10.1523/jneurosci.2018-12.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerebellar climbing fibers (CFs) provide powerful excitatory input to Purkinje cells (PCs), which represent the sole output of the cerebellar cortex. Recent discoveries suggest that CFs have information-rich signaling properties important for cerebellar function, beyond eliciting the well known all-or-none PC complex spike. CF morphology has not been quantitatively analyzed at the same level of detail as its biophysical properties. Because morphology can greatly influence function, including the capacity for information processing, it is important to understand CF branching structure in detail, as well as its variability across and within arbors. We have digitally reconstructed 68 rat CFs labeled using biotinylated dextran amine injected into the inferior olive and comprehensively quantified their morphology. CF structure was considerably diverse even within the same anatomical regions. Distinctly identifiable primary, tendril, and distal branches could be operationally differentiated by the relative size of the subtrees at their initial bifurcations. Additionally, primary branches were more directed toward the cortical surface and had fewer and less pronounced synaptic boutons, suggesting they prioritize efficient and reliable signal propagation. Tendril and distal branches were spatially segregated and bouton dense, indicating specialization in signal transmission. Furthermore, CFs systematically targeted molecular layer interneuron cell bodies, especially at terminal boutons, potentially instantiating feedforward inhibition on PCs. This study offers the most detailed and comprehensive characterization of CF morphology to date. The reconstruction files and metadata are publicly distributed at NeuroMorpho.org.
Collapse
|
13
|
Calatrava-Ferreras L, Gonzalo-Gobernado R, Herranz AS, Reimers D, Montero Vega T, Jiménez-Escrig A, Richart López LA, Bazán E. Effects of intravenous administration of human umbilical cord blood stem cells in 3-acetylpyridine-lesioned rats. Stem Cells Int 2012; 2012:135187. [PMID: 23150735 PMCID: PMC3488418 DOI: 10.1155/2012/135187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/01/2012] [Indexed: 12/26/2022] Open
Abstract
Cerebellar ataxias include a heterogeneous group of infrequent diseases characterized by lack of motor coordination caused by disturbances in the cerebellum and its associated circuits. Current therapies are based on the use of drugs that correct some of the molecular processes involved in their pathogenesis. Although these treatments yielded promising results, there is not yet an effective therapy for these diseases. Cell replacement strategies using human umbilical cord blood mononuclear cells (HuUCBMCs) have emerged as a promising approach for restoration of function in neurodegenerative diseases. The aim of this work was to investigate the potential therapeutic activity of HuUCBMCs in the 3-acetylpyridine (3-AP) rat model of cerebellar ataxia. Intravenous administered HuUCBMCs reached the cerebellum and brain stem of 3-AP ataxic rats. Grafted cells reduced 3-AP-induced neuronal loss promoted the activation of microglia in the brain stem, and prevented the overexpression of GFAP elicited by 3-AP in the cerebellum. In addition, HuUCBMCs upregulated the expression of proteins that are critical for cell survival, such as phospho-Akt and Bcl-2, in the cerebellum and brain stem of 3-AP ataxic rats. As all these effects were accompanied by a temporal but significant improvement in motor coordination, HuUCBMCs grafts can be considered as an effective cell replacement therapy for cerebellar disorders.
Collapse
Affiliation(s)
- Lucía Calatrava-Ferreras
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gonzalo-Gobernado
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Antonio S. Herranz
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Diana Reimers
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Teresa Montero Vega
- Servicio de Bioquímica, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | | | | | - Eulalia Bazán
- Servicio de Neurobiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Servicio de Neurobiología-Investigación, Hospital Ramón y Cajal, Carretera de Colmenar Km. 9, 1, 28034 Madrid, Spain
| |
Collapse
|