1
|
Govindula A, Ranadive N, Nampoothiri M, Rao CM, Arora D, Mudgal J. Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD). J Neuroimmune Pharmacol 2023; 18:248-266. [PMID: 37097603 PMCID: PMC10577110 DOI: 10.1007/s11481-023-10064-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.
Collapse
Affiliation(s)
- Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Lin L, Zhang J, Dai X, Xiao N, Ye Q, Chen X. A Moderate Duration of Stress Promotes Behavioral Adaptation and Spatial Memory in Young C57BL/6J Mice. Brain Sci 2022; 12:brainsci12081081. [PMID: 36009144 PMCID: PMC9405600 DOI: 10.3390/brainsci12081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Stress may serve multiple roles in cerebral functioning, ranging from a highly appropriate behavioral adaptation to a critical risk factor for susceptibility to mood disorder and cognitive impairment. It is well known that E/I (excitation/inhibition) balance is essential for maintaining brain homeostasis. However, it remains largely unknown how GABAergic and Glutamatergic neurons respond to different stressful stimuli and whether the GABAergic-Glutamatergic neuron balance is related to the transition between adaptive and maladaptive behaviors. Here, we subjected 3-month-old mice to chronic mild stress (CMS) for a period of one, two, and four weeks, respectively. The results showed that the two-week CMS procedure produced adaptive effects on behaviors and cognitive performance, with a higher number of GABAergic neuron and VGluT1-positive neurons, increasing the expressions of p-GluN2B, Reelin, and syn-PSD-95 protein in the hippocampus. In contrast, the prolonged behavioral challenge (4 week) imposes a passive coping behavioral strategy and cognitive impairment, decreased the number of GABAergic neuron, hyperactivity of VGluT1-positive neuron, increased the ratio of p-GluN2B, and decreased the expression of Reelin, syn-PSD-95 in the hippocampus. These findings suggest that a moderate duration of stress probably promotes behavioral adaptation and spatial memory by maintaining a GABAergic-Glutamatergic neuron balance and promoting the expression of synaptic plasticity-related proteins in the brain.
Collapse
Affiliation(s)
- Lanyan Lin
- Department of Geriatrics, Fujian Provincial Hospital, 134 Dongjie Road, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Jing Zhang
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Xiaoman Dai
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Nai’an Xiao
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Qinyong Ye
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
| | - Xiaochun Chen
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China
- Correspondence: ; Tel.: +86-591-8333-3995; Fax: +86-591-8337-0393
| |
Collapse
|
3
|
Ishola IO, Olubodun-Obadun TG, Bakre OA, Ojo ES, Adeyemi OO. Kolaviron ameliorates chronic unpredictable mild stress-induced anxiety and depression: involvement of the HPA axis, antioxidant defense system, cholinergic, and BDNF signaling. Drug Metab Pers Ther 2022; 37:277-287. [PMID: 35218172 DOI: 10.1515/dmpt-2021-0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/11/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study sought to investigate the beneficial effect of kolaviron (KV) (a biflavonoid) isolated from Garcinia kola seed on chronic unpredictable mild stress (CUMS)-induced anxiety- and depressive-like behavior. METHODS Male albino mice were randomly divided into six groups (n=8) as follows; Group I: vehicle-control unstressed; Group II: CUMS-control; Group III-V: CUMS + KV 1, 5 or 50 mg/kg, respectively, Group VI: KV (50 mg/kg, p.o.) unstressed mice. Animals were subjected to CUMS for 14 days, followed by estimation of depressive- and anxiety-like behavior from days 14-16. This was followed by biochemical assays for oxidative stress, hypothalamo-pituitary axis, cholinergic, and BDNF signaling. RESULTS CUMS caused significant reduction in time spent in open arms of elevated plus maze test (EPM) and increase in immobility time in tail suspension test (TST) and forced swim test (FST) ameliorated by KV treatments. KV administration also attenuated CUMS-induced malondialdehyde/nitrite generation and decrease in antioxidant enzymes activities in the prefrontal cortex and hippocampus. CUMS increased serum corticosterone, acetylcholinesterase activity, and reduced BDNF level in the PFC and hippocampus were attenuated by KV administration. CONCLUSIONS KV prevented CUMS induced anxiety- and depression-like behavior in mice through enhancement of antioxidant defense mechanisms, neurotrophic factors, and cholinergic systems.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,African Centre of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science, Lagos, Nigeria
| | - Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Oluwasayo A Bakre
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Emmanuel S Ojo
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,African Centre of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science, Lagos, Nigeria
| |
Collapse
|
4
|
