1
|
Morales-Ubaldo AL, Rivero-Perez N, Valladares-Carranza B, Madariaga-Navarrete A, Higuera-Piedrahita RI, Delgadillo-Ruiz L, Bañuelos-Valenzuela R, Zaragoza-Bastida A. Phytochemical Compounds and Pharmacological Properties of Larrea tridentata. Molecules 2022; 27:molecules27175393. [PMID: 36080156 PMCID: PMC9458016 DOI: 10.3390/molecules27175393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
For centuries, traditional medicine from plants (phytotherapy) was the only treatment for infectious and non-infectious diseases. Although it is still practiced in several countries with excellent therapeutic results, it is frequently underestimated because, unlike Western medicine, it is not based on an empirical scientific foundation. However, interest in the search for plant-based therapeutic resources has been stimulated by disciplines such as phytochemistry and the side effects of conventional pharmacological therapies. For example, Larrea tridentata is a perennial shrub used in traditional medicine in northern Mexico and the southern United States to treat infertility, rheumatism, arthritis, colds, diarrhea, skin problems, pain, inflammation and excess body weight. Scientific research has revealed its beneficial effects—antioxidant, antitumor, neuroprotective, regenerative, antibacterial, antiviral, antifungal, anthelmintic, antiprotozoal and insecticidal—although reports indicate that some compounds in Larrea tridentata may be hepatotoxic and nephrotoxic. Therefore, the aim of this review was to highlight the updates regarding phytochemical compounds and the pharmacological properties of Larrea tridentata.
Collapse
Affiliation(s)
- Ana Lizet Morales-Ubaldo
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1, EX-Hda de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico
| | - Nallely Rivero-Perez
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1, EX-Hda de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico
| | - Benjamín Valladares-Carranza
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, Toluca 50090, Estado de Mexico, Mexico
| | - Alfredo Madariaga-Navarrete
- Área Académica de Ciencias Agrícolas y Forestales, Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Rancho Universitario Av. Universidad km 1, EX-Hda de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico
| | - Rosa Isabel Higuera-Piedrahita
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan km 2.5, San Sebastián Xhala, Cuautitlán 54714, Estado de Mexico, Mexico
| | - Lucía Delgadillo-Ruiz
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, Kilómetro 31.5 Carretera Panamerica, Fresnillo 98500, Zacatecas, Mexico
| | - Rómulo Bañuelos-Valenzuela
- Unidad Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Zacatecas, Kilómetro 31.5 Carretera Panamerica, Fresnillo 98500, Zacatecas, Mexico
| | - Adrian Zaragoza-Bastida
- Área Académica de Medicina Veterinaria y Zootecnia, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1, EX-Hda de Aquetzalpa, Tulancingo 43600, Hidalgo, Mexico
- Correspondence:
| |
Collapse
|
2
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
3
|
Mehta R, Bhandari R, Kuhad A. Exploring nordihydroguaretic acid (NDGA) as a plausible neurotherapeutic in the experimental paradigm of autism spectrum disorders targeting nitric oxide pathway. Metab Brain Dis 2021; 36:1833-1857. [PMID: 34363573 DOI: 10.1007/s11011-021-00811-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/26/2021] [Indexed: 12/14/2022]
Abstract
The present study investigates the neuro-protective ability of nordihydroguaretic acid (NDGA) in the experimental paradigm of autism spectrum disorders (ASD) and further decipher the nitric oxide pathway's role in its proposed action. An intracerebroventricular infusion of 4 μl of 1 M PPA was given in the lateral ventricle's anterior region to induce autism-like phenotype in male rats. Oral administration of NDGA (5, 10 & 15 mg/kg) was initiated from the 3rd day lasting till the 28th day. L-NAME (50 mg/kg) and L-Arginine (800 mg/kg) were also given individually and combined to explore NDGA's ability to act via the nitric oxide pathway. Behavior tests for sociability, stereotypy, anxiety, depression, novelty, repetitive and perseverative behavior were carried out between the 14th and 28th day. On the 29th day, animals were sacrificed, and mitochondrial complexes and oxidative stress parameters were evaluated. We also estimated the levels of neuroinflammatory and apoptotic markers such as TNF-α, IL-6, NF-κB, IFN-γ, HSP-70, and caspase-3. To assess the involvement of the nitric oxide pathway, levels of iNOS and homocysteine were estimated. Treatment with NDGA significantly restored behavioral, biochemical, neurological, and molecular deficits. Hence, NDGA can be used as a neurotherapeutic agent in ASD. Targeting nitric oxide pathway mediated oxidative & nitrosative stress responsible for behavioral, biochemical, and molecular alterations via modulating nitric oxide pathway. The evaluation of iNOS and homocysteine levels conclusively establishes the nitric oxide pathway's role in causing behavioral, biochemical & molecular deficits and NDGA's beneficial effect in restoring these alterations.