Winczewska-Wiktor A, Hirschfeld AS, Badura-Stronka M, Wojsyk-Banaszak I, Sobkowiak P, Bartkowska-Śniatkowska A, Babak V, Steinborn B. Central Apneas Due to the CLIFAHDD Syndrome Successfully Treated with Pyridostigmine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020775. [PMID: 35055596 PMCID: PMC8776169 DOI: 10.3390/ijerph19020775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023]
Abstract
NALCN mutations lead to complex neurodevelopmental syndromes, including infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF) and congenital contractures of limbs and face, hypotonia, and developmental delay (CLIFAHDD), which are recessively and dominantly inherited, respectively. We present a patient in whom congenital myasthenic syndrome (CMS) was suspected due to the occurrence of hypotonia and apnea episodes requiring resuscitation. For this reason, treatment with pyridostigmine was introduced. After starting the treatment, a significant improvement was observed in reducing the apnea episodes and slight psychomotor progress. In the course of further diagnostics, CMS was excluded, and CLIFAHDD syndrome was confirmed. Thus, we try to explain a possible mechanism of clinical improvement after the introduction of treatment with pyridostigmine in a patient with a mutation in the NALCN gene.
Collapse
Affiliation(s)
- Anna Winczewska-Wiktor
- Chair and Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland;
- Correspondence:
| | - Adam Sebastian Hirschfeld
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, 60-352 Poznan, Poland; (A.S.H.); (M.B.-S.); (V.B.)
| | - Magdalena Badura-Stronka
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, 60-352 Poznan, Poland; (A.S.H.); (M.B.-S.); (V.B.)
- Centers of Medical Genetics GENESIS, 60-529 Poznan, Poland
| | - Irena Wojsyk-Banaszak
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (I.W.-B.); (P.S.)
| | - Paulina Sobkowiak
- Department of Pulmonology, Pediatric Allergy and Clinical Immunology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (I.W.-B.); (P.S.)
| | - Alicja Bartkowska-Śniatkowska
- Department of Pediatric Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Valeriia Babak
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, 60-352 Poznan, Poland; (A.S.H.); (M.B.-S.); (V.B.)
| | - Barbara Steinborn
- Chair and Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland;
| |
Collapse
|
5
|
Qiu ZK, Liu ZT, Pang JL, Wu HB, Liu X, Yang ZM, Li X, Chen JS. A network pharmacology study with molecular docking to investigate the possibility of licorice against posttraumatic stress disorder. Metab Brain Dis 2021; 36:1763-1777. [PMID: 34417940 DOI: 10.1007/s11011-021-00816-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/02/2021] [Indexed: 02/08/2023]
Abstract
Post traumatic stress disorder (PTSD) is a mental health condition that has a debilitating effect on a person's quality of life and leads to a high socioeconomic burden. Licorice has been demonstrated to have neuroprotective and antidepressant-like effects, but little is known about its effects for the treatment of PTSD. The present study aimed to explore the potential of licorice for PTSD therapy using a network pharmacology approach with molecular docking studies. The compounds of licorice were obtained from databases with screening by absorption, distribution, metabolism and excretion (ADME) evaluation. Genes associated with compounds or PTSD were obtained from public databases, and the genes overlapping between licorice compounds and PTSD were compared by Venn diagram. A network of medicine-ingredients-targets-disease was constructed, visualized, and analyzed using cytoscape software. Protein-protein interactions, gene ontology, pathway enrichment and molecular docking were performed to evaluate the effect of licorice for the treatment of PTSD. 69 potential compounds were screened after ADME evaluation. A total of 81 compound-related genes and 566 PTSD-related genes were identified in the databases with 27 overlapping genes. Licorice compounds (e.g., medicarpin, 7-methoxy-2-methyl isoflavone, shinpterocarpin, formononetin, licochalcone a) and target proteins (e.g., ESR1, PTGS2, NOS2, and ADRB2) with high degree in the network were involved in G protein-coupled receptor signaling pathways at the postsynaptic/synaptic membrane. Moreover, neuroactive ligand-receptor interactions, calcium signaling, cholinergic synapse, serotonergic synapse and adrenergic signaling in cardiomyocytes may play important roles in the treatment of PTSD by licorice. This study provides molecular evidence of the beneficial effects of licorice for the treatment of PTSD.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Zhi-Ting Liu
- Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Jia-Li Pang
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Han-Biao Wu
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Xu Liu
- Medical Supplies Center of Chinese, PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Ze-Min Yang
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China
| | - Xiong Li
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China.