Collapse
Affiliation(s)
- Rishab Mehta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
4
|
Mala John GS, Takeuchi S, Venkatraman G, Rayala SK. Nordihydroguaiaretic Acid in Therapeutics: Beneficial to Toxicity Profiles and the Search for its Analogs. Curr Cancer Drug Targets 2021; 20:86-103. [PMID: 31642411 DOI: 10.2174/1568009619666191022141547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Nordihydroguaiaretic acid (NDGA) is a plant lignan obtained from creosote bush, Larrea tridentata and is known to possess antioxidant, anticancer activities and is used in traditional medicine in North America and Mexico. However, its prolonged consumption leads to liver damage and kidney dysfunction. Despite its toxicity and side effects, there is little awareness to forbid its consumption and its use in the treatment of medical ailments has continued over the years. Several reports discuss its therapeutic efficiency and its medical applications have tremendously been on the rise to date. There has been a recent surge of interest in the chemical synthesis of NDGA derivatives for therapeutic applications. NDGA derivatives have been developed as better alternatives to NDGA. Although several NDGA derivatives have been chemically synthesized as evidenced by recent literature, there is a paucity of information on their therapeutic efficacies. This review is to highlight the medicinal applications of NDGA, its toxicity evaluations and discuss the chemical derivatives of NDGA synthesized and studied so far and suggest to continue research interests in the development of NDGA analogs for therapeutic applications. We suggest that NDGA derivatives should be investigated more in terms of chemical synthesis with preferred conformational structures and exploit their biological potentials with future insights to explore in this direction to design and develop structurally modified NDGA derivatives for potential pharmacological properties.
Collapse
Affiliation(s)
| | - Satoru Takeuchi
- Factory of Takeuchi Nenshi, TAKENEN, 85NE Takamatsu, Kahoku Ishikawa 929-1215, Japan
| | - Ganesh Venkatraman
- Sri Ramachandra Center for Biomedical Nanotechnology, Sri Ramachandra Institute of Higher Education & Research, Chennai-600116, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology (IIT), Madras, Chennai-600036, India
| |
Collapse
|
5
|
Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front Pharmacol 2020; 11:151. [PMID: 32184727 PMCID: PMC7058590 DOI: 10.3389/fphar.2020.00151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand, the oxidation of the catechols to the corresponding quinones my elicit alterations in proteins and DNA that raise safety concerns. This review describes the current knowledge on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic agents, highlighting their mechanism of action and clinical projection towards therapy of neurodegenerative, liver, and kidney disease, as well as cancer.
Collapse
Affiliation(s)
- Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cuadrado
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| |
Collapse
|
6
|
Zhang Y, Sun C, Zhao C, Hao J, Zhang Y, Fan B, Li B, Duan H, Liu C, Kong X, Wu P, Yao X, Feng S. Ferroptosis inhibitor SRS 16-86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury. Brain Res 2018; 1706:48-57. [PMID: 30352209 DOI: 10.1016/j.brainres.2018.10.023] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/30/2018] [Accepted: 10/19/2018] [Indexed: 01/18/2023]
Abstract
Cell death is a key issue in spinal cord secondary injury. Ferroptosis is recently discovered as an iron-dependent type of cell death that is distinct from other forms of cell death pathways such as apoptosis and necrosis. This research is aimed to investigate the role of ferroptosis in spinal cord injury (SCI) pathophysiology, and to explore the effectiveness of ferroptosis inhibitor on SCI. We examined the ferroptosis markers and the factors in a rat contusion SCI model. Seen from transmission electron microscopy (TEM) following SCI, mitochondria showed ferroptotic characteristic changes. Treatment with a ferroptosis inhibitor SRS 16-86 enhanced functional recovery after SCI through the upregulation of anti-ferroptosis factor GPX4, GSH and xCT, and the downregulation of the lipid peroxidation marker 4HNE. SRS 16-86 treatment alleviated astrogliosis and enhanced neuronal survival after SCI. The inflammatory cytokine levels (IL-1β, TNF-α and ICAM-1) were decreased significantly post SRS 16-86 treatment after SCI. These findings suggest strong correlation between ferroptosis and the secondary injury of SCI. The effectiveness of ferroptosis inhibitor SRS-16-86 on SCI repair leads to the identification of a novel therapeutic target for SCI.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | | | - Yiling Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Huiquan Duan
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaohong Kong
- School of Medicine, Nankai University, Tianjin, China
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, United States.
| | - Xue Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China.
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, China; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.
| |
Collapse
|
7
|
De Berdt P, Bottemanne P, Bianco J, Alhouayek M, Diogenes A, Lloyd A, Llyod A, Gerardo-Nava J, Brook GA, Miron V, Muccioli GG, Rieux AD. Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion. Cell Mol Life Sci 2018; 75:2843-2856. [PMID: 29417177 PMCID: PMC11105403 DOI: 10.1007/s00018-018-2764-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/08/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration. Dental stem cells from human apical papilla (SCAP) can be easily obtained at the removal of an adult immature tooth. This offers a minimally invasive approach to re-use this tissue as a source of stem cells, as compared to biopsying neural tissue from a patient with a spinal cord injury. We assessed the potential of SCAP to exert neuroprotective effects by investigating two possible modes of action: modulation of neuro-inflammation and oligodendrocyte progenitor cell (OPC) differentiation. SCAP were co-cultured with LPS-activated microglia, LPS-activated rat spinal cord organotypic sections (SCOS), and LPS-activated co-cultures of SCOS and spinal cord adult OPC. We showed for the first time that SCAP can induce a reduction of TNF-α expression and secretion in inflamed spinal cord tissues and can stimulate OPC differentiation via activin-A secretion. This work underlines the potential therapeutic benefits of SCAP for spinal cord injury repair.
Collapse
Affiliation(s)
- Pauline De Berdt
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain, Avenue E. Mounier 73, B1 73.12, 1200, Brussels, Belgium
| | - Pauline Bottemanne
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Université Catholique de Louvain, Avenue E. Mounier 73, B1 72.01, 1200, Brussels, Belgium
| | - John Bianco
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain, Avenue E. Mounier 73, B1 73.12, 1200, Brussels, Belgium
| | - Mireille Alhouayek
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Université Catholique de Louvain, Avenue E. Mounier 73, B1 72.01, 1200, Brussels, Belgium
| | - Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | - Amy Llyod
- MRC Center for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jose Gerardo-Nava
- Institute of Neuropathology, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Gary A Brook
- Institute of Neuropathology, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Véronique Miron
- MRC Center for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Giulio G Muccioli
- Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group (BPBL), Université Catholique de Louvain, Avenue E. Mounier 73, B1 72.01, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials (ADDB), Université Catholique de Louvain, Avenue E. Mounier 73, B1 73.12, 1200, Brussels, Belgium.