| | - Ji-Sheng Chen
- Pharmaceutical Department, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510080, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Torrisi SA, Lavanco G, Maurel OM, Gulisano W, Laudani S, Geraci F, Grasso M, Barbagallo C, Caraci F, Bucolo C, Ragusa M, Papaleo F, Campolongo P, Puzzo D, Drago F, Salomone S, Leggio GM. A novel arousal-based individual screening reveals susceptibility and resilience to PTSD-like phenotypes in mice. Neurobiol Stress 2020; 14:100286. [PMID: 33392367 PMCID: PMC7772817 DOI: 10.1016/j.ynstr.2020.100286] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Translational animal models for studying post-traumatic stress disorder (PTSD) are valuable for elucidating the poorly understood neurobiology of this neuropsychiatric disorder. These models should encompass crucial features, including persistence of PTSD-like phenotypes triggered after exposure to a single traumatic event, trauma susceptibility/resilience and predictive validity. Here we propose a novel arousal-based individual screening (AIS) model that recapitulates all these features. The AIS model was designed by coupling the traumatization (24 h restraint) of C57BL/6 J mice with a novel individual screening. This screening consists of z-normalization of post-trauma changes in startle reactivity, which is a measure of arousal depending on neural circuits conserved across mammals. Through the AIS model, we identified susceptible mice showing long-lasting hyperarousal (up to 56 days post-trauma), and resilient mice showing normal arousal. Susceptible mice further showed persistent PTSD-like phenotypes including exaggerated fear reactivity and avoidance of trauma-related cue (up to 75 days post-trauma), increased avoidance-like behavior and social/cognitive impairment. Conversely, resilient mice adopted active coping strategies, behaving like control mice. We further uncovered novel transcriptional signatures driven by PTSD-related genes as well as dysfunction of hypothalamic–pituitary–adrenal axis, which corroborated the segregation in susceptible/resilient subpopulations obtained through the AIS model and correlated with trauma susceptibility/resilience. Impaired hippocampal synaptic plasticity was also observed in susceptible mice. Finally, chronic treatment with paroxetine ameliorated the PTSD-like phenotypes of susceptible mice. These findings indicate that the AIS model might be a new translational animal model for the study of crucial features of PTSD. It might shed light on the unclear PTSD neurobiology and identify new pharmacological targets for this difficult-to-treat disorder. The AIS model includes highly requested features necessary to shape a translational PTSD animal model. Susceptible mice identified through the AIS model exhibited persistent PTSD-like phenotypes. Resilient mice identified through the AIS model adopted active coping strategies. The AIS model revealed molecular adaptations underlying trauma susceptibility/resilience. The AIS model meets the criterion of predictive validity by exclusively using susceptible mice.
Collapse
Key Words
- 5-trial SM, 5-trial social memory
- AIS, arousal-based individual screening
- ASR, acoustic startle reactivity
- Amy, amygdala
- Animal model
- BDNF, brain derived neurotropic factor
- BST, basal synaptic transmission
- C, control
- CORT, corticosterone
- DSM-5, Diagnostic and Statistical Manual of Mental Disorders
- EPM, elevated plus maze
- FDA, Food and Drug Administration
- FKBP5, FK506 binding protein 5
- FST, forced swim test
- Fear conditioning
- HIP, hippocampus
- HPA, hypothalamic–pituitary–adrenal
- HT, hypothalamus
- OF, open field
- PTSD, post-traumatic stress disorder
- Resilience
- SGK1, serum/glucocorticoid-regulated kinase 1
- SSRIs, selective serotonin reuptake inhibitors
- Stress
- Susceptibility
- TE, trauma-exposed
- Z-score
- fEPSPs, field excitatory post-synaptic potentials
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Sebastiano A Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianluca Lavanco
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,INSERM, U1215 Neurocentre Magendie and University of Bordeaux, Bordeaux, France
| | - Oriana M Maurel
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Research Group "Neuronal Plasticity", Max Planck Institute of Psychiatry, Munich, Germany
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Samuele Laudani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Margherita Grasso
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
7
|
Hersman S, Hoffman AN, Hodgins L, Shieh S, Lam J, Parikh A, Fanselow MS. Cholinergic Signaling Alters Stress-Induced Sensitization of Hippocampal Contextual Learning. Front Neurosci 2019; 13:251. [PMID: 30941011 PMCID: PMC6433822 DOI: 10.3389/fnins.2019.00251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) has a profound contextual component, and has been demonstrated to alter future contextual learning. However, the mechanism by which a single traumatic event affects subsequent contextual experiences has not been isolated. Acetylcholine (ACh) is an important modulator of hippocampus-dependent learning such as contextual memory strength. Using Stress-Enhanced Fear Learning (SEFL), which models aspects of PTSD in rats, we tested whether muscarinic acetylcholine receptors (mAChR) in dorsal hippocampus (DH) are required during trauma for the effect of trauma on subsequent contextual fear learning. We infused scopolamine or vehicle into DH immediately before stress, and tested fear in both the trauma context and a novel context after a mild stressor. The results show that during learning, ACh acting on mAChR within the DH is required for sensitization of future contextual fear learning. However, this effect is selective for contextual learning, as this blockade leaves discrete cue sensitization intact. Rather than simply sensitizing the BLA, as previous studies have suggested, SEFL requires cholinergic signaling in DH for contextual sensitization.
Collapse
Affiliation(s)
- Sarah Hersman
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ann N Hoffman
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Liliann Hodgins
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shannon Shieh
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lam
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ashen Parikh
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael S Fanselow
- Departments of Psychology, Neurobiology, Psychiatry and Biobehavioral Sciences, and Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Rashid H, Ahmed T. Gender dependent contribution of muscarinic receptors in memory retrieval under sub-chronic stress. Neurosci Lett 2018; 681:6-11. [PMID: 29775673 DOI: 10.1016/j.neulet.2018.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
Stress induces retrograde amnesia in humans and rodents. Muscarinic antagonism under normal physiological conditions causes gender dependent impairment in episodic memory retrieval. We aimed to explore the gender dependent role of muscarinic receptors in memory retrieval under sub-chronic stress condition. Male and female mice were trained for Morris water maze test and contextual fear conditioning, followed by 3 h restraint stress per day for five days. Stress was either given alone or in combination with a daily subcutaneous injection of scopolamine (1 mg/kg) or donepezil (1 mg/kg). Control mice were given saline without any stress. Sub-chronic stress (induced for five days) impaired spatial memory retrieval in males (P < 0.005) but not in females (P > 0.05). Stress induced spatial memory recall deficit in male mice was independent of muscarinic receptor activity (P > 0.05). However, stress induced contextual fear memory recall impairment was reversed by donepezil treatment in male (P < 0.005) and female (P < 0.0001) mice. These findings suggest that differential role of muscarinic activity in retrieving different types of memories under stress depends on gender of subjects.
Collapse
Affiliation(s)
- Habiba Rashid
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
9
|
Fernandes SS, Koth AP, Parfitt GM, Cordeiro MF, Peixoto CS, Soubhia A, Moreira FP, Wiener CD, Oses JP, Kaszubowski E, Barros DM. Enhanced cholinergic-tone during the stress induce a depressive-like state in mice. Behav Brain Res 2018; 347:17-25. [PMID: 29501509 DOI: 10.1016/j.bbr.2018.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/06/2023]
Abstract
Major depressive disorder has a heterogeneous etiology, since it arises from the interaction of multiple factors and different pathophysiological mechanisms are involved in the symptomatology. This study aimed to investigate the role of the cholinergic system in the susceptibility to stress and, consequently, in the depression-like behavior. C57BL/6 mice were treated with Physostigmine (PHYS), an acetylcholinesterase (AChE) inhibitor, and were submitted to the social defeat stress. For the behavioral evaluation of the locomotor activity, anxiety-like and depression-like behaviors the open field, elevated plus maze, sucrose preference, social interaction and forced swim were used. Hippocampus and prefrontal cortex samples were collected for evaluation of AChE activity, as well as blood samples for analysis of serum cortisol levels. Our results showed that 15 min after the injection of PHYS there was a significant inhibition of AChE activity in the hippocampus and in the prefrontal cortex. On the other hand, in the end of the experimental design, day 12, there was no difference in AChE activity levels. Inhibition of AChE and exposure to the stress led to an increase in cortisol levels. Animals that received PHYS and were exposed to stress showed less social interaction and greater learned helplessness, anhedonia and anxious-like behavior. Taken together, our findings suggest that increasing the cholinergic tone shortly before stress induction impacts on the ability to cope with upcoming stressful situations, leading to a depressive-like state.