| |
Collapse
|
8
|
Xiao X, Wang X, Liu Z, Wu Y, Yang Y, Hu W, Zhang Y. Local Administration of Methylated Prednisolone Comprising Solid Lipid Nanoparticles Improves Post Traumatic Spinal Cord Injury. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.624.632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
The role of timing in the treatment of spinal cord injury. Biomed Pharmacother 2017; 92:128-139. [DOI: 10.1016/j.biopha.2017.05.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/23/2022] Open
|
10
|
Wang Y, Li C, Gao C, Li Z, Yang J, Liu X, Liang F. Effects of hyperbaric oxygen therapy on RAGE and MCP-1 expression in rats with spinal cord injury. Mol Med Rep 2016; 14:5619-5625. [DOI: 10.3892/mmr.2016.5935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/19/2016] [Indexed: 11/06/2022] Open
|
11
|
Lu GB, Niu FW, Zhang YC, Du L, Liang ZY, Gao Y, Yan TZ, Nie ZK, Gao K. Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signaling pathway activation. Neural Regen Res 2016; 11:1816-1823. [PMID: 28123427 PMCID: PMC5204239 DOI: 10.4103/1673-5374.194753] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Some studies have indicated that the Wnt/β-catenin signaling pathway is activated following spinal cord injury, and expression levels of specific proteins, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β, are significantly altered. We hypothesized that methylprednisolone treatment contributes to functional recovery after spinal cord injury by inhibiting apoptosis and activating the Wnt/β-catenin signaling pathway. In the current study, 30 mg/kg methylprednisolone was injected into rats with spinal cord injury immediately post-injury and at 1 and 2 days post-injury. Basso, Beattie, and Bresnahan scores showed that methylprednisolone treatment significantly promoted locomotor functional recovery between 2 and 6 weeks post-injury. The number of surviving motor neurons increased, whereas the lesion size significantly decreased following methylprednisolone treatment at 7 days post-injury. Additionally, caspase-3, caspase-9, and Bax protein expression levels and the number of apoptotic cells were reduced at 3 and 7 days post-injury, while Bcl-2 levels at 7 days post-injury were higher in methylprednisolone-treated rats compared with saline-treated rats. At 3 and 7 days post-injury, methylprednisolone up-regulated expression and activation of the Wnt/β-catenin signaling pathway, including low-density lipoprotein receptor related protein-6 phosphorylation, β-catenin, and glycogen synthase kinase-3β phosphorylation. These results indicate that methylprednisolone-induced neuroprotection may correlate with activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Gong-Biao Lu
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Fu-Wen Niu
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Ying-Chun Zhang
- Department of Interventional Radiology, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Lin Du
- Jining Medical University, Jining, Shandong Province, China
| | - Zhi-Yuan Liang
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Yuan Gao
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Ting-Zhen Yan
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Zhi-Kui Nie
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People's Hospital, Jining, Shandong Province, China
| |
Collapse
|
12
|
Zhang X, Xue H, Liu J, Song Y, Zhang J, Peng R, Chen D. Combination of amniotic epithelial cells with NDGA promotes the survival of transplanted AECs in spinal cord-injured rats. Neurol Res 2015; 37:1015-24. [PMID: 26311402 DOI: 10.1179/1743132815y.0000000093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Our previous research has shown that seeding amniotic epithelial cells (AECs) in chemically extracted acellular muscle scaffold (CEAMC) better promotes the functional recovery of spinal cord injury (SCI) than scaffold alone. However, the massive death of transplanted cells, which is related to early inflammatory response, is still a problem in cell therapy. Our previous study proved that nordihydroguaiaretic acid (NDGA) inhibits inflammation after SCI. In this study, we tested a strategy of combining the early administration of NDGA and the transplantation of AEC-seeded CEAMC to treat SCI. The results showed that simply increasing the number of surviving AECs had no significant benefits in SCI therapy, but NDGA administration ameliorated transplanted AEC survival demonstrating the potential value of NDGA in the cellular transplantation treatment of SCI.
Collapse
|
13
|
Paracatu LC, de Faria CMQG, Zeraik ML, Quinello C, Rennó C, Palmeira P, da Fonseca LM, Ximenes VF. Hydrophobicity and antioxidant activity acting together for the beneficial health properties of nordihydroguaiaretic acid. Food Funct 2015; 6:1818-31. [PMID: 25927268 DOI: 10.1039/c5fo00091b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Nordihydroguaiaretic acid (NDGA) and rosmarinic acid (RA), phenolic compounds found in various plants and functional foods, have known antioxidant and anti-inflammatory properties. In the present study, we comparatively investigated the importance of hydrophobicity and oxidisability of NDGA and RA, regarding their antioxidant and pharmacological activities. Using a panel of cell-free antioxidant protocols, including electrochemical measurements, we demonstrated that the anti-radical capacities of RA and NDGA were similar. However, the relative capacity of NDGA as an inhibitor of NADPH oxidase (ex vivo assays) was significantly higher compared to RA. The inhibitory effect on NADPH oxidase was not related to simple scavengers of superoxide anions, as confirmed by oxygen consumption by the activated neutrophils. The higher hydrophobicity of NDGA was also a determinant for the higher efficacy of NDGA regarding the inhibition of the release of hypochlorous acid by PMA-activated neutrophil and cytokine (TNF-α and IL-10) production by Staphylococcus aureus-stimulated peripheral blood mononuclear cells. In conclusion, although there have been extensive studies about the pharmacological properties of NDGA, our study showed, for the first time, the importance not only of its antioxidant activity, but also its hydrophobicity as a crucial factor for pharmacological action.
Collapse
Affiliation(s)
- Luana Chiquetto Paracatu
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14801-902, Araraquara, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kawarski M, Hagerman TK, Karver CE. Lazaroids U83836E and U74389G are potent, time-dependent inhibitors of caspase-1. Chem Biol Drug Des 2015; 86:1049-54. [PMID: 25871734 DOI: 10.1111/cbdd.12572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/27/2015] [Accepted: 04/03/2015] [Indexed: 11/26/2022]
Abstract
Caspase-1 is involved in inflammatory processes and is overactive in autoimmunity and autoinflammation. Antioxidant small molecules also play a role in the immune response by decreasing inflammation. An 84-membered library of pro- and antioxidant small molecules was screened for potential inhibitors of caspase-1. Thirteen compounds were discovered to reduce the activity of caspase-1 below 30%. The most potent inhibitors were lazaroid antioxidant molecules, U83836E (B8) and U74389G (B9), displaying apparent Ki values of 48.0 and 50.0 nm, respectively. Both demonstrated a time-dependent and reversible inhibition.
Collapse
Affiliation(s)
- Margaret Kawarski
- Department of Chemistry, DePaul University, 1110 W Belden Ave, Chicago, IL, 60614, USA
| | - Thomas K Hagerman
- Department of Chemistry, DePaul University, 1110 W Belden Ave, Chicago, IL, 60614, USA
| | - Caitlin E Karver
- Department of Chemistry, DePaul University, 1110 W Belden Ave, Chicago, IL, 60614, USA
| |
Collapse
|
15
|
Huang LCS, Chuang H, Kapoor M, Hsieh CY, Chou SC, Lin HH, Chen YW, Chang CC, Hwu JR, Liang YC, Hsu MH. Development of nordihydroguaiaretic acid derivatives as potential multidrug-resistant selective agents for cancer treatment. RSC Adv 2015. [DOI: 10.1039/c5ra18827j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new series of nordihydroguaiaretic acid (NDGA) derivatives have been synthesized for the research of multidrug resistance (MDR) in cancer.
Collapse
Affiliation(s)
| | - Hong Chuang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Republic of China
| | - Mohit Kapoor
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Republic of China
| | - Cheng-Ying Hsieh
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Republic of China
| | - Shih-Ching Chou
- Department of Biology
- Johns Hopkins University
- Maryland 21218
- USA
| | - Hui-Hsien Lin
- Division of Radiotherapy
- Department of Oncology
- Taipei Veterans General Hospital
- Taipei
- Republic of China
| | - Yi-Wei Chen
- Division of Radiotherapy
- Department of Oncology
- Taipei Veterans General Hospital
- Taipei
- Republic of China
| | - Chia-Ching Chang
- Department of Biological Science and Technology
- National Chiao Tung University
- Hsinchu 300
- Republic of China
| | - Jih-Ru Hwu
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013
- Republic of China
| | - Yu-Chuan Liang
- Agricultural Biotechnology Research Center
- Academia Sinica
- Taipei 11529
- Republic of China
| | - Ming-Hua Hsu
- Nuclear Science & Technology Development Centre
- National Tsing Hua University
- Hsinchu 30013
- Republic of China
| |
Collapse
|
16
|
Redmond WJ, Camo M, Mitchell V, Vaughan CW, Connor M. Nordihydroguaiaretic acid activates hTRPA1 and modulates behavioral responses to noxious cold in mice. Pharmacol Res Perspect 2014; 2:e00079. [PMID: 25505619 PMCID: PMC4186454 DOI: 10.1002/prp2.