Collapse
Affiliation(s)
- Sara S Fernandes
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - André P Koth
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Gustavo M Parfitt
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Marcos F Cordeiro
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Carolina S Peixoto
- Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Andréa Soubhia
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Fernanda P Moreira
- Translational Science on Brain Disorders, Clinical Neuroscience Lab., Department of Health and Behavior, Catholic University of Pelotas (UCPel), Pelotas, RS, Brazil
| | - Carolina D Wiener
- Post-Graduation Program in Epidemiology, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Jean P Oses
- Translational Science on Brain Disorders, Clinical Neuroscience Lab., Department of Health and Behavior, Catholic University of Pelotas (UCPel), Pelotas, RS, Brazil
| | - Erikson Kaszubowski
- Department of Psychology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Daniela M Barros
- Post-Graduation Program in Health Sciences, Faculty of Medicine, Laboratory of Neurosciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil; Post-Graduation Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil; Institute of Biological Sciences, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
10
|
Stress-altered synaptic plasticity and DAMP signaling in the hippocampus-PFC axis; elucidating the significance of IGF-1/IGF-1R/CaMKIIα expression in neural changes associated with a prolonged exposure therapy. Neuroscience 2017; 353:147-165. [PMID: 28438613 DOI: 10.1016/j.neuroscience.2017.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
Traumatic stress patients showed significant improvement in behavior after a prolonged exposure to an unrelated stimulus. This treatment method attempts to promote extinction of the fear memory associated with the initial traumatic experience. However, the subsequent prolonged exposure to such stimulus creates an additional layer of neural stress. Although the mechanism remains unclear, prolonged exposure therapy (PET) likely involves changes in synaptic plasticity, neurotransmitter function and inflammation; especially in parts of the brain concerned with the formation and retrieval of fear memory (Hippocampus and Prefrontal Cortex: PFC). Since certain synaptic proteins are also involved in danger-associated molecular pattern signaling (DAMP), we identified the significance of IGF-1/IGF-1R/CaMKIIα expression as a potential link between the concurrent progression of synaptic and inflammatory changes in stress. Thus, a comparison between IGF-1/IGF-1R/CaMKIIα, synaptic and DAMP proteins in stress and PET may highlight the significance of PET on synaptic morphology and neuronal inflammatory response. In behaviorally characterized Sprague-Dawley rats, there was a significant decline in neural IGF-1 (p<0.001), hippocampal (p<0.001) and cortical (p<0.05) IGF-1R expression. These animals showed a significant loss of presynaptic markers (synaptophysin; p<0.001), and changes in neurotransmitters (VGLUT2, Tyrosine hydroxylase, GABA, ChAT). Furthermore, naïve stressed rats recorded a significant decrease in post-synaptic marker (PSD-95; p<0.01) and synaptic regulator (CaMKIIα; p<0.001). As part of the synaptic response to a decrease in brain CaMKIIα, small ion conductance channel (KCa2.2) was upregulated in the brain of naïve stressed rats (p<0.01). After a PET, an increase in IGF-1 (p<0.05) and IGF-1R was recorded in the Stress-PET group (p<0.001). As such, hippocampal (p<0.001), but not cortical (ns) synaptophysin expression increased in Stress-PET. Although PSD-95 was relatively unchanged in the hippocampus and PFC, CaMKIIα (p<0.001) and KCa2.2 (p<0.01) were upregulated in Stress-PET, and may be involved in extinction of fear memory-related synaptic potentials. These changes were also associated with a normalized neurotransmitter function, and a significant reduction in open space avoidance; when the animals were assessed in elevated plus maze (EPM). In addition to a decrease in IGF-1/IGF-1R, an increase in activated hippocampal and cortical microglia was seen in stress (p<0.05) and after a PET (Stress-PET; p<0.001). Furthermore, this was linked with a significant increase in HMGB1 (Hippocampus: p<0.001, PFC: p<0.05) and TLR4 expression (Hippocampus: p<0.01; PFC: ns) in the neurons. Taken together, this study showed that traumatic stress and subsequent PET involves an event-dependent alteration of IGF1/IGF-1R/CaMKIIα. Firstly, we showed a direct relationship between IGF-1/IGF-1R expression, presynaptic function (synaptophysin) and neurotransmitter activity in stress and PET. Secondly, we identified the possible role of CaMKIIα in post-synaptic function and regulation of small ion conductance channels. Lastly, we highlighted some of the possible links between IGF1/IGF-1R/CaMKIIα, the expression of DAMP proteins, Microglia activation, and its implication on synaptic plasticity during stress and PET.
Collapse
|
11
|
Saar-Ashkenazy R, Shalev H, Kanthak MK, Guez J, Friedman A, Cohen JE. Altered processing of visual emotional stimuli in posttraumatic stress disorder: an event-related potential study. Psychiatry Res 2015; 233:165-74. [PMID: 26138281 DOI: 10.1016/j.pscychresns.2015.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 02/06/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
Patients with posttraumatic stress disorder (PTSD) display abnormal emotional processing and bias towards emotional content. Most neurophysiological studies in PTSD found higher amplitudes of event-related potentials (ERPs) in response to trauma-related visual content. Here we aimed to characterize brain electrical activity in PTSD subjects in response to non-trauma-related emotion-laden pictures (positive, neutral and negative). A combined behavioral-ERP study was conducted in 14 severe PTSD patients and 14 controls. Response time in PTSD patients was slower compared with that in controls, irrespective to emotional valence. In both PTSD and controls, response time to negative pictures was slower compared with that to neutral or positive pictures. Upon ranking, both control and PTSD subjects similarly discriminated between pictures with different emotional valences. ERP analysis revealed three distinctive components (at ~300, ~600 and ~1000 ms post-stimulus onset) for emotional valence in control subjects. In contrast, PTSD patients displayed a similar brain response across all emotional categories, resembling the response of controls to negative stimuli. We interpret these findings as a brain-circuit response tendency towards negative overgeneralization in PTSD.
Collapse
Affiliation(s)
- Rotem Saar-Ashkenazy
- Department of Cognitive-Neuroscience and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Psychology and the School of Social-work, Ashkelon Academic College, Ashkelon, Israel; Department of Psychology, Achva Academic College, Beer-Tuvia regional council, Israel
| | - Hadar Shalev
- Department of Psychiatry, Soroka University Medical Center, Beer-Sheva, Israel
| | - Magdalena K Kanthak
- Department of Biological Psychology, Technical University of Dresden, Dresden, Germany
| | - Jonathan Guez
- Department of Psychology, Achva Academic College, Beer-Tuvia regional council, Israel; Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Cognitive-Neuroscience and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan E Cohen
- Sharett Institute of Oncology, Hadassah Medical Organization, Kiryat-Hadassah, POB 12000, Jerusalem 91120, Israel.
| |
Collapse
|
12
|
Addy NA, Nunes EJ, Wickham RJ. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test. Behav Brain Res 2015; 288:54-62. [PMID: 25865152 DOI: 10.1016/j.bbr.2015.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/29/2022]
Abstract
Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST.
Collapse
Affiliation(s)
- N A Addy
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - E J Nunes
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - R J Wickham
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
13
|
Srinivasan S, Shariff M, Bartlett SE. The role of the glucocorticoids in developing resilience to stress and addiction. Front Psychiatry 2013; 4:68. [PMID: 23914175 PMCID: PMC3730062 DOI: 10.3389/fpsyt.2013.00068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that individuals have the capacity to learn to be resilient by developing protective mechanisms that prevent them from the maladaptive effects of stress that can contribute to addiction. The emerging field of the neuroscience of resilience is beginning to uncover the circuits and molecules that protect against stress-related neuropsychiatric diseases, such as addiction. Glucocorticoids (GCs) are important regulators of basal and stress-related homeostasis in all higher organisms and influence a wide array of genes in almost every organ and tissue. GCs, therefore, are ideally situated to either promote or prevent adaptation to stress. In this review, we will focus on the role of GCs in the hypothalamic-pituitary adrenocortical axis and extra-hypothalamic regions in regulating basal and chronic stress responses. GCs interact with a large number of neurotransmitter and neuropeptide systems that are associated with the development of addiction. Additionally, the review will focus on the orexinergic and cholinergic pathways and highlight their role in stress and addiction. GCs play a key role in promoting the development of resilience or susceptibility and represent important pharmacotherapeutic targets that can reduce the impact of a maladapted stress system for the treatment of stress-induced addiction.
Collapse
Affiliation(s)
- Subhashini Srinivasan
- Ernest Gallo Clinic and Research Center at the University of California San Francisco , Emeryville, CA , USA
| | | | | |
Collapse
|