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 01/25/2023] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is a major biologically active component of the creosote bush, Larrea tridentate, widely used in unregulated therapies. NDGA is a lipoxygenase inhibitor while a derivative, terameprocol, has been trialed as a chemotherapeutic agent. When investigating fatty acid activation of the human transient receptor potential cation channel subfamily A, member 1 (hTRPA1), we found that NDGA activated the channel. Here we investigate the actions of NDGA and terameprocol at hTRPA1 and the consequences of this for noxious cold sensitivity in mice. hTRPA1 was stably expressed in HEK 293 cells (HEK 293-TRPA1) and channel activity examined by measuring changes in intracellular calcium ([Ca]i) using a fluorescent dye and activation of membrane currents using patch clamp electrophysiology. The effects of local NDGA and terameprocol application on acetone-induced paw flinching were examined in mice. NDGA (pEC50 of 5.4 ± 0.1, maximum change in fluorescence of 385 ± 30%) and terameprocol (pEC50 4.5 ± 0.2, maximum 550 ± 75%) increased [Ca]i in HEK 293-hTRPA1 cells. NDGA also induced an increase in membrane conductance in HEK 293-hTRPA1 cells. These effects were prevented by the TRPA1 antagonist HC-030031, and were dependent on the presence of Cys621, Cys 641, and Cys 665 in hTRPA1. Neither NDGA nor terameprocol alone produced spontaneous pain behaviors in mice after hind paw injection, but both enhanced responses to acetone. NDGA and terameprocol are efficacious activators of TRPA1. NDGA should be used with care to probe lipoxygenase involvement in nociception while TRPA1 activity should be considered when considering use of these drugs in humans.
Collapse
Affiliation(s)
- William John Redmond
- Australian School of Advanced Medicine, Macquarie University New South Wales, 2109, Australia
| | - Maxime Camo
- Australian School of Advanced Medicine, Macquarie University New South Wales, 2109, Australia
| | - Vanessa Mitchell
- Pain Management Research Institute, Kolling Institute, University of Sydney New South Wales, 2065, Australia
| | - Christopher Walter Vaughan
- Pain Management Research Institute, Kolling Institute, University of Sydney New South Wales, 2065, Australia
| | - Mark Connor
- Australian School of Advanced Medicine, Macquarie University New South Wales, 2109, Australia
| |
Collapse
|
17
|
Song Y, Xue H, Liu TT, Liu JM, Chen D. Rapamycin Plays a Neuroprotective Effect after Spinal Cord Injury via Anti-Inflammatory Effects. J Biochem Mol Toxicol 2014; 29:29-34. [DOI: 10.1002/jbt.21603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Yu Song
- Department of Histology & Embryology; College of Basic Medical Sciences; Jilin University; Changchun 130021 People's Republic of China
- Department of Anatomy; Changchun Medical College; Changchun 130021 People's Republic of China
| | - Hui Xue
- Department of Histology & Embryology; College of Basic Medical Sciences; Jilin University; Changchun 130021 People's Republic of China
| | - Ting-ting Liu
- Department of Pathology; Affiliated Hospital of Jilin Medical College; Jilin 132013 People's Republic of China
| | - Jia-mei Liu
- Department of Histology & Embryology; College of Basic Medical Sciences; Jilin University; Changchun 130021 People's Republic of China
| | - Dong Chen
- Department of Histology & Embryology; Guangdong Medical College; Dongguan 523808 People's Republic of China
| |
Collapse
|
18
|
Hernández-Damián J, Andérica-Romero AC, Pedraza-Chaverri J. Paradoxical Cellular Effects and Biological Role of the Multifaceted Compound Nordihydroguaiaretic Acid. Arch Pharm (Weinheim) 2014; 347:685-97. [DOI: 10.1002/ardp.201400159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Jacqueline Hernández-Damián
- Faculty of Chemistry, Department of Biology; National Autonomous University of Mexico (UNAM); University City D.F. Mexico
| | - Ana Cristina Andérica-Romero
- Faculty of Chemistry, Department of Biology; National Autonomous University of Mexico (UNAM); University City D.F. Mexico
| | - José Pedraza-Chaverri
- Faculty of Chemistry, Department of Biology; National Autonomous University of Mexico (UNAM); University City D.F. Mexico
| |
Collapse
|
19
|
Dileep K, Remya C, Tintu I, Haridas M, Sadasivan C. Binding of NDGA and morin with phospholipase A2: experimental and computational evidences. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.875621